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Abstract—Nocturnal home monitoring of epileptic children is
often not feasible due to the cumbersome manner of seizure
monitoring with the standard method of video/EEG-monitoring.
We propose a method for hypermotor seizure detection based on
accelerometers attached to the extremities. From the acceleration
signals, multiple temporal, frequency and wavelet based features
are extracted. After determining the features with the highest
discriminative power, we classify movement events in epileptic
and non-epileptic movement. This classification is only based on
a non-parametric estimate of the probability density function
of normal movements. Such approach allows to build patient-
specific models to classify movement data without the need for
seizure data that is rarely available. If, in the test phase, the
probability of a data point (event) is lower than a threshold,
this event is considered to be an epileptic seizure, otherwise it
is considered as a normal nocturnal movement event. The mean
performance over seven patients gives a sensitivity of 95.24%
and a Positive Predictive Value (PPV) of 60.04%. However, there
is a noticeable inter-patient difference.

Index Terms—hypermotor seizures, accelerometers, novelty
detection, home monitoring

I. INTRODUCTION

GENERALLY, long term home monitoring of epileptic
children is not feasible, due to the inconvenient manner

of seizure detection based on the gold standard of video/EEG-
monitoring. However, long-term home monitoring would be
beneficial because in this way, the neurologist would be
provided with an objective measure of the number of seizures
the patient has during a night. This permits a better observation
of the patient, which can increase the quality of life. Another
advantage of a home monitoring system is that the parents can
be alarmed when a large seizure occurs that requires care or
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if the child needs to be comforted, as it is alone during the
night.

In our setup, accelerometers are attached to the wrists
and ankles to register leg and arm movements. The goal
is to tune the algorithm only based on information of the
normal nocturnal movement of the patient and still get a high
sensitivity and positive predictive value (PPV). This approach
is applicable since a large number of normal activities and
very few epileptic events are observed.

Some commercially available detection systems are already
available on the market. EmFit bed sensors (Emfit Ltd.) are
already used for the detection of clonic and tonic-clonic
seizures. In the literature, studies can be found that use the
sensor for sleep monitoring [17] [9] and as a sensor for cardiac
measurements [8], but to our knowledge there are no papers
about the performance of seizure detection with the EmFit
system.

SmartWatch by Smart Monitor Corporation and EpiLert
from Biolert are wrist watches used to detect generalized
tonic-clonic seizures. In a study of Lockman et al. [10], the
SmartWatch was succesfully tested on a group of 40 patients
(6 with tonic-clonic seizures). Seven of eight tonic-clonic
seizures, and 204 non-seizures events were detected, with only
one false detection during sleep.

Nijsen et al. [14] already investigated the detection of
seizures by means of accelerometers, used on myoclonic
seizures. They tested various methods, resulting in a maximal
sensitivity of 80%, but all with a low PPV. The best PPV
reached was 16%. Jallon [6] also investigated epileptic seizure
detection based on accelerometers. His algorithm is based on a
Bayesian approach using hidden Markov models, resulting in a
sensitivity of 88% and 89% in two patients. The corresponding
PPV was 75% and 55%, respectively. Conradsen et al. [2] used
a multimodal approach for seizure detection, mainly on tonic
seizures. They obtained a sensitivity between 91% and 100%
with a specificity of 100%.

The advantage over video detection, which is proposed in
Cuppens et al. [4] and Karayiannis et al. [7], is that accelerom-
eters can measure body movement more easily under blankets
and can better separate the movements of the individual limbs,
but the sensors have to be attached to the body.

Our approach in this study is based on novelty detection. We
model normal movement, and try to detect abnormal (novel,
not yet or rarely seen) events, i.e. epileptic events. Novelty
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detection is typically used in settings where the abnormalities
occur relatively seldom, and when insufficient data is available
to model the abnormal activity. This can also be seen as one-
class classification, in contrast to the traditional two class (or
multi-class) classifiers, where data of all the classes are used
for generating the classification model.

For modeling the normal movement, we estimate the prob-
ability density function (PDF) using non-parametric Parzen
windows [1]. A non-parametric estimator was chosen since
such approach does not make any assumption on the form
of the data distribution and therefore is more flexible. Parzen
density estimation is commonly used in the context of classi-
fication and novelty detection [11]. Rathi et al. [16] and Ran-
gayyan and Wu [15] modeled the distributions of two classes
based on the Parzen window approach and classify instances
based on the highest probability. Tarassenko et al. [18, 19] and
Yeung and Chow [23] use the one-class classification which is
the novelty or outlier detection. A PDF for normal behaviour
is estimated and new instances with a probability, computed
using this PDF, below a certain threshold level are considered
abnormal.

The proposed approach must be contrasted to binary clas-
sification methods which use information from both classes
(seizures and normal movements) to estimate a model. Requir-
ing information of both classes for estimation implies a costly
annotation process. Seizure segments must be isolated from the
normal movements by experts using video/EEG. Our one-class
method does not require knowledge about the seizure class.
Furthermore, since the seizure class is populated with much
less examples than the normal class it can typically be assumed
that the very small portion of seizure examples has a negligible
effect on the estimation of the PDF. In a practical system, when
some patient-group specific tuning parameters are fixed, this
means that a patient-specific model can be obtained with much
less human interaction compared to two-class models.

The main contributions in this paper are a) that we focus
on a different patient group (children up until 18 years old)
compared to the methods found in the literature and a different
type of seizures (hypermotor), and b) an easy-to-apply patient
specific training is proposed that does not require any seizures
in the training phase. In Van de Vel et. al [22] the proposed
system is investigated from a clinical point of view, whereas
in this paper, the technical aspects are elaborated.

II. METHOD

A. Acquisition system

The acceleration data was recorded synchronously with
video, EEG-, ECG-, EOG- and EMG-data. The synchroniza-
tion of the signals was done by BrainRT software from OSG
(www.osg.be), and a Schwarzer interface box which converted
the analog input from the sensors to a digital signal for the
connection with the recording computer.

To acquire the data, we developed a hardware system that
consists of four 3 dimensional accelerometers, attached to the
extremities with comfortable wrist and ankle bands. The setup
is shown in Figure 1. The accelerometers range between -3g
and +3g, and the data was sampled at 250Hz.

Fig. 1. The acquisition setup, where the placement of the accelerometers is
indicated by the circles.

TABLE I
DATASET OVERVIEW

Patient Nights of Hypermotor Normal
number monitoring seizures movements

1 1 2 117
2 2 9 287
3 2 2 439
4 1 2 239
5 5 26 784
6 2 7 381
7 2 3 468

Total 15 51 2715

B. Patients

The group we studied consisted of 7 patients with hy-
permotor seizures, all between the age of 5 and 16 years.
Table I gives an overview of the patients and the number of
seizures and normal movements they had during the moni-
toring. The segmentation in movement events is explained in
Section II-C1. The recordings took place during the night,
starting typically at 20h00 in the evening and finishing at 8h00
in the morning the next day.

The seizures we focus on, the hypermotor seizures, are
marked by a strong and uncontrolled movement of the arms
and legs, that can last from a couple of seconds to some
minutes. Due to the heavy movement, the patient can injure
himself during the seizure. The labeling was performed by an
EEG expert based on the video/EEG-data. When it was not
clear whether an event was epileptic or not, a group of two
EEG experts and two neurologists agreed about the type in a
consensus.

C. Epileptic Seizure Detection

In three steps, the raw data is processed to a classifica-
tion result. In the first step, which is a preprocessing step,
movement events are detected. In the second step, features are
extracted from the events. The third and final step, consists
of the seizure detection algorithm. A model is built based
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Fig. 2. Schematic overview of algorithm. The determination of the optimal
features is only done during the development phase of the algorithm. In the
operational phase, only the flow in the left part of the scheme is followed.

on normal movements and tested afterwards to measure its
performance. An overview of the approach is given in Figure 2.

In the development phase of the algorithm, the features
with the highest discriminative power are selected. Only the
optimal features that are found during the development phase
are further used in the operational algorithm. During the
operational phase this step does not have to be executed
anymore.

1) Preprocessing: Thanks to the preprocessing step, the
events that do not contain movement information are dis-
carded, which results in a reduction of the data to process.
Furthermore it divides the data into separate movement events.
This preprocessing is already described in our previous work
[3] and is shortly described below.

The preprocessing step first filters the raw data with a low
pass filter with a cut-off frequency of 47Hz. In order to avoid
phase distortion, the data is processed in a forward and reverse
direction to get a zero-phase filtering. The cut-off frequency
is chosen to avoid aliasing when downsampling to 100 Hz
and to eliminate the noise from the net frequency (50 Hz).
We can easily downsample the data because the frequency
content above 40 Hz is negligible. The influence of the static
earth gravitation is then eliminated by a high pass zero-phase
filter with a cut-off frequency of 0.2 Hz.

After filtering, the norm (the 3D vector amplitude) of each
accelerometer is calculated, which gives one signal per sensor
(hence 4 signals). To detect body movement, the standard
deviation of each signal is calculated from a sliding window of
two seconds. If the standard deviation crosses the threshold for
the arms or legs, the event within the window is considered as
movement. These thresholds are determined by a simulation
where a simulator lies in bed during five minutes, after which
he makes small finger and toe movements which are the small-

est motions to be detected by the algorithm. This resulted in
a threshold of 10 mg for the arms and a threshold of 5 mg for
the legs. This difference can be explained by the fact that toe
movements have a lower influence on the accelerometer signal
than the finger movements. Eventually, movement events lying
less than 30 seconds apart are clustered, because the duration
of the epileptic activity we want to monitor is typically long
(tens of seconds) and sometimes, during one hypermotor
seizure the patient stops moving (order of seconds). Note that
after this clustering step, the movement events have a variable
duration. In the remainder of this paper, these events with
variable length are used.

Typically, 80% to 90% of the data is discarded as it contains
no movement. Considering all the reduction steps (including
the dimension reduction and downsampling) only 1.5% to
3.0% of the raw data is preserved.

2) Feature extraction and selection: From the events we got
from the preprocessing, we derive several features in the time,
frequency and wavelet domain. After this step we evaluated the
Lasso technique [21] for each patient individually to find the
features with the highest discriminative power. The results are
then combined to determine the best features over all patients.

Table II shows an overview of the features that are selected
from the events, which are features that are found in the liter-
ature. These are commonly used features as described in [5]
and [20], but also features specifically used for the detection
of seizures using accelerometers such as the ones derived from
the signal of the posture (orientation) as described in Nijsen
et al. [13]. The wavelets were based on a model to describe
arm movements in patients with myoclonic seizures [12].
Furthermore, Conradsen et al. [2] also make use of wavelet
features for the detection of seizures based on accelerometers.
The features in [5] are derived from accelerometer signals,
in multiple cases, including human movement. Temko et al.
[20] derive features from EEG-signals for epileptic seizure
detection.

A high correlation is expected between the amplitude-based
features and the seizures due to the often violent manifestation
of this type of seizures. In the frequency and wavelet space
we would expect a relative higher contribution of energy
in the higher frequency bands from the seizures compared
to normal movements. This because we presume that the
uncontrolled shock-like movements contain information in a
wider frequency spectrum compared to a smoother normal
movement.

Features that are derived from individual channels are
not likely to be descriptive over time or patient, as if the
patient rotates a limb, the same discriminating feature can
be found in another channel. Indeed, the channel which is
discriminative can change depending on the orientation of the
patient. Therefore we chose to only take into account features
that contained more general information including information
of all the channels of one limb or from all the accelerometers
combined. Therefore, to get more general features, for the
kurtosis, RMS, skewness, orientation and frequency features,
only the mean and the minimal and maximal values over the
calculated values over the 12 channels were considered. The
other features are used as illustrated in Table II.
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TABLE II
OVERVIEW OF FEATURES IN THE TIME, FREQUENCY AND WAVELET

DOMAIN. THESE FEATURES ARE INVESTIGATED ON THEIR ABILITY TO
DISCRIMINATE BETWEEN NORMAL AND SEIZURE EVENTS.

Group Features
Time domain

• mean and standard deviation over 12
mean amplitudes in time of each
channel

• mean and standard deviation over the
12 standard deviations (std) in time of
amplitude of each channel

• maximal amplitude of resultant in
time per limb

• correlation between the resultants of
limbs

• kurtosis of individual channels
• root mean square (RMS) of amplitude

of individual channels
• skewness of individual channels
• mean jerk over time on orientation

signal
• variance of magnitude in segment on

orientation signal
• range of block signal on orientation

signal

Frequency domain
• peak frequency of spectrum of indi-

vidual channels
• energy in signal of individual chan-

nels
• spectral edge frequency (80%, 90%,

95%) of individual channels
• power in sub-bands (1-3Hz, 4-8Hz, 9-

13Hz, 14-20Hz) of individual chan-
nels

Wavelet domain
• ratio between the power in scale 2-9

and the total power for each limb and
over all channels

• ratio between the power in scale 25-
48 and the total power for each limb
and over all channels

• ratio between the power in scale 2-9
and the power in scale 25-48 for each
limb and over all channels

For the feature selection, we used an embedded approach.
We use the Lasso technique [21] for determining the optimal
feature set in a multivariate way. Using this approach, we first
determined the best patient specific features by using a 10-
fold cross-validation. From every patient we obtain the feature
set according to the lowest mean squared error in the 10-
fold cross-validation of the regression models compared to the
input data. The different regression models are constructed by
varying the regularization parameter λ. Note that the weighting
of the seizure data is 20 times higher compared to the normal
data to compensate for the imbalance in the data. The features
are voted, the ones that appear most over all patients (in at least
three patients) are included in the final feature subset. Because
the features are combined after they are selected patient
specifically, all patients get the same weighting, regardless of
whether one patient has more seizures than the other.

The feature subset using this approach is listed below:
• the max of resultant over both arms (Equation 1)
• the mean std over all channels (Equation 2)

• the mean of the means over all channels (Equation 3)
• the max of resultant over both legs (Equation 4)
• the length of the event, n
• the mean over all limbs of the norm of the ranges of the

channels (Equation 5)
In a more formal way, these features can be expressed using

the following equations:

maxarms = max
t

(‖x1−3(t)‖ , ‖x4−6(t)‖) , (1)

meanstd =
1

12

12∑
i=1

√√√√ 1

n− 1

n∑
t=1

(xi(t)− x̄i)2, (2)

meanmeans =
1

12

12∑
i=1

1

n

n∑
t=1

xi(t), (3)

maxlegs = max
t

(‖x7−9(t)‖ , ‖x10−12(t)‖) , (4)

meanranges =
1

4

4∑
i=1

Rangei, (5)

where xa−b(t) represents the channels with index a until b
as a function of time. n is the number of samples (thus the
length) of a certain movement event. Range is defined by the
following equation:

Range =

√√√√ 3∑
k=1

(max(xslwk
)−min(xslwk

))2, (6)

where xslw denotes the block-like signal that contains the
information of the orientation of the accelerometers. This
signal is the result of a median filtering with a window length
of one second. The features that do not hold information on the
orientation, are calculated based on the dynamic acceleration
where the orientation information is subtracted from the raw
signals.

3) Model estimation and hyperparameter tuning: With the
features selected in the previous paragraph, we modeled the
normal activity (example is given in Figure 3). Movement
events are classified in the test phase. When they are outliers of
the normal activity distribution, they are classified as seizures.

To model the normal activity, we estimated its PDF with
the Parzen window method [1], by placing a kernel function
in every training data point and add them. In this work a
radially symmetrical Gaussian kernel function is chosen which
is smooth and can be completely specified by a bandwidth
(variance) parameter only.

This bandwidth is a hyperparameter (β) that should be
determined. It has an influence on the smoothness of the esti-
mated distribution as a larger bandwidth results in a smoother
density estimation. Another hyperparameter that needs to be
determined is the threshold on the PDF (τ ) at which we
separate normal from epileptic movement. We determine this
threshold based on a fixed probability of 95%. This means that
the 5% movements with the lowest probability to be normal
are classified as epileptic.

To determine the bandwidth β, we used the approach that is
shown in Figure 4. Different values of β are evaluated on the
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Fig. 3. Probability density functions of patient 2 and patient 5. The red dots
are the seizures in the test phase. The normal activity is in blue. The gray dots
represent the normal activity that is used for constructing the classification
model in the training phase. The normal activity and epileptic seizures are
well separable in patient 2 (a) and not separable in patient 5 (b) The decision
line in black corresponds with the 95% probability contour.

performance using a cost function. More specific, the evaluated
values are 2n where n ∈ {−2,−1, ..., 4}.

For determining the threshold τ , we calculate the probability
of each point from our training set based on the PDF. From
these probabilities, a histogram and its cumulative distribution
function (CDF) is calculated. Using this CDF we can deter-
mine the threshold (probability value) that is associated with
the 95% border.

To make the approach as general as possible we want the
hyperparameters to be group specific (i.e. for all patients with
hypermotor seizures) and not patient specific. In this way, they
do not have to be adjusted per patient. Therefore, to determine
β, we made use of a leave one out approach on a patient basis.
Since we have 7 patients, we use 6 of them to estimate β
(training phase), and the remaining patient in patient-specific
test phase to estimate the PDF and classify movement events.

In this experiment we used two third of the normal move-
ments of all nights as training, and 33 complementary normal
movements and 2 seizures for testing the performance of the
chosen bandwidth β. These numbers for the test set were
chosen because we wanted to have the same number of
examples in each patient, and for some patients we only had 2
seizures and not much more than 100 normal movements (so
33 for one third of the data). This training and testing is done
in a 10-fold randomization, so for each value of β and for
each patient, 10 PDFs are built and tested. We calculated the
performance of the model as the average of 10 costs using:

cost(β) = −(2× sensitivity(β) + PPV(β)). (7)

Here, the weight of the sensitivity is higher than the weight
of the PPV, as missing a seizure is worse than generating a
false positive for this type of seizure.

Although the number of data points in every patient is small
to train an SVM classifier, we also did an attempt to train an
SVM model on the three patients with at least 4 seizures and
validated it in a 3-fold cross-validation in 10 randomizations.

Determine 
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6 Patients

Test performance 
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Fig. 4. Schematic overview of tuning β and the patient specific testing. Notice
that two thirds of the normal movements are used to model the probability
density function. Information of 6 patients is used to determine the optimal
bandwidth in the 7th patient.

This classification with an SVM is considered as the state-of-
the-art approach and compared with the outlier detection.

D. Validation

As already mentioned, a leave one out approach is used to
validate the models, meaning that the model hyperparameter
β is estimated using information of 6 patients and then
kept fixed for the remaining patient. For this 7th patient a
performance score was computed using the same setup. For
10 randomizations a PDF of normal nocturnal movement based
on two thirds of the normal movements of all nights of this
patient is estimated (with fixed β). Next the sensitivity and
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TABLE III
RESULTS OF VALIDATION. FOR EACH PATIENT THE SENSITIVITY (SENS),

THE PPV AND THE SPECIFICITY (SPEC) ARE SHOWN, TOGETHER WITH
THEIR RESPECTIVE STANDARD DEVIATION OVER 10 RANDOMIZATIONS

n◦ sens. std. PPV std. spec. std.
(%) (%) (%) (%) (%) (%)

1 100.00 0.00 50.38 22.24 92.12 5.19
2 100.00 0.00 51.86 16.56 93.03 4.75
3 100.00 0.00 72.33 21.08 96.97 2.86
4 100.00 0.00 69.00 23.15 96.36 3.13
5 66.67 25.00 45.19 17.41 94.85 4.05
6 100.00 0.00 59.83 25.54 93.94 5.71
7 100.00 0.00 71.67 27.27 96.06 4.75

Total 95.24 3.57 60.04 21.89 94.76 4.35

PPV are computed on a set of 33 normal and 2 epileptic
movements. Finally, the mean of the sensitivity and PPV over
all the randomizations are used as validation measure.

III. RESULTS

The optimal parameter value for β is determined on a group
of 6 patients excluding the patient for whom the performance
measures are calculated. The cost over these 6 patients is
averaged out, and the bandwidth related to the lowest cost
is used for estimating the PDF. For all patients, a bandwidth
of 8 gave the best result except for patient 3. But when testing
with another threshold, the optimal bandwidth can change as
both values are related.

The result of the validation is given in Table III. For all the
patients, the sensitivity, the PPV and the specificity are given
with the according standard deviation over the randomizations.
In all patients except in patient 5, the sensitivity is 100.00%
and the PPV is more than 50%.

Figure 3 shows the probability density functions of patient 2
(A) and patient 5 (B), together with the epileptic activity from
one randomization in red. The black decision line gives the
95% threshold that separates normal and epileptic movement.
This decision line and the PDF are calculated on only two fea-
tures (in contrast to the 6 features we use in our approach) for
visualization purposes. Feature 1 and 2 are used in this figure,
which represent the maximal resultant over both arms and the
mean standard deviation over all channels, respectively. From
this figure it is clearly visible that the normal and epileptic
activity is well separable for patient 2 but not for patient 5 as
the normal and epileptic activity overlap in this patient.

When comparing the results of the outlier detection to the
state-of-the-art SVM approach, we can say in general that for
patient 2 and 6 the sensitivity is comparable (95.00%) and
the PPV is higher (83.33%). Only the results for patient 5 are
worse, with a sensitivity of 30.00% and a PPV of 35.93%.
The standard deviation over the randomizations of the SVM
approach is high (the mean std on the sensitivity is 19.33%
and on the PPV the mean std is 30.39%). This indicates that
the generated SVM models are not robust over the different
randomizations.

IV. DISCUSSION

The advantages of the PDF classification are the possibility
to train the model without positive training examples (no
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Fig. 5. Performance of PDF approach when using different threshold values
(between 0.25 and 0.999). The full black dots indicate the 95% threshold. We
clearly see that an improvement is possible compared to the 95% threshold.

labeling needed) and the flexibility to adjust the model with
an increasing number of data. In this way, when we install
the system in a real home situation, a better model of normal
movement can be learned over time, when more and more
data becomes available. This is also further discussed in a
next paragraph.

In our results section, we evaluated the method on the
different patients, using the same number of seizures (2)
and normal movements (33) in the test set. This makes
a comparison between patients fairer. It also allows us to
calculate and average sensitivity and PPV over all patients.
However, for some patients, the balance between normal and
epileptic movements is different when we would consider all
the patient’s data, which has an influence on the performance.
We observed that the PPV value decreases when a relative
larger number of normal movements occur with respect to the
number of seizures. The influence of the balance on the PPV
value is also explained in a next paragraph.

In the PDF approach we use a rather conservative threshold
in a way that in all patients but one, all the seizures are
detected. We prefer to use a conservative threshold to be sure
no seizures are missed. However, a more optimal result of
the PDF classification can be achieved when choosing the
threshold in a better way, for example when making use of
prior knowledge of the relative number of seizures that occur.
We see in Figure 5, which shows the performance for different
values of the threshold, that for patient 2 and 6 a sensitivity and
PPV value of more than 90% can be achieved when choosing
the best threshold value.

When we look at the manifestation of the seizures in patient
5, we see that they are short in duration and subtle in intensity
and are clearly different from the seizures in the other patients.
After a more thorough inspection, we can conclude that 20 of
the 26 seizures included arm movements, 10 contained leg
movements. In 5 seizures, the patient sits up in bed, in 7
seizures the patient turns over, and 2 seizures look like normal
nocturnal movements. The seizures are typically shorter than
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10 seconds, and clearly less violent compared to the seizures
of the other patients. This makes it hard for the algorithm to
detect them correctly, which explains the lower performance
for this patient. This is also visible in the optimal number of
features determined by Lasso on this patient. At the minimal
mean squared error (MSE), the number of features for patient
5 is 10, compared to an average of 7.7 over all patients. At the
largest λ value for Lasso where the MSE is within 1 standard
deviation of the minimum, the number of components is still
6 in patient 5, compared to an average of 2.7 over all patients.
When we use the 10 features from the optimal feature set
for patient 5 determined by Lasso in the outlier detection
approach, the performance increases to a sensitivity of 70.00%
and a PPV of 49.00%.

Observing the differences between the means of the normal
and epileptic normalized data for all patients and for all
features, we can see that this difference for patient 5 is
maximal 1.87 whereas for the other patients this is at least
3.49 (and 5.39 on average). And although a combination of
features with a weak discriminative power, potentially has
a high discriminative power, this is an indication that the
univariate discriminative power of the 6 features that are used
is low for patient 5. To be able to increase the performance,
probably other features are required that are not yet included
in our overall feature set.

Novelty detection works well in situations where the oc-
currence of abnormal events is very low. In this case the
distribution of normal events can be constructed from all
the data available. If the occurrence of abnormalities is low
enough, these will not influence the distribution too much.
Another advantage of this approach is that in the learning
phase, the events should not be labeled, as all the events
are used for estimating the PDF. In our case this would
mean that, given a group-specific determined β and τ , we
can immediately install the detector in the room of the child.
Movement data can continuously be collected for updating the
PDF. This does not require any other human action. Initially a
subset of normal movement from other patients can be used,
which is gradually replaced by patient specific movements as
more data is collected from that patient.

A possible extension of the method could be integrating an
adaptation of the PDF over time. We can make the algorithm
robust against a change of normal movements of the patients
over time (a change in behaviour). This could be done by
discarding the older movement events that were used for
building the PDF and replacing them by new movements that
are observed.

The obtained value for the PPV depends on both the thresh-
old, and the balance between both classes. This can easily
be explained using the following reasoning: consider the case
that both classes are separable, so there is no overlap between
classes, and that the threshold is set in a way that all seizures
are detected, with a certain number of false positives. Let B
be the balance, the positive examples (seizures) divided by the
total number of movements (seizures + normal movements).
Let n be the total number of data points, and T the threshold,
which in our case would be 95%. We can state that:

PPV =
TP

TP + FP
=

B.n

(1− T ).n
=

B

1− T
. (8)

As we assume that all seizures are detected, we can say
that TP = B.n. To get a high PPV, 1 − T should be a
good estimation of B. Note that B <= (1 − T ), otherwise
seizures are missed, we get false negatives, and the ideal case
we assumed would not hold anymore. Thus the threshold could
be optimized in function of the balance.

We now have tested the algorithm on one type of seizure, but
the detection based on accelerometers can be extended to other
types of seizures that contain motor components. At least if the
seizures do not occur too often throughout the night. Indeed,
if the patients suffer from too many seizures, the probability
density function will be influenced too much, and seizures
will not be regarded as an abnormal event anymore. So in
this case many seizures will be missed, unless the threshold
is set lower, which leads to more false positives. Furthermore,
for seizures with no motor component, this detection system
will not work. Hence, this system is restricted to detection of
convulsions (seizures with a motor component) only.

To improve the performance for example for the seizures
that are visually not distinguishable from normal movements
such as some seizures in patient 5, extra modalities can be
integrated. For example the tensioning of the arm muscles can
be measured using EMG. But also sensors such as ECG, audio,
video or skin conductivity, can increase the performance.
However, there is a trade-off between the number of applied
sensors and the patient’s comfort, unless contactless sensors
are used.

The results we have are initial results on a group of seven
patients. To make more reliable conclusions we will have to
test the system and algorithm on a larger group. Furthermore,
the system should also be tested in a real home situation. For
now it is only tested in a hospital setting. However, when
we test it at home, we will lose the EEG information, and
a labeling based on the gold standard is not possible for
validation.

V. CONCLUSION

We proposed a method to detect nocturnal hypermotor
seizures in pediatric patients. First, we segment the raw
data in movement events and extract the features with the
highest discriminative power. Afterwards we estimated a non-
parametric patient specific probability density function based
on normal movement to distinguish epileptic activity from
normal activity. This resulted in an average sensitivity of
95.24% and a PPV of 60.04% for 7 patients.

ACKNOWLEDGMENT

Research supported by Research Council KUL:
GOA-MANET, IWT: TBM070713-Accelero, Belgian Fed-

eral Science Policy Office IUAP P6/04 (DYSCO, ’Dynamical
systems, control and optimization, 2007-2011); EU: Neuro-
math (COSTBM0601).

Kris Cuppens is funded by a Ph.D. grant of the Agency for
Innovation by Science and Technology (IWT)



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

REFERENCES

[1] Bishop C (2006) Pattern Recognition and Machine
Learning. Springer, Singapore

[2] Conradsen I, Beniczky S, Wolf P, Henriksen J, Sams
T, Sorensen HBD (2010) Seizure onset detection based
on a uni- or multi-modal intelligent seizure acquisi-
tion (uisa/misa) system. 2010 32nd Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC 2010) pp 3269–72

[3] Cuppens K, Lagae L, Ceulemans B, Van Huffel S,
Vanrumste B (2009) Detection of nocturnal frontal lobe
seizures in pediatric patients by means of accelerometers:
a first study. EMBC: 2009 Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology
Society, Vols 1-20 pp 6608–6611, annual International
Conference of the IEEE-Engineering-in-Medicine-and-
Biology-Society IEEE Engn Med & Biol Soc

[4] Cuppens K, Lagae L, Ceulemans B, Van Huffel S,
Vanrumste B (2010) Automatic video detection of body
movement during sleep based on optical flow in pediatric
patients with epilepsy. Medical & Biological Engineering
& Computing 48(9):923–931

[5] Dargie W (2009) Analysis of time and frequency domain
features of accelerometer measurements. In: Proceedings
of the 2009 Proceedings of 18th International Conference
on Computer Communications and Networks, ICCCN
’09, pp 1–6

[6] Jallon P (2010) A bayesian approach for epileptic
seizures detection with 3d accelerometers sensors. 2010
32nd Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC 2010)
pp 6325–8

[7] Karayiannis NB, Tao GZ, Frost JD, Wise MS, Hrachovy
RA, Mizrahi EM (2006) Automated detection of video-
taped neonatal seizures based on motion segmentation
methods. Clinical Neurophysiology 117(7):1585–1594

[8] Kortelainen J, Virkkala J (2007) FFT averaging of mul-
tichannel BCG signals from bed mattress sensor to im-
prove estimation of heart beat interval. Conf Proc IEEE
Eng Med Biol Soc 1

[9] Kortelainen JM, Mendez MO, Bianchi AM, Matteucci M,
Cerutti S (2010) Sleep staging based on signals acquired
through bed sensor. IEEE Transactions on Information
Technology in Biomedicine 14(3):776–785

[10] Lockman J, Fisher RS, Olson DM (2011) Detection
of seizure-like movements using a wrist accelerometer.
Epilepsy& Behavior 20(4):638–641

[11] Markou M, Singh S (2003) Novelty detection: a re-
view - part 1: statistical approaches. Signal Processing
83(12):2481–2497

[12] Nijsen T, Aarts R, Arends J, Cluitmans P (2007) Model
for arm movements during myoclonic seizures. In: Con-
ference Proceedings of the IEEE Eng Med Biol Soc., pp
1582–1585

[13] Nijsen TM, Aarts RM, Arends JB, Cluitmans PJ (2009)
Automated detection of tonic seizures using 3-d ac-
celerometry. In: Sloten J, Verdonck P, Nyssen M,

Haueisen J (eds) 4th European Conference of the In-
ternational Federation for Medical and Biological En-
gineering, IFMBE Proceedings, vol 22, Springer Berlin
Heidelberg, pp 188–191

[14] Nijsen TME, Aarts RM, Cluitmans PJM, Griep PAM
(2010) Time-frequency analysis of accelerometry data
for detection of myoclonic seizures. IEEE Transactions
on Information Technology in Biomedicine 14(5):1197–
1203

[15] Rangayyan RM, Wu Y (2008) Modeling and classifica-
tion of knee-joint vibroarthrographic signals using prob-
ability density functions estimated with parzen windows.
In: Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of
the IEEE, pp 2099 –2102

[16] Rathi Y, Malcolm J, Bouix S, McCarley R, Seidman
L, Goldstein J, Westin CF, Shenton M (2010) Disease
classification: A probabilistic approach. In: Biomedical
Imaging: From Nano to Macro, 2010 IEEE International
Symposium on, pp 1345 – 1348

[17] Rauhala E, Virkkala J, Himanen SL (2009) Periodic limb
movement screening as an additional feature of emfit
sensor in sleep-disordered breathing studies. Journal of
Neuroscience Methods 178(1):157–161

[18] Tarassenko L, Hayton P, Cerneaz N, Brady M (1995)
Novelty detection for the identification of masses in
mammograms. In: Artificial Neural Networks, 1995.,
Fourth International Conference on, pp 442 –447

[19] Tarassenko L, Hann A, Young D (2006) Integrated
monitoring and analysis for early warning of patient
deterioration. British Journal of Anaesthesia 97(1):64–68

[20] Temko A, Thomas E, Marnane W, Lightbody G, Boy-
lan G (2011) EEG-based neonatal seizure detection
with support vector machines. Clinical Neurophysiology
122(3):464–473

[21] Tibshirani R (1996) Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society,
Series B 58:267–288

[22] Van de Vel A, Cuppens K, Bonroy B, Milosevic M,
Van Huffel S, Vanrumste B, Lagae L, Ceulemans B
(2012) Long term home monitoring of hypermotor
seizures by patient-worn accelerometers. Epilepsy &
Behavior

[23] Yeung DY, Chow C (2002) Parzen-window network
intrusion detectors. In: Pattern Recognition, 2002. Pro-
ceedings. 16th International Conference on, vol 4, pp 385
– 388


