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1 Introduction
Consider a polynomial Liénard system of type (m,n); (m,n) ∈ N × N arbi-

trarily but fixed:

X :

{
ẋ = y,
ẏ = P (x) + yQ(x),

(1)

where P and Q are polynomials of respective precise degrees m and n. Shortly
we refer to these systems as Liénard systems (of a certain type (m,n)). Using
linear dilatations in x, y and t, we can assume that P and Q are given by

P (x) = −(Axm +

m−1∑
i=0

aix
i), Q(x) = −(xn +

n−1∑
i=0

bix
i), (2)

with A = 1 or −1, ifm 6= 2n+1, and A ∈ R\{0}, ifm = 2n+1.For a given degree
N , Hilbert’s 16th problem asks for a maximum number of limit cycles that an
Nth degree polynomial vector field in the plane can have. Using the localisation
method of Roussarie [7], the proof of the existence of such a finite upperbound
can be reduced to the finite cyclicity of any limit periodic set occuring in the
flow of a polynomial vector field of degree N . An attempt to solve the existence
part of Hilbert’s 16th problem for polynomial Liénard systems of a given type
(m,n) could hence start by listing all limit periodic sets occuring in Liénard
systems of type (m,n).

In this paper we want to describe all limit periodic sets that can occur
in a polynomial Liénard system of type (m,n), both bounded as unbounded.
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We also give necessary conditions on (m,n) for a limit periodic set to occur
in X ∈ L(m,n)(D). Further, we describe all possible boundaries of any period
annulus occuring in a Liénard system, the bounded ones as well as the ones that
extend to infinity.

First, in order to be able to use the localisation method of Roussarie and
to study the behaviour of a polynomial Liénard equation at infinity, we need to
compactify the phase plane and the chosen space of Liénard systems. We refer
the reader to [2] and [3]. Let us describe shortly these compactifications.

By a Poincaré–Lyapunov compactification, the phase plane can be compact-
ified in the so–called Poincaré–Lyapunov disc. For a general introduction to as
well the Poincaré compactification as the Poincaré–Lyapunov compactification,
we refer to [3] and [4]. Using an appropriate quasi–homogeneous compactifica-
tion, the singularities at infinity will be of a rather simple nature. We use a
Poincaré–Lyapunov compactification of type (α, β) ∈ N1×N1 to compactify the
phase space in the Poincaré–Lyapunov disc of degree (α, β). This means that
we set:

x =
cos θ

vα
, y =

sin θ

vβ
,

with θ ∈ S1, and multiply the obtained vector field by a factor vd to extend the
obtained vector field to the Poincaré–Lyapunov disc. Depending on (m,n) the
degree (α, β) and the power d in the factor vd is chosen to be:

1. (α, β) = (1, n+ 1), d = n, when m ≤ 2n+ 1,

2. (α, β) = (2,m+ 1), d = m− 1, when m > 2n+ 1 and m is even,

3. (α, β) = (1, 12 (m+ 1)), d = (m− 1)/2, when m > 2n+ 1 and m is odd.

The compactification, indicated in the previous list, is called the appropriate
compactification for the respective Liénard system of type (m,n) [2]. The asso-
ciated disc is called the appropriate Poincaré–Lyapunov disc and is denoted by
D(m,n), or shortly D. We endow D with the usual topology of a disc. The vector
field on D(m,n) obtained from X, after such an appropriate Poincaré–Lyapunov
compactification and multiplication by a factor vd, is denoted as X. The study
near infinity of X can be done by means of different charts.

The space of all vector fields X on D(m,n) obtained, after an appropriate
Poincaré–Lyapunov compactification, from a Liénard system X of type (m,n)
with P and Q as in (2) will be denoted as L(m,n)(D). The systems obtained
from a system (1) with P or Q zero constitute the boundary of this space of
Liénard systems. These system are of Hamiltonian or singular type [2]. In using
the localisation method for solving the existential part of Hilbert’s 16th problem
their limit periodic sets also have to be considered. In this paper we only pay
attention to the limit periodic sets occuring in systems belonging to L(m,n)(D).

We remark that all results that are valid for systems:{
ẋ = y,

ẏ = P (x) + yQ(x)

can be transferred to similar results on:{
ẋ = Y − F (x),

Ẏ = P (x),

2
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where F (x) = −
∫ x
0
Q(s)ds. The transfer goes through the coordinate change:

(y, x) = (Y − F (x), x), (3)

so that statements on {y ≥ 0} (resp. {y ≤ 0}) will now hold on {y ≥ F (x)}
(resp. {y ≤ F (x)}). The transfer clearly works on the finite plane, but in fact
the results including infinity still hold, since (see [2]) the coordinate change (3)
can be extended to an analytic diffeomorphism on the appropriate Poincaré–
Lyapunov disc.

2 Singularities in Liénard systems
Let X ∈ L(m,n)(D), as in the introduction obtained after an appropriate

Poincaré–Lyapunov compactification from a Liénard system X of type (m,n)
(1), where P and Q are given like in (2).

In order to be able to describe all possible limit periodic sets, we first have
to study all possible singularities of X. The study of the singularities at infinity
is already done in [3]. For sake of completeness and for later use, we recall the
results. Figures 1, 2, 3 and 4 show the behaviour near infinity of X in the three
cases: m < 2n+ 1, m = 2n+ 1 and m > 2n+ 1.

Note that the behaviour near infinity only depends on the degree (m,n) and
the coefficient A. In these pictures simple arrows on different curves near a
singularity indicate that the singularity is hyperbolic, while for semi–hyperbolic
singularities we use simple arrows for the centre behaviour and double arrows
for the hyperbolic behaviour. Other singularities do not occur at infinity in the
appropriate Poincaré–Lyapunov compactification.

!"#$#%&"%"#$#%&"'"(") !"#$#%&"%"#$#%&"'"("*) !"+,,&"%"#$#%&"'"(") !"+,,&"%"#$#%&"'"("*)

!"#$#%&"%"+,,&"'"(") !"#$#%&"%"+,,&"'"("*) !"+,,&"%"+,,&"'"(") !"+,,&"%"+,,&"'"("*)

Figure 1: Behaviour near infinity for m < 2n + 1 on the Poincaré–Lyapunov
disc of degree (1, n+ 1).

The study of the singularities of X situated in the interior of D(m,n) is
equivalent to the study of the singularities of the original Liénard system X of
type (m,n). Because ẋ = y we say that the flow of X points to the right above
the x–axis and to the left below the x–axis. Regular orbits of X will intersect
the x–axis transversally.
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Figure 2: Behaviour near infinity for m = 2n + 1 on the Poincaré–Lyapunov
disc of degree (1, n+ 1).
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Figure 3: Behaviour near infinity for m > 2n + 1, m even, on the Poincaré–
Lyapunov disc of degree (2,m+ 1).

!"#"$ !"#"%$

Figure 4: Behaviour near infinity for m > 2n + 1, m odd, on the Poincaré–
Lyapunov disc of degree (1, 12 (m+ 1)).

A singularity s of X is given by a point s = (x0, 0) with P (x0) = 0. The
linear part of X at s is equal to

A :=

(
0 1

P ′(x0) Q(x0)

)
, (4)

with eigenvalues λ1,2 = 1
2

(
Q(x0)±

√
Q(x0)2 + 4P ′(x0)

)
and corresponding

eigenspaces V1 and V2 spanned by respectively (1, λ1) and (1, λ2). Moreover
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λ1λ2 = −P ′(x0). Further we write:

P (x) = a(x− x0)k + o(x− x0)k,

Q(x) = b(x− x0)l + o(x− x0)l,
(5)

where ab 6= 0 and with (k, l) ∈ N2, 1 ≤ k ≤ m and 0 ≤ l ≤ n. We call (k, l) the
Liénard degree of the singularity s.

The propositions below describe the singularities of a Liénard system (1)
with respect to their Liénard degree and the coefficients (a, b). We will present
all possible phase portraits of the singularities of a Liénard system. A singulariy
s always lies on the x–axis. In case s is not a focus nor a center, a dotted line
indicates the direction in which orbits can approach the singularity or move
away from it. Notice that in presenting the phase portraits, it is not possible
to stress out the exact position of the orbits, nor their exact contact with the
directions in which they approach s.

Proposition 1 If k = 1 and:

1. if a > 0, s is a hyperbolic saddle as in Figure 5 (a).

2. if a < 0, l = 0 and b2 + 4a ≥ 0, then s is a stable node when b < 0 and
an unstable node when b > 0. When b2 + 4a > 0, all orbits except two
will approach the singularity along the eigenspace that corresponds with the
eigenvalue that is smallest in absolute value (see Figure 5, (b) and (c)).
In case b2 + 4a = 0 all orbits will approach s along the unique eigenspace
(see Figure 5, (d) and 5 (e)). In particular s cannot be a star node.

3. if a < 0, l = 0 and b2 + 4a < 0, then s is a stable focus when b < 0 and
an unstable focus when b > 0 (see Figure 5, (f) and (g)).

4. if a < 0 and l > 0, then s is linearly a center. The singularity is a focus
or a center (see Figure 5 (h)).

Figure 5: Phase portraits of non–degenerate singularities.

Proof: If s is not a center, the type of the singularity can be deduced from the
linear part A. In case A has a center in s, it can be a center or focus for X.
We are then left with the well–known center–focus problem. The directions in
which the orbits approach the singularity can be found by blowing up, see for
instance [6]. Phase portraits are obtained by using the fact that the flow of X
points to the right above the x–axis and to the left below the x–axis. �
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Proposition 2 The singularity s of X is semi–hyperbolic if and only if k ≥ 2
and l = 0. Every center manifold has at s a contact of order k − 1 with the
x–axis and on it, the vector field behaves like

ẋ = −a
b

(x− x0)k + o(x− x0)k.

Depending on whether b is positive or negative there is an unstable respectively
stable manifold tangent to y = b(x − x0). Denoting Q(x) − b = c(x − x0)p +
o(x − x0)p for some p ≥ 1, the (un)stable manifold has a contact at s of order
min {k − 1, p} with y = b(x− x0). Furthermore:

1. if k is odd and a > 0 the singularity is of saddle–type (Figure 6, (a) and
(b)).

2. if k is odd and a < 0 the singularity is a stable node when b > 0 and an
unstable node when b < 0 (Figure 6, (c) and (d)).

3. if k is even the singularity is a saddle–node (Figure 6, (e), (f), (g) and
(h)).

Moreover orbits not lying on the (un)stable manifold and adherent to s belong
to a center manifold, having at s a contact of order k − 1 with the x–axis.

Figure 6: Phase portraits of semi–hyperbolic singularities.

Proof: The singularity is semi–hyperbolic if and only if λ1λ2 = 0, λ1 + λ2 6= 0
which is equivalent to P ′(x0) = 0, Q(x0) = b 6= 0. The linear part of X at s is
given by:

A =

(
0 1
0 b

)
with eigenvalues 0, b and respective eigenspaces y = 0 and y = b(x− x0).

The center manifold theorem ensures the existence of at least one C∞ man-
ifold y = c(x) tangent to the x–axis and invariant under the flow of X (see e.g.
[4]), i.e.

c′(x)c(x) = P (x) + c(x)Q(x) or c(x)(−b+O(x− x0)) = P (x)

such that P (x) = O(x−x0)k implies c(x) = O(x−x0)k. Comparing coefficients
one sees that

c(x) = −a
b

(x− x0)k + o(x− x0)k.

6



Preprint submitted at Qualitative Theory of Dynamical Systems. The final publication is
available at http://link.springer.com/article/10.1007\%2Fs12346-008-0019-9

Suppose now y = s(x) is the (unique) invariant manifold tangent to the (un)stable
direction y = b(x− x0). Just as before the invariance implies

s(x)(s′(x)−Q(x)) = P (x). (6)

Substituting Q(x) = b + O(x − x0)p and s(x) = b(x − x0) + O(x − x0)2 one
obtains

(b+O(x− x0))(s′(x)− b) = O(x− x0)k−1 +O(x− x0)p,

such that s′(x) − b = O(x − x0)min {k−1,p}, meaning that at x0 the contact
between y = b(x− x0) and y = s(x) is of order min {k − 1, p}.

If γ is an orbit not lying on the unique (un)stable manifold and it approaches
s, then we know that it lies on a center manifold [4]. Because all center manifolds
are mutually infinitely tangent [4], γ has to have at s a contact of order k − 1
with the x–axis.

The phase portraits are easily obtained using the fact that ẋ = y. �

Proposition 3 The singularity s of X is nilpotent if and only if k ≥ 2 and
l ≥ 1. Moreover:

1. if k = 2p is even and k < 2l + 1, the singularity is a cusp for which the
separatrices have at s a contact of order p (Figure 7, (a) and (b)).

2. if k is even and k > 2l + 1, the singularity is a saddle–node. Orbits can
only approach s along the x–axis having at s mutual contact of order l
(Figure 7, (c), (d), (e) and (f) ).

3. if k = 2p+ 1 is odd and a > 0, then the singularity is a saddle where the
separatrices are tangent to the x–axis having at s mutual contact of order
p when k ≤ 2l + 1 and of order l when k > 2l + 1 (Figure 7 (g)).

4. if k is odd and a < 0 and:

(a) if k < 2l+1, or k = 2l+1 and b2 +4a(l+1) < 0, then the singularity
is a focus or center (Figure 7, (h), (i) and (j) ),

(b) if l is odd and either k > 2l+ 1, or k = 2l+ 1 and b2 + 4a(l+ 1) ≥ 0,
then s is a singularity with one elliptic and one hyperbolic sector
where orbits can only approach s along the x–axis having at s mutual
contact of order l (Figure 7, (k) and (l) ),

(c) if l is even and either k > 2l+ 1, or k = 2l+ 1 and b2 + 4a(l+ 1) ≥ 0
then s is an attractive node when b < 0 and a repelling node when
b > 0. All orbits will approach s along the x–axis having at s mutual
contact of order l (Figure 7, (m) and (n) ).

Proof: If Q(x0) = 0 and P ′(x0) = 0, we see immediately that the linear part
of X is nilpotent.

The study of the singularity relies on quasi–homogeneous blow–up. In case
k ≤ 2l + 1 and k is odd, one uses the blow up

x = u, y = uqy, (7)

7
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Figure 7: Phase portraits of nilpotent singularities.

with q = k+1
2 and we divide by uq−1. If k is even, one uses:

x = u2, y = uk+1y, (8)

and we divide by uk−1. In case k > 2l + 1, one uses the blow up:

x = u, y = ul+1y, (9)

and we divide by ul.
In the directional charts {y = ±1}, one won’t find any singularity in the

origin. We can therefore restrict our study to the {u = ±1}–charts. However
using the transformations (7) and (8), the information found in the {u = 1}–
chart also covers the information in the {u = −1}–chart. We refer to [4] where
all calculations are present.

Let us clarify the statements about the contacts. In blow–up coordinates the
y–axis is invariant under the flow and corresponds to the origin in the original
coordinates. Suppose y = y(x) is an orbit that approaches the singularity s,
then this orbit will correspond to an orbit y = y(u) not lying on the y–axis that
approaches a singularity on the y–axis.

If k ≤ 2l + 1, one finds no singularities at the origin after blow up [4].
Therefore y(u) = α + o(1), u → 0 with α 6= 0. After blowing down, we get
y(x) = αx

k+1
2 + o(x

k+1
2 ), x→ 0.

In case k > 2l + 1 one finds, after blowing up, two singularities on the y–
axis [4]. The origin is a semi–hyperbolic singularity with a unique (un)stable
manifold lying on the y–axis. All other orbits are given by y(u) = o(uk−2l−2),
u → 0. Blowing down gives y(x) = o(xk−l−1), x → 0. The other singularity is
a saddle having a unique invariant manifold, transverse to the y–axis, given by
y(u) = α + o(1), u → 0 with α 6= 0. Blowing down yields y(x) = o(xl), x → 0.
Because k > 2l + 1, we get certainly y(x) = o(xl), x→ 0 in both cases. �

The previous propositions classify the singularities of Liénard systems (1)
according to their Liénard degree (k, l) and the coefficients (a, b), defined in

8
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(5). It is clear that a singularity of Liénard degree (k, l) can only occur in a
Liénard system of type (m,n) when m ≥ k and n ≥ l. As a direct consequence
of the former propositions, we can state the following theorem that presents all
possible singularities of a Liénard system of type (m,n) ∈ N2.

Theorem 4 A Liénard system X of type (m,n) as defined in (1) has at most
m singularities, where we count a singularity (x0, 0), k+ 1 times when P (x0) =
P ′(x0) = · · · = P (k)(x0) = 0. Denote by s a singularity of X, then:

1. s can be a hyperbolic singularity: a saddle, a node (no star node) or a
focus, see Figure 5, (a)–(g). Near a node, all orbits approach s along one
of the eigenspaces of the linear part of X at s.

2. when n ≥ 1, s can be a linear center, i.e. a center or a focus, see Figure
5, (f), (g) or (h).

3. if m ≥ 2, s can be a saddle–node. When m ≥ 3, s is possibly a semi–
hyperbolic node or a semi–hyperbolic saddle. The unique (un)stable mani-
fold intersects the x–axis transversally. The center manifolds will have at
the singularity a contact of order at most m with the x–axis. See Figure
6.

4. if m ≥ 2, n ≥ 1, s can be a cusp, when m ≥ 3, n ≥ 1, s can be a nilpotent
focus, center, saddle or a singularity with an elliptic sector, if m ≥ 4,
n ≥ 1, s can be a nilpotent saddle–node, when m ≥ 5, n ≥ 2, s can be
a nilpotent node. In case s is not a center nor a focus, orbits can only
approach the singularity s along the x–axis. See Figure 7.

3 Limit periodic sets in Liénard systems
After a study of all possible singularities occuring in a Liénard system X ∈

L(m,n)(D), we are able to describe all possible limit periodic sets occuring in X.
We will also describe necessary conditions on (m,n) for a certain limit periodic
set to occur in X.

For being able to treat limit periodic sets, we will endow L(m,,n)(D) with
a topology. We endow L(m,n)(D) with the coefficient topology. This is the
topology T (m,n) such that the following map is a homeomorphism:

π : (L(m,n)(D), T (m,n)) 7→ (B,U)

X 7→ (A, am−1, . . . , a0, bn−1, . . . , b0),

associating to each X ∈ L(m,n)(D), the coefficients

(A, am−1, . . . , a0, bn−1, . . . , b0)

of the polynomials P and Q of the original system X (1) and where B is given
by {−1, 1} × Rn+m, when m 6= 2n+ 1, and R\{0} × Rn+m, when m = 2n+ 1,
equipped with the induced topology U from Rm+n+1.

Define H(D) as the set of all non-empty compact subsets of D provided with
the Hausdorff metric, i.e.

dH(K1,K2) = sup { sup
x∈K1

d(x,K2), sup
y∈K2

d(K1, y)}; K1,K2 ∈ H(R2),

9
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where d(a,K) = infx∈K {ρ(a, x)}, ρ the Euclidean metric on R2.
A compact subset L of D is said to be a limit periodic set of X ∈ L(m,n)(D)

if for each ε > 0 and for each neighbourhood V of X, there exists an Y ∈ V
whose flow contains a limit cycle γ such that dH(γ,L) < ε. Limit periodic sets
were first introduced in [5] and further worked out in [8].

A limit periodic set can only be a singularity situated in D\∂D, a periodic
orbit or a graphic of X [8]. A graphic of X consists of a finite (non–zero)
number of singularities s1, . . . , sr, not necessarily different, and a finite (non–
zero) number of regular orbits γ1, . . . , γr connecting them in the sense that for
i = 1, . . . , r: ω(γi) = si+1 and α(γi+1) = si, where sr+1 = s1. We take care
of taking r as small as possible avoiding useless coincidences in the graphic. A
graphic that is homeomorphic with the unit circle S1 is called a cycle. Depending
on whether a limit periodic set, a periodic orbit or a graphic fits in D\∂D or
not, we call it bounded resp. unbounded.

An oriented path in a graphic starting at A and ending at B constitutes
a (singular) connection between two points A and B on L. We speak of a
connection from A to B.

Let us define a passage {Oω, s,Oα} at a singularity s of Xλ0
as the union

of s together with a regular orbit Oω with s as ω-limit and a regular orbit Oα
with s as α-limit. It is clear that every singularity s of a graphic has to possess
at least one passage.

Let ϕ : A ⊂ [−1, 1] 7→ D be a Cω function on an open connected subset A ⊂
[−1, 1]. Here [−1, 1] is endowed with the induced topology from R. Take Σ =
ϕ(A) with the induced topology. If ϕ : A ⊂ [−1, 1] 7→ Σ is a homeomorphism
such that for every a ∈ A, ϕ′(a) and X(ϕ(a)) are linearly independent, then Σ
is called a transverse section of X.

From the fact that ẋ = y in a Liénard system, it is easily seen that for
abritrarily x, the sets Σ+

x = {(x, y) ∈ D | y > 0} and Σ−x = {(x, y) ∈ D | y < 0}
are transverse sections for any X ∈ L(m,n)(D).

The following proposition is an easy consequence of the proof of the Poincaré–
Bendixson theorem. The proof of it can be found in [8].

Proposition 5 Suppose L is a limit periodic set of X and Σ is a transverse
section of X. Then Σ intersects L in at most one point.

3.1 Bounded limit periodic sets
Let us describe the bounded limit periodic sets L occuring in aX ∈ L(m,n)(D)

for certain (m,n) ∈ N2.
If L is a bounded periodic orbit, one easily sees that it will be Cω diffeomor-

phic to a circle cutting the x–axis transversally at two distinct points.
We already know that all singularities of a bounded graphic have to lie on

the x–axis and have to possess at least one passage {Oω, s,Oα}. Locally both
Oα and Oω have the option to lie under or above the x–axis. We come to four
different passages:

i. a left–right–passage (lr–passage): when both Oα and Oω lie above the
x–axis,

ii. a right–left–passage (rl-passage): when both Oα and Oω lie under the
x–axis,

10
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iii. an upgoing–passage: when Oα lies above and Oω under the x–axis,

iv. a downgoing–passage: when Oα lies under and Oω above the x–axis.

We call lr–passages and rl–passages also horizontal passages and the upgoing-
and downgoing passages also vertical passages. In Figure 8 the four kind of
passages are illustrated.

Figure 8: Horizontal and vertical passages of a singularity of a Liénard system.

Only the singularities containing passages can be part of a graphic. Let us
give an overview, based on the results in Section 2, of all singularities possessing
passages.

We begin with the singularities containing a horizontal passage. Saddles
contain as well a lr–passage as a rl–passage (Figure 9). Saddle–nodes and sin-
gularities with one elliptic sector contain either a lr–passage (Figure 10) or a
rl–passage (Figure 11).

Figure 9: Saddles contain both lr– and rl–passages as well as both upgoing– and
downgoing–passages.

Figure 10: Singularities containing lr–passages but no rl-passages.

The singularities with a vertical passage are the saddles, containing upgoing–
as well as donwgoing–passages (Figure 9), the singularities in Figure 12 con-
taining upgoing but no downgoing–passages and the singularities in Figure 13,
containing downgoing– but no upgoing–passages.

Remark that the singularities in Figures 10 and 11, (b) and (c), also contain
upgoing–passages while the ones in (d) and (e) also contain downgoing–passages.
The singularities in Figures 12 and 13, (b) and (c), contain lr–passages while
the ones in (d) and (e) contain rl–passages. Saddles contain all four kind of

11
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Figure 11: Singularities containing rl–passages but no lr–passages.

Figure 12: Singularities containing upgoing–passages.

Figure 13: Singularities containing downgoing–passages.

passages. Furthermore horizontal passages nor vertical passages have to be
unique. For instance saddle–nodes can contain infinitely many horizontal or
vertical passages.

As a matter of example, we list all possible bounded limit periodic sets
containing at most 2 singularities. Note that an exact position of the orbits or
exact contacts cannot be illustrated in these pictures. To shorten the list of the
graphics, we work modulo reflections with respect to the x–axis, y–axis or the
origin, i.e. up to the transformations

(y, t) 7→ (−y,−t), (x, t) 7→ (−x,−t), (x, y) 7→ (−x,−y).

First of all a bounded limit periodic set L can be a bounded periodic orbit or

12
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s1

s1
s1

s2

s2
s2s1 s2

s1s1

s1 s1

s1 s2 s1 s1s2 s2

Figure 14: Possible bounded limit periodic sets containing at most two singu-
larities.

a singularity, Figure 14, (a) and (b). Let L be a bounded graphic. If L contains
one singularity, then depending on the kind of passage of the singularity, we
find 3 different pictures illustrated in Figure 14, (c), (d) and (e). If L contains
two singularities {s1, s2}, one distincts another 7 different pictures according to
the kind of passages at s1 and s2 that lie on L.

Concerning the possible topological types of the different singularities in
Figure 14, we can say the following, making use of the above presentation of
all singularities containing passages. In Figure 14 (b) every topological type
can a priori occur. Of course if the singularity is a saddle, then it cannot be a
hyperbolic one, but it can e.g. be a nilpotent saddle of codimension 3 and similar
for a focus. In Figure 14 (e), s1 has as well a lr–passage as a rl–passage implying
that it has to be a saddle (hyperbolic or non–hyperbolic). Singularities with a
vertical passage on L are possibly saddles, saddle–nodes or cusps. Those with a
horizontal passage on L can only be saddles, saddle–nodes or singularities with
one elliptic sector.The following theorem describes any bounded limit periodic
set.

Theorem 6 Suppose L is a bounded limit periodic set of X ∈ L(m,n)(D). Then
L is a non–hyperbolic singularity of X situated in D\∂D or it is the union of
two continuous graphs y = h1(x) and y = h2(x), x ∈ [a0, b0], a0 < b0 such that:

i. ∀x ∈ [a0, b0] : h1(x) ≥ 0 and h2(x) ≤ 0. Moreover h1(a0) = h2(a0) = 0
and h1(b0) = h2(b0) = 0.

ii. for x ∈]a0, b0[, h1(x)h2(x) = 0 if and only if (x, 0) is a singularity of X
lying on L.

In this way, each graphic is an union of (singular) cycles and this decomposition
is unique. Moreover concerning the singularities, we have the following:

a. the zeros of h1 (resp. h2) with abscis lying in ]a0, b0[ can only be saddles
or one of the singularities presented in Figure 10 (resp. Figure 11),

13
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b. if (a0, 0) (resp. (b0, 0)) is a singularity, then it has to be a saddle or one
of the singularities presented in Figure 12 (resp. Figure 13),

c. if h1(x) = h2(x) = 0, x ∈]a0, b0[, then (x, 0) can only be a saddle (see
Figure 9).

Proof: Denote the singularities and regular orbits that constitute L as s1, . . . , sr
and γ1, . . . , γr, with r minimal. We suppose that α(γi) = si and ω(γi) = si+1.
We accept that some si = sj for i 6= j, but let us show that it is justified to
assume that γi 6= γj for every i 6= j ∈ {1, . . . , n}. If not, suppose γi = γj for
some i 6= j, then also si = sj and si+1 = sj+1. For L being closed there has to
correspond (singular) connections Ωi from si+1 to si and Ωj from sj+1 to sj .
These connections have to coincide because otherwise they would result in two
intersections of L with some transveral Σ+

x or Σ−x contradicting Proposition 5.
So Li = {si, si+1, γi,Ωi} describes the same graphic as Lj = {sj , sj+1, γj ,Ωj}
implying that the chosen configuration is not minimal, i.e. r is not as small as
possible.

Because L is compact, it is meaningful to set a0 = min {x | (x, y) ∈ L} and
b0 = max {x | (x, y) ∈ L}. In following the graphic L from (a0, 0) to (a0, 0), it
can be shown that the x–component of the points on L first has to increase in
a monotone way until reaching b0 before it decreases again to a0. If not, some
x–values would have to be crossed at least twice in an upgoing or downgoing
movement. This is not allowed because of Proposition 5 and the minimality
requirements on r.

As such it is clear that the (singular) connection from (a0, 0) to (b0, 0) re-
mains in {y ≥ 0} while the (singular) connection from (b0, 0) to (a0, 0) remains
in {y ≤ 0}. These connections being connected they have to cut each line
{x} × R, for x ∈]a0, b0[, and because of Proposition 5 and the minimality as-
sumption on r, they both cut each {x} × R exactly once, implying that they
can be represented by graphs {y = hi(x)} of functions hi defined on [a0, b0].

Clearly hi is continuous, even analytic, at points x ∈]a0, b0[, where hi(x) 6= 0.
At points x0 ∈]a0, b0[ where h1(x0) = 0 or h2(x0) = 0, the Liénard equation has
to be singular. Using the classification of the singularities given in Propositions
1, 2 and 3, it is clear that h1 and h2 are also continuous at such points. Similar
arguments can be used at a0 and b0.

The other statements of the theorem are also immediate consequences of
Propositions 1, 2 and 3. �

3.2 Unbounded limit periodic sets
Concerning the unbounded limit periodic sets, we have the following theorem.

Theorem 7 Suppose X ∈ L(m,n)(D) has an unbounded limit periodic set L.
Then one of the below mentioned conditions has to be satisfied; A denotes the
highest order coefficient of P in (1).

1. When

(a) m = 2n+ 1, A > 1
4(n+1) or,

(b) m > 2n+ 1, m odd and A = 1,

L is given by a periodic orbit lying at infinity, Figure 15 (a).
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2. When
m = 2n+ 1, n even, A =

1

4(n+ 1)
,

L looks like in Figure 15 (b). The two singularities are saddle–nodes with
a center behaviour at infinity and a repelling behaviour on their hyperbolic
separatrices.

3. When
m = 2n+ 1, n odd, A =

1

4(n+ 1)

L looks like in Figure 15, (c), (d1) or (d2). The singularities s1 and s2
at infinity are both saddle–nodes with a center seperatix at infinity. The
behaviour on the hyperbolic separatrix of s1 is attractive, while that of s2
is repelling.

4. When

m = 2n+ 1, n odd, 0 < A <
1

4(n+ 1)
,

L looks like in Figure 15, (d1) or (d2). In this case the singularities s1
and s2 are both hyperbolic saddles.

5. When
m < 2n+ 1,m odd, n odd and A = 1,

L looks like in Figure 15, (e1) or (e2) containing at infinity two semi–
hyperbolic saddles s1 and s2 such that s1 (resp. s2) has an unstable (resp.
stable) separatrix lying at infinity and an attractive (resp. repelling) center
separatrix in D\∂D.

Moreover in all cases the singularities on L that are situated inside D\∂D have
to be saddles or one of the singularities represented in Figure 11.

s2

s1

s1

s1
s1

s2

s2
s2

s1 s1 s2
s2

Figure 15: All possible unbounded limit periodic sets (we do not pay atten-
tion to the exact position and contact of orbits nor to the exact nature of the
singularities).
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Proof: The study of the behaviour of X near infinity immediately implies that
the above mentioned cases are the only possible ones for which X can have a
limit periodic set. Indeed we can distinguish two cases: L includes the whole
circle at infinity or only part of it. In the first case, it can be a regular periodic
orbit at infinity or a graphic at infinity that only contains singularities possessing
a passage at infinity. It is obvious that this is only possible when m = 2n + 1,
A ≥ 1

4(n+1) or when m > 2n+ 1, m odd and A = 1.
When a limit periodic set L is not lying enterily at infinity, it has to contain

at least one connection on ∂D bordered by two singularities p1 and p2 that both
contain a passage. For L being closed, p1 and p2 have to possess a hyperbolic
sector such that the flow on the separatrix lying in D\∂D is attractive in one
singularity and repelling in the other. This is only possible either when m <
2n+ 1, m odd, n odd and A = 1 or when m = 2n+ 1, n odd, 0 < A ≤ 1

4(n+1) .
The topological type of the singularities at infinity immediately follows from

the study of the behaviour near infinity of X in the above mentioned cases. In
Figure 15, (d1), (d2), (e1) and (e2), L contains the upper semicircle at infinity.
Therefore for not being in contradiction with proposition 5 the remaining part
of L has to be situated in the half plane {y ≤ 0}. In particular all regular orbits
of L lying in D\∂D are situated below the x–axis implying that all singularities
on L not lying at infinity have to contain a rl–passage. �

3.3 Occurence of limit periodic sets
Let X ∈ L(m,n)(D). We try to find necessary conditions on (m,n) for a

limit periodic set L to occur in the flow of X.
Suppose first L is a bounded limit periodic set of X. If L is a singularity

with Liénard degree (k, l), then obviously m ≥ k and n ≥ l. When L is a
bounded periodic orbit, then mn ≥ 1. Indeed it is generally known that inside
a periodic orbit, there has to exist a singularity together with a point where the
divergence of X, i.e. Q(x), disappears.

Suppose now that L is not a singularity nor a periodic orbit. Denote by
{s1, . . . , st} with si = (pi, 0) the singularities on L. We know from Theorem 6,
that L is, in an unique way, the union of cycles that can only meet each other
in a saddle. Denote by n0 the number of cycles constituting L. The Liénard
degree (K,L) of L is defined as:

(K,L) =

( t∑
i=1

ki,

t∑
i=1

li

)
,

where (ki, li) is the Liénard degree of the singularity si on L, counting each
singularity of L once.

A singularity si = (pi, 0) induces a local behaviour on the vector field X
restricted to the x–axis. Because X(x, 0) = (0, P (x)) this behaviour is com-
pletely determined by the local behaviour of P (x) at the zero pi. In particular
a singularity si induces a sign on P in a right– and left semi–neighbourhood
of pi. For instance, if si is a saddle (see Figure 9), then P is positive in a
right semi–neighbourhood of pi and negative in a left semi–neighbourhood of
pi. Moreover if the endpoints a0 and b0 of L are not singularities, then it is
clear that P (a0) > 0 and P (b0) < 0. From the intermediate value theorem, it
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follows that there exists a minimum number m0 of singularities that X is forced
to have for P being continuous on [a0, b0].

The following proposition now states necessary conditions for L to occur in
the flow of X.

Theorem 8 Suppose L is a bounded limit periodic set of an X ∈ L(m,n)(D),
then:

1. if L is a singularity with Liénard degree (k, l), then m ≥ k and n ≥ l,

2. if L is a periodic orbit, then mn ≥ 1,

3. if L is a graphic, if m0 and n0 are defined as above and (K,L) is the
Liénard degree of L, then m and n have to satisfy

m ≥ K +m0 and n ≥ L+ n0.

Proof: Suppose L is a graphic. Then the degree of the polynomial P has
to be at least the number of its zeros, counted with their multiplicity. Thus
m ≥ K + m0. Furthermore in each area enclosed by a cycle, there has to ex-
ist a point where the divergence ofX, i.e. Q(x), is zero such that n ≥ L+n0. �

When X contains an unbounded limit periodic set, m has to be odd and
A > 0 such that limx→−∞ P (x) < 0 and limx→+∞ P (x) > 0. Moreover if L
contains a singularity s = (p, 0) in D\∂D, then it induces a local behaviour on P
near p as before. Again the continuity of P , forcesX to have a minimum number
m0 of singularities. Further we define the Liénard degree of an unbounded limit
periodic set L as:

(K,L) =

( t∑
i=1

ki,

t∑
i=1

li

)
,

where (ki, li)i, i = 1, . . . , t are the Liénard degrees of the (different) singularities
on L situated in D\∂D. As a direct consequence of Theorem 7, we can state
necessary conditions on (m,n) for an unbounded limit periodic set L to occur
in a Liénard system of type (m,n).

Theorem 9 Suppose L is an unbounded limit periodic set of X ∈ L(m,n)(D).
Then if m0 is defined as above and (K,L) is the Liénard degree of L, the fol-
lowing applies:

1. if L is a periodic orbit at infinity, then m ≥ 2n+ 1, m odd,

2. if L is like in Figure 15 (b), then m = 2n+ 1, n even,

3. if L is like in Figure 15, (c) or (d1), then m = 2n+ 1 and n is odd,

4. if L is like in Figure 15 (d2), then m = 2n + 1, n is odd, m ≥ K + m0

and n ≥ L,

5. if L is like in Figure 15 (e1), then m < 2n+ 1, m and n are odd,

6. if L is like in Figure 15 (e2), then m < 2n + 1, m and n are odd, m ≥
K +m0 and n ≥ L.

17



Preprint submitted at Qualitative Theory of Dynamical Systems. The final publication is
available at http://link.springer.com/article/10.1007\%2Fs12346-008-0019-9

One can now ask oneself whether a limit periodic set does occur in a system
satisfying the minimal conditions given in Theorems 8 and 9. Let us verify this
in some examples. A singularity with a Liénard degree (k, l) can indeed occur
in a Liénard system of type (k, l) as already discussed in Section 2. Periodic
orbits obviously occur in the Liénard system:

X :

{
ẋ = y,

ẏ = −x+ xy

having, by symmetry reasons, a center at the origin. Furthermore, from Section
2 we know that the system:

X :


ẋ = y,

ẏ = −1

2
x+ y

has a strong stable focus in the origin and a periodic orbit lying at infinity.
However a bounded periodic orbit isn’t possible here because the divergence of
X does not disappear anywhere.

Concerning a loop as in Figure 14 (c) that is based at a hyperbolic saddle,
we found that m has to be at least 2 and n at least 1. It is well known that such
a hyperbolic saddle–loop does indeed occur in a Liénard system of type (2, 1),
see for instance [6].

We finish with an example containing an unbounded 2–saddle cycle, where
the saddles at infinity are both hyperbolic. Consider the Liénard system{

ẋ = y,

ẏ = − 1
10x(x2 + 2)− yx.

(10)

Because the system is symmetric with respect to the x–axis, i.e. it is invari-
ant under the transformation (x, t)→ (−x,−t), the linear center at the origin is
a center. Moreover, it is the only singularity of the system inside the Poincaré–
Lyapunov disc of degree (1, 2). Looking at the behaviour at infinity, Section 2,
Figure 2, one sees that there is only one possibility for the global flow of the
above system. The system has an unbounded hyperbolic 2–saddle cycle. From
Theorem 9, we indeed know that m has to be at least 3 and n at least 1 for
such an unbounded 2–saddle cycle to occur.

4 Boundaries of period annuli in Liénard systems
In this section, we describe all possible exterior and interior boundaries of

as well bounded as unbounded period annuli. This permits to describe the
boundary of all possible Hopf centers, the ones that extend to infinity as well
as the ones that do not extend to infinity. Further, we find some sufficient
conditions for a Hopf center to be bounded or to be unbounded.

4.1 Boundaries of period annuli
Let X ∈ L(m,n)(D), obtained after an appropriate Poincaré–Lyapunov com-

pactification from a Liénard system X of type (m,n):

X :

{
ẋ = y,
ẏ = P (x) + yQ(x),

(11)
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where P and Q are polynomials of respective precise degrees m and n. We will
describe the possible boundaries of period annuli occuring in X. We start with
some definitions.

An open connected subset A of the plane filled by closed orbits of X is
called a period annulus of X; we will shortly call it an annulus. We say that the
annulus is bounded when A fits in some compact K ⊂ D\∂D, if not, A is said
to be unbounded.

Let A be an annulus of X. We can provide A with an order relation �.
Herefore let p1, p2 ∈ A. Then, one can find two closed orbits of X, γ1 ⊂ A
and γ2 ⊂ A such that p1 ∈ γ1 and p2 ∈ γ2. Denote A1 and A2 as the regions
enclosed by γ1 and γ2 respectively. We say that p1 � p2 if and only if A1 ⊆ A2.
If both p1 � p2 and p2 � p1, then we say that p1 is equivalent to p2, denoted as
p1 ∼ p2; this happens when p1 and p2 both belong to the same closed orbit.

We say that a sequence (pn)n∈N in A is monotonically increasing in A if pi �
pi+1, ∀i ∈ N. If pi+1 � pi, ∀i ∈ N, we say that the sequence is monotonically
decreasing in A.

We define the exterior boundary of A as

∂eA = {q ∈ ∂A | ∃ (pn)n monotonically increasing in A : pn → q},
and the interior boundary of A as

∂iA = {q ∈ ∂A | ∃ (pn)n monotonically decreasing in A : pn → q}.
Clearly ∂eA∩∂iA = ∅. Any periodic orbit of X intersects the x–axis in exactly
two points. In particular the intersection of A with the x–axis is the union of
two open intervals ]a, b[∪]c, d[ lying on the x–axis, see Figure 16. Notice, when
a or d lie on the circle at infinity, the annulus A is unbounded.

For each x ∈]a, d[, the sections Σ+
x = {(x, y) ∈ D | y > 0} and Σ−x =

{(x, y) ∈ D | y < 0} both intersect A in an unique open interval:

A ∩ Σ+
x = {x}×]p+x , q

+
x [,

A ∩ Σ−x = {x}×]q−x , p
−
x [,

(12)

where for each x, p±x and q±x are uniquely determined, with (x, p±x ) and (x, q±x )
lying either in the interior of the disc D or on the circle at infinity.

Proposition 10 Suppose A is a period annulus of X ∈ L(m,n)(D) that inter-
sects the x–axis in ]a, b[∪]c, d[. Consider

Γ+
e = {(x, q+x ) | x ∈]a, d[}, Γ+

i = {(x, p+x ) | x ∈]b, c[},

Γ−e = {(x, q−x ) | x ∈]a, d[}, Γ−i = {(x, p−x ) | x ∈]b, c[},
(13)

with p±x , q±x defined as in (12). Then the exterior and interior boundaries of A
are invariant subsets for the flow of X, given by

∂eA = {(a, 0)} ∪ {(d, 0)} ∪ Γ+
e ∪ Γ−e ,

∂iA = {(b, 0)} ∪ {(c, 0)} ∪ Γ+
i ∪ Γ−i .

(14)

Further {(a, 0)} ∪ {(d, 0)} ∪ Γ±e and {(b, 0)} ∪ {(c, 0)} ∪ Γ±i are all continuous
graphs.
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a b c d

Σ+
x

p+
x

q+
x

p−
x

q−
x

Σ−
x

A

Figure 16: An annulus A of X, the dotted line represents the x–axis.

Proof: Let us first prove the invariance, for the flow φt : D 7→ R2 of X,
of the exterior and interior boundary of A. Let p ∈ ∂eA (resp. p ∈ ∂iA),
then there exists a sequence (pn)n in A that is monotonically increasing (resp.
decreasing) in A and that converges to p. Because of the continuity of the flow
φt of X, one immediately concludes that (φt(pn))n is a monotonically increasing
(resp. decreasing) sequence in A converging to φt(p).We proceed by proving the
equalities in (14). Clearly the boundary of A is given by:

F := {(a, 0), (b, 0), (c, 0), (d, 0)} ∪ Γ±e ∪ Γ±i .

Indeed, one easily verifies that ∀p ∈ F ,∀ε > 0 : B(p, ε) ∩ A 6= ∅ and B(p, ε) ∩
Ac 6= ∅. Since ∂eA ∩ ∂iA = ∅, it clearly suffices to prove that

{(a, 0)} ∪ {(d, 0)} ∪ Γ+
e ∪ Γ−e ⊂ ∂eA

and
{(b, 0)} ∪ {(c, 0)} ∪ Γ+

i ∪ Γ−i ⊂ ∂iA,
for showing (14). We prove the inclusion concerning the exterior boundary, the
other one can be proved completely analogously.

Suppose (x, q+x ) ∈ Γ+
e , then the sequence (x, q+x − 1

n )n≥N , with N big enough,
lies in A and converges to (x, q+x ). Moreover, one easily sees that (x, q+x − 1

n )n
is a monotonically increasing sequence in A. It follows that Γ+

e ⊂ ∂eA. Similar
Γ−e ⊂ ∂eA. One also sees that (a, 0) and (d, 0) belong to ∂eA by choosing
appropriate sequences in A that are lying on the x–axis and that converge to
(a, 0) and (d, 0).

Concerning the statement of the continuity, we will only treat the interior
boundary. The exterior boundary can be treated in the same way. In fact in the
unbounded case, the result follows from the classification that we will give in
Theorem 11 and which does not rely on the previous knowledge of the continuity
in the unbounded case.

Let G = {(a, 0)} ∪ {(d, 0)} ∪ Γ+
i . Then G is the graph of the function

P+ : x 7→ p+x ,

where we set p+x = 0 when x = a or x = d. We prove that P+ is continuous
in any x0 ∈ [a, d]. Suppose first (x0, P

+(x0)) is a regular point of the flow of
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X. Because the interior boundary is invariant for the flow of X, it is clear that
for x ∈ [a, d] and near x0, the graph of P+ is given by a connected piece of
the regular orbit of X passing through (x0, P

+(x0)) such that P+ is continu-
ous at x0. If (x0, P

+(x0)) is a singularity, then it has to contain a hyperbolic
sector induced by the annulus A. From the list of singularities in Section 2,
it is clear that the boundary of such a hyperbolic sector is always continuous.
Analogously, one shows that {(a, 0)} ∪ {(d, 0)} ∪ Γ−i is a continuous graph. �

We can now completely describe all possible boundaries of annuli occuring
in a Liénard system X ∈ L(m,n)(D). Let us first treat the exterior boundaries.

Theorem 11 Suppose A is a period annulus of X ∈ L(m,n)(D), then

i. if A is bounded, then ∂eA is a loop, as in Figure 17 (a) or (b), or a cycle
with 2 singularities, as in Figure 17 (c). The singularities on the exte-
rior boundary can only be saddles (as well hyperbolic as non–hyperbolic),
saddle–nodes (as well semi–hyperbolic as nilpotent) or cusps as described
in Section 2,

∂eA∂eA∂eA

Figure 17: Possible exterior boundaries of a bounded annulus A of X.

ii. if A is not bounded, then one of the below mentioned conditions have to
be satisfied (as in Section 2, A denotes the highest order coefficient of the
polynomial P in (2)):

(a) When

m = 2n+ 1, A >
1

4(n+ 1)
or m > 2n+ 1,m odd and A = 1,

then ∂eA is given by a periodic orbit lying at infinity, see Figure 18
(a).

(b) When
m < 2n+ 1,m and n odd , and A = 1,

the exterior boundary looks like in Figure 18 (b) containing at infinity
two semi–hyperbolic saddles s1 and s2 such that s1 (resp. s2) has an
unstable (resp. stable) separatrix lying at infinity and an attractive
(resp. repelling) center separatrix in D\∂D.

(c) When

m = 2n+ 1, n odd , 0 < A ≤ 1

4(n+ 1)
,

∂eA, looks like in Figure 18 (c). When A = 1/(4(n+ 1)), the singu-
larities at infinity are saddle-nodes of which the center separatrix lies
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at infinity. The behaviour on the hyperbolic seperatric is attractive
for s1, while it is repelling for s2. When A < 1/(4(n+ 1)), s1 and s2
are both hyperbolic saddles.

s1 s2

s1 s2

Figure 18: Possible exterior boundaries of an unbounded annulus A of X.

Proof: From Proposition 10, one concludes that the exterior boundary of A is
an invariant set for the flow of X, being (at least in the bounded case) the union
of two continuous graphs, one lying in the half plane {y ≥ 0} and one lying in
{y ≤ 0}. Moreover the graphs are given by

{(a, 0)} ∪ {(d, 0)} ∪ Γ+
e and {(a, 0)} ∪ {(d, 0)} ∪ Γ−e ,

with Γ+
e ⊂ {y > 0}, Γ−e ⊂ {y < 0}, defined in (13), lying enterily in the region

a < x < d.
In particular if A is bounded, then A lies enterily in some compact K ⊂

D\∂D such that the only possible singularities of X lying on ∂eA are (a, 0) and
(d, 0). This completely determines the structure of ∂eA. Furthermore, because
of the analyticity of the Liénard system X, ∂eA, has to contain at least one
singularity.

If only (a, 0) (resp. (d, 0)) is a singularity, then ∂eA is a loop consisting of the
singulariy (a, 0) (resp. (d, 0)) and a regular orbit of X given by Γ+

e ∪Γ−e ∪{(d, 0)}
(resp. Γ+

e ∪ Γ−e ∪ {(a, 0)}. If both (a, 0) and (d, 0) are singularities, the exterior
boundary of A consists of the two singularities (a, 0) and (d, 0) together with
regular orbits Γ+

e and Γ−e connecting them.
Obvious the annulus A induces a hyperbolic sector on the singularities of X

lying on its exterior boundary. So referring to Section 2, the only possibilities
for the singularities are saddles, saddle–nodes and cusps.

Suppose now A is unbounded. Then ∂eA includes the whole circle at infinity
or part of it. When it includes the whole circle at infinity, the boundary is given
by a regular periodic orbit at infinity. When it includes partly the circle at
infinity, ∂eA has to contain two singularities, s1 and s2, at infinity, with a
hyperbolic sector induced by the annulus A. Referring to the study at infinity
of X ∈ L(m,n)(D) in Section 2, it is clear that only the graphics in Figure 18
can occur as exterior boundaries of unbounded annuli.

In case (a), ∂eA contains no singularities and is given by a periodic orbit at
infinity. In case (b), (a, 0) and (d, 0) are given by singularities of X at infinity,
Γ+
e is a regular orbit lying at infinity and Γ−e is a regular orbit that lies com-

pletely under the x–axis. In case (c), the singularities are lying on Γ−e , (a, 0)
and (d, 0) are part of a regular orbit lying at infinity between the singularities
s1 and s2. �
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Concerning the interior boundaries, we have the following theorem.

Theorem 12 The interior boundary of some period annulus A of X ∈ L(m,n)(D),
is given by

i. a center, or

ii. the union of the two bounded (i.e. not intersecting ∂D) continuous graphs

{(a, 0)} ∪ {(d, 0)} ∪ Γ+
i and {(a, 0)} ∪ {(d, 0)} ∪ Γ−i ,

lying respectively in the half planes {y ≥ 0} and {y ≤ 0} and containing
at least one singularity of X. Concerning the type of the singularities, we
have the following:

(a) the zeros of the continuous graph Γ+
i (resp. Γ−i ) are singularities that

can only be saddles or one of the singularities presented in Section 3,
Figure 9 and Figure 10 (resp. Figure 11),

(b) the intersections between Γ+
i and Γ−i are saddles,

(c) if (a, 0) (resp. (d, 0)) is a singularity, then it has to be a cusp of
up–up (resp. down–down) type.

Proof: From Proposition 10, one concludes that the interior boundary of A is
an invariant set for the flow of X, being the union of two continuous graphs,
one lying in the half plane {y ≥ 0} and one lying in {y ≤ 0}. The graphs are
given by

{(b, 0)} ∪ {(c, 0)} ∪ Γ+
i and {(b, 0)} ∪ {(c, 0)} ∪ Γ−i , (15)

with Γ+
i ⊂ {y ≥ 0}, Γ−i ⊂ {y ≤ 0}, defined in (13), lying enterily in the region

b < x < c. The two graphs intersect the x–axis in (b, 0) and (c, 0) and possibly
other points, with abscis lying in ]b, c[.

Whether the annulus is bounded or unbounded, ∂iA is clearly situated in
D\∂D. Because of the analyticity of the Liénard system X, ∂iA, has to contain
at least one singularity.

If b = c, then obviously ∂iA has to be a center. If b 6= c, then ∂iA is a
graphic being the union of the two continuous graphs in (15). If (b, 0) (resp.
(c, 0)) is a singularity it clearly has to contain an upgoing (resp. downgoing
passage) and a hyperbolic sector lying left (resp. right) of this vertical passage.
Referring to the study of the singularities in Section 2, one sees that this is only
possible when (b, 0) (resp. (c, 0)) is a cusp of up–up type (resp. down–down
type). The singularities lying on Γ+

i (resp. Γ−i ), and with abscis in ]b, c[, clearly
contain a lr–passage (resp. rl–passage) determining the type of the singularities
(see Section 3, Figures 9, 10 and 11). �

From Theorem 11, it is clear that the exterior boundaries of bounded (resp.
unbounded) annuli form a subset of the list of bounded (resp. unbounded) limit
periodic sets that are inner polycycles. An inner polycycle is a cycle for which a
return map can be defined in the open region enclosed by the cycle. Similarly,
from Theorem 12, the interior boundaries of the annuli form a subset of the list
of bounded limit periodic set that are outer polycycles. An outer polycycle is
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a cycle for which the return map can be defined in the exterior of the region
enclosed by the cycle.

Not every limit periodic set is the boundary of some annulus. There are some
restrictions on the structure of a limit periodic set making it the boundary of
some annulus. The question remains whether every boundary of some annulus is
indeed a limit periodic set. Herefore, one has to search an appropriate unfolding
in L(m,n)(D), of a Liénard system with an annulus A, producing a limit cycle
that can be put arbitrarily close to the exterior (resp. interior) boundary of A
for the Hausdorff metric. At the moment, we won’t focus our attention to this
question. Let us instead, as a consequence of the former results, give a complete
description of the boundary of any Hopf center occuring in a Liénard system.

4.2 Boundaries of Hopf centers
We say that X has a Hopf center at s if s is a linear center of X of which

an open neighbourhood is filled by closed orbits of X. In particular X contains
an annulus A with ∂iA = {s}. We say that s is a bounded Hopf center if A is
bounded. When A is unbounded, s is an unbounded Hopf center. Evidently a
Hopf center s can never lie at infinity.

In this section we will describe all possible boundaries of, as well bounded as
unbounded, Hopf centers. We find some sufficient conditions for a Hopf center
to be bounded or unbounded.

From Theorem 11, we can describe all possible exterior boundaries of the
annulus A of X ∈ L(m,n)(D) occuring when X has a Hopf center s. We come
to three possibilities, shown in Figure 19. The singularities on ∂eA can only be
saddles, saddle–nodes or cusps.

Figure 19: Possible bounded Hopf centers of X. The Hopf centers are bounded
by a loop in (a) and (b) and a cycle with two singularities in (c).

s1 s2

s1 s2

Figure 20: Possible unbounded Hopf centers of X.
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For an unbounded Hopf center, we have the options illustrated in Figure
20. As Theorem 11 states, case (a) can only occur when m = 2n + 1, A >
1/(4(n+1)); or when m > 2n+1, m odd, A = 1. Case (b) can only occur when
m < 2n+1,m and n odd, A = 1. The singularities s1 and s2 at infinity are semi–
hyperbolic saddles where s1 (resp. s2) has an unstable (resp. stable) separatrix
lying at infinity and an attractive (resp. repelling) center separatrix in D\∂D.
Case (c) can only occur when m = 2n + 1, n odd and 0 < A ≤ 1/(4(n + 1)).
When A = 1/(4(n + 1)) the singularities at infinity are given by saddle–nodes
of which the center separatrix lies at infinity. The behaviour on the hyperbolic
separatrix is attractive for s1, while it is repelling for s2. When A < 1/(4(n+1)),
the singularities at infinity are hyperbolic saddles.

Let us now consider the question whether a Hopf center is bounded or un-
bounded. Using the above classification of unbounded Hopf centers, one easily
proves the following theorem.

Theorem 13 Suppose X ∈ L(m,n)(D) has a Hopf center s in D\∂D, then it is
unbounded if and only if X has an unique singularity. Such an unbounded Hopf
center can only occur in the cases:

i. m = 2n+ 1, A > 1/(4(n+ 1)),

ii. m = 2n+ 1, n odd, 0 < A ≤ 1/(4(n+ 1)),

iii. m > 2n+ 1, m odd, A = 1,

iv. m < 2n+ 1, m odd, n odd, A = 1.

For verifying whether a given singularity s ofX ∈ L(m,n)(D) is a Hopf center,
one can use the following theorem. Notice that after a suitable translation, s
can supposed to lie at the origin.

Theorem 14 (C. Christopher [1]) Let X ∈ L(m,n)(D) obtained after an ap-
propriate Poincaré–Lyapunov compactification from a Liénard system X (11),
with P ′(0) < 0, then X has a center at the origin if and only if there exists a
polynomial, M(x) = x2 +O(x3) and polynomials k(z), l(z) with k(0) = l(0) = 0
such that X is given by: {

ẋ = y − k(M(x)),

ẏ = − d
dx (l(M(x))).

(16)

The above theorem completely characterises the Hopf centers in Liénard
systems. Another tool for characterising Hopf centers are Lyapunov coefficients.
For a general introduction to the Lyapunov coefficients as well as an algorithm
to compute them, we refer to [4]. In particular X reads like (16) if and only if
all Lyapunov coefficient at s are zero.

Theorem 15 Suppose X ∈ L(m,n)(D), obtained after an appropriate Poincaré–
Lyapunov compactification from a Liénard system X that is given by:{

ẋ = y − k(M(x)),

ẏ = − d
dx (l(M(x))),

(17)

for some polynomials M(x), k(z), l(z) with M(x) = x2 +O(x3), k(0) = 0, l(0) =
0, l′(0) > 0 and the degree of M odd. Then the origin is a bounded Hopf center.
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Proof: From Theorem 14, we already know that the origin is a Hopf center.
Using the previous theorem, we only have to show that the origin is not the
only singularity of X in D\∂D.

The degree of M is odd, thus

M(x) = x2 +m1x
3 + · · ·+m2k−1x

2k+1,

for some k ≥ 1. Therefore:

M ′(x) = x(2 + 3m1x+ · · · (2k + 1)m2k−1x
2k−1),

implying that M ′(x) = xM0(x) with M0(0) 6= 0 and the degree of M0 odd. So
M0 has to possess a zero x0 6= 0 implying that X has a singularity not lying at
the origin. �
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