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Abstract

Novelty detection is a particular example of pattern recognition identifying patterns that departure from some model
of “normal behaviour”. This article considers the classification of point patterns x̃ = {x1, . . . , xN} defined as sets of
N observations of a multivariate random variable X and where the value N follows a discrete stochastic distribution.
The use of point process models is introduced that allow us to describe the length N as well as the geometrical
configuration in data space of such patterns x̃. It is shown that such infinite dimensional study can be translated into
a one-dimensional study that is analytically tractable for a multivariate Gaussian distribution. Moreover, for other
multivariate distributions, an analytic approximation is obtained, by the use of extreme value theory, to model point
patterns that occur in low-density regions as defined by X. The proposed models are demonstrated on synthetic and
real-world data sets.
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1. Introduction

Novelty detection is the task of recognising test data
that differ in some respect from the data that were avail-
able during training [1]; it is typically used when there is
a large quantity of “normal” data available, but an insuf-
ficient quantity of “abnormal” data, thus preventing ac-
curate estimation of the “abnormal” class in a two-class
classification setting [2]. Closely related to novelty de-
tection is anomaly or outlier detection, where one also
wish to detect abnormalities but where these may not
necessarily be entirely novel with respect to the train-
ing data. A probabilistic approach starts with a statisti-
cal model describing the “normal” state and then detects
deviations from this model. The majority of such work
deals with a point-wise approach where the novelty of
individual points x is evaluated. However when multi-
ple points are evaluated, this can lead to a large number
of misclassifications due to the multiple-hypothesis test-
ing problem [3, 4].
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This article considers the more general problem of
classifying point patterns x̃ = {x1, . . . , xN} defined as
sets of N observations of a multivariate random variable
X and where the value N follows a discrete stochastic
distribution. This problem setting is of particular im-
portance when one has to deal with sparse data, defined
as data in which segments of data are missing such that
the number of observed measurements varies with time,
space or some other index variable.

The method introduced in this article is based on the
development of point process models (PPMs) and pro-
vides a valid probabilistic interpretation of the degree
of novelty of an entire point pattern x̃. This approach
enables us to prevent those misclassifications induced
by the multiple hypothesis testing problem. We show
that the probabilistic assessment of novelty is analyti-
cal tractable in closed form when X has a multivariate
normal distribution. Furthermore, we provide an ana-
lytic approximation using extreme value theory (EVT)
to model those point patterns that are situated in regions
where the density defined by X is low (the ‘extremes’ of
the pattern). These regions are of particular importance
because the decision boundary for novelty detection is
typically situated at the edge of the support of X, where
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the density is low. Moreover, in several applications it is
not the distribution of the bulk of data that is of interest,
but rather the behaviour of extremes, e.g., earth science
or financial applications [5].

Traditional point anomaly detection techniques often
use a single distribution to describe deviations from a
model of normal behaviour. A PPM is based on in-
finitely many random variables that fully characterise
the configuration of a pattern x̃ in its data space. Un-
like existing approaches, a PPM follows-up the length
N of patterns as well as the spatial configuration of the
values xi in data space. Furthermore, PPMs have the
additional advantage that they can be adopted to follow-
up the extremes within a pattern as well using extreme
value theory (EVT).

The remainder of the paper is structured as follows.
In Section 2, the problem setting is described, followed
by an overview of related work in Section 3. In Section
4, an introduction to the theory of PPMs and EVT is
given. Section 5 introduces our main novel approaches
to novelty detection. In Section 6, the method is illus-
trated on synthetic and real-world data sets and com-
pared with existing models that are commonly used for
novelty detection. Conclusions are presented in Section
7.

2. Problem setting

In this article, the problem is addressed to determine
whether or not a realized pattern of vectors:

x̃ = {x1, . . . xn}, (1)

is anomalous, where as well the length n is evaluated
with respect to a discrete distribution N as the locations
xi are evaluated with respect to a distribution X on Rd.
When n = 0, the pattern is treated as empty.

The problem setting is an example of a collective nov-
elty detection problem where neither the individual in-
stances within a pattern x̃ nor the length n itself are clas-
sified. Instead, the entire pattern x̃ of vectors is consid-
ered to be one single instance that is assigned a single
label. In terms of statistical hypothesis testing, the prob-
lem can be stated as:

H0 : x̃ is a set of vectors drawn from X and n is drawn
from N

H1 : x̃ is an anomalous pattern with respect to X and N

where H0 denotes the null-hypothesis and H1 the alter-
native hypothesis. The probability of wrongly classify-
ing a ‘normal’ pattern x̃ as anomalous (known as a type
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Figure 1: An illustration of samples with three different configurations
with respect to some decision boundary A.

I-error) is given by the significance level of the test de-
noted as α (typically α = 0.05 or α = 0.01). From
the point of view of hypothesis testing, it is clear that
the problem is related to one of multiple testing. The
problem of multiple (hypothesis) testing refers to testing
more than one hypothesis at a time and is a well known
statistical problem [3]. In this article, we will show how
PPMs can be applied to obtain the correct boundary of
normality corresponding with the significance level α.

The use of a PPM will allow us to model the spatial
configuration of the locations as well as the stochastic
length of the pattern. To illustrate this, Figure 1 shows
three artificial samples that are anomalous with respect
to a standard 2-dimensional Gaussian distribution. The
configuration of these points with respect to the bound-
ary of the region A clearly differs as well as the number
of point that are situated within the region. While the
first sample (Figure 1(a)) contains one point that is sit-
uated far beyond the boundary defined by A, the second
example (Figure 1(b)) contains multiple points near the
boundary indicating that there is probably a a shift in
the underlying process. The third sample (Figure 1(c)),
however, indicates an accumulation of points near the
centre which probably indicates that the variance of the
underlying process is decreased.

We will assume in this article that the locations xi of
the pattern x̃ are independent and identically distributed
(i.i.d.). However, results may be extended to their use
on time series data as well by considering the residu-
als after detrending. The latter will be demonstrated in
Section 6.3 using a real-world data set.

3. Related work

In this section, an overview of related work is given
for the main subjects treated in this work: (i) novelty
detection, (ii) EVT, and (iii) PPMs.

3.1. Novelty detection
Most of the literature of novelty detection deals with a

point-wise approach classifying individual points xi and
therefore only gives an answer to our problem setting in
the case when N = 1. Widely-used examples include
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the one-class support vector machine (OCSVM) [6];
active outlier (AO) [7], and local outlier factor (LOF)
models [8]. For a complete review of the literature on
novelty detection techniques, we refer to [9].

Closely related to our problem setting is sequence
classification in which the point pattern x̃ is considered
as one instance that is assigned a single classification la-
bel. A commonly-used strategy in the literature is a se-
quential learning approach, where each point xi within a
pattern {x1, . . . , xN} with a fixed length N = k is given a
label; the labels for all points in a pattern are then com-
bined to yield a single classification for the whole pat-
tern; e.g., this could be the mean of the individual nov-
elty scores learned by an OCSVM. Similarly, a hidden
Markov model (HMM) or a conditional random field
(CRF) can be used to decide whether a pattern of data
points is novel or not [10]. This approach, however is
much in line with a point-wise approach where the num-
ber of false alarms can increase considerably due to the
multiple hypothesis testing problem [3].

Alternatively, times series cluster models have been
used to cluster sequences where the instances xi are time
dependent. Such approaches, however, heavily depend
on the similarity metric and alignment method that are
used [11]. Furthermore, such methods are not suited to
incorporate the stochastic properties of the spatial con-
figuration of a pattern x̃. Group anomaly detection on
the other hand aims to detect interesting aggregate be-
haviours of data points among several groups [12].

All these approaches, however, lack a joint model for
the stochastic properties of the lengths and those of the
spatial configuration in data space Rd. A suitable PPM
will be applicable to an arbitrary bags of points of which
sequences of a fixed length is a special case. Moreover,
due to its link with EVT which will be explained in Sec-
tion 4, PPMs will allow us to follow-up the extremes
within a pattern as well.

3.2. Extreme value theory
In many applications, it is not the distribution of the

bulk of data that is of interest, but rather the behaviour
of the extremes. Modelling the stochastic behaviour of
such extremes is the subject of EVT, which has already
been used for many applications ranging from biomedi-
cal engineering, structural health monitoring, meteorol-
ogy, to risk assessment in financial domains [13].

In [14, 15, 4], the use of univariate EVT is proposed
to classify patterns x̃ of fixed length N = k based on
their extremes. The proposed EVT approaches were
based on the so-called block model and peaks over
threshold (POT) model. In such approach, only the sin-
gle most extreme element in x̃ (i.e. the vector where

the density defined by a PDF y = p(x) of a variable X
is lowest) is used to obtain a decision. However, the
most extreme element is expected to capture limited in-
formation about the tails of X that are defined as those
regions where the density y = p(x) of the variable X
is below a (low) threshold e−u. In [16, 17], it is shown
how EVT can be used to include information contained
in the number of exceedances and the average amount
of exceedances present in:

ỹ = p(x̃) = {p(x1), . . . , p(xn)},

with respect to a low threshold e−u on the densities p(xi),
1 ≤ i ≤ n.

In this work a PPM is proposed that is able to
fully capture the spatial configuration that is hidden in
the instances of ỹ where the density defined by some
PDF is lower than a threshold e−u. Such PPM of ex-
ceedances will unify the existing EVT approaches dis-
cussed above. By working directly with PPM, the
higher-order information arising from the configuration
of exceedances can be incorporated efficiently.

3.3. Point process models
PPMs are random processes that describe the geomet-

rical structure of patterns formed by objects that are ran-
domly distributed in a multidimensional space. They are
well-studied in probability theory and are mainly used
to model and analyse spatial data. PPMs are applied
in fields as diverse as astronomy, agriculture field trials,
epidemiology, and computational neuroscience [18].

The use of PPMs for machine learning and pattern
recognition applications is relatively new. PPMs show
some links with random fields that are often applied in
pattern recognition (e.g., conditional and Markov ran-
dom fields [19]). Where a random field {Z(x)} on Rd is
a family of random variables having values in all x of
Rd, a PPM on Rd describes values occurring in random
locations in Rd. The use of Poisson and determinantal
PPMs have recently been introduced in machine learn-
ing tasks as image search, tracking and text summarisa-
tion [20, 21]. In this article, the use of cluster PPMs and
PPM of exceedances are introduced for novelty detec-
tion applications.

4. Point processes on a Euclidean space

In this section, general concepts for PPMs are re-
viewed [22]. After starting with an informal definition
in Section 4.1, some typical characteristics of PPMs are
given in Section 4.2. In Sections 4.3 and 4.4, two gen-
eral classes of PPMs are given that will be of high prac-
tical use in the application of novelty detection.
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4.1. Informal definition
Informally, a PPM on a Euclidean space can be

viewed as a random variableM with a distribution over
all possible point patterns (or “point configurations”) in
some subspace D of Rd, d ∈ N0, and where a point
pattern is given by:

x̃ = {x1, x2, . . .}, ∀i : xi ∈ D. (2)

PPMs are able to describe the stochastic properties of
the number of points of x̃ as well as their location in
space Rd. The set-theoretical notation in (2) indicates
that (i) the ordering of the points in a point pattern is
irrelevant and that (ii) the points are different and thus
do not coincide (a property referred to as simplicity1).

PPMs are often characterised by counting measures.
The latter are random variables that map each configu-
ration x̃ of the PPM to the number of points falling in a
bounded subset2 A ⊂ Rd:

NA(x̃) =
∑
i≥1

εxi (A) < ∞ (3)

where:

εxi (A) =

{
1 if xi ∈ A
0 if xi < A.

A PPM is defined such that each NA is a finite random
variable, implying that only configurations x̃ are con-
sidered that are locally finite, meaning that they con-
tain a finite number of points in each bounded subset
A. In fact, the values of these counting measures NA for
all subsets A give sufficient information to reconstruct
completely the positions of a configuration x̃. Indeed
N{x}(x̃) > 0 only applies for those x ∈ x̃.

4.2. Distribution and intensity measure
The distribution of a PPM is defined by a measure P

that enables us to calculate probabilities of events X0:

P(M ∈ X0).

This describes the probability that the realisation of the
PPM M belongs to a set X0 of point patterns. For ex-
ample, setting X0 as the set of point patterns with a pre-
defined length k that fall in some bounded subset A ⊂ D
gives:

P(M ∈ X0) = P(NA = k), (4)

1The general theory of PPMs also considers models with multiple
coincident points.

2Formally, A is a Borel set. Supplemental material is associated
with this article in which the formal definition of a PPM is given in
more detail.

where P denotes the probability measure associated
with NA. It is clear from (4) that the distribution P of
the PPM completely defines the distribution of the ran-
dom variables NA. Conversely it can be shown that the
finite-dimensional distributions

(N(A1), . . . ,N(An)), n ∈ N and Ai ⊂ D bounded

characterise the distribution P of the PPM [18].
A fundamental concept related to the distribution of

the counting measures NA are their expected values. The
intensity measure of a PPM is defined as:

Λ(A) = E(NA)

and is a deterministic function operating on sets. The
derivative function (provided it exists) of this measure
is the so-called intensity function λ(x), x ∈ D ⊂ Rd and
satisfies:

Λ(A) =

∫
A
λ(x)dx. (5)

4.3. Finite point processes

PPMs are called finite when each realised point pat-
tern x̃ almost surely consists of a finite number of points.
A well-known class of such finite point processes is the
class of independent and identically distributed (i.i.d.)
cluster models [22]. These are PPMs such that the point
patterns x̃ consist of a finite number of points that are
i.i.d. distributed according to some PDF y = f (x). In
particular, an i.i.d. cluster model X̃ on D ⊂ Rd associ-
ated with a random variable X is uniquely defined by:

(i) A random variable N describing the total number
N of points in a point pattern, and which is dis-
tributed according to a discrete distribution on N:

P(N = n) with
+∞∑
n=0

P(N = n) = 1.

(ii) The random variable X on D ⊂ Rd with a PDF
y = f (x) generating the locations of the points in
the Euclidean space.

Conditioned on the length N of a pattern x̃, the num-
ber of points NA of the pattern x̃ that fall in a subset
A ⊂ D follows a binomial distribution B(N, pA) with
pA =

∫
A f (x)dx:

P(NA = k|N = n) =

(
n
k

)
pk

A(1 − pA)n−k,

4
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Unconditionally the distribution of NA can be found by
marginalisation:

ηk := P(NA = k)

=

+∞∑
n=0

P(N = n)
(
n
k

)
pk

A(1 − pA)n−k. (6)

The density function associated with the probability
measure P of a cluster PPM X̃ can be found by calcula-
tion of the probability of an event XA of point patterns
falling in a subset A ⊂ D:

P(X̃ ∈ XA) =

+∞∑
k=0

P(NA = k)P((Xi)k
i=1 ∈ A|NA = k)

=

+∞∑
k=0

ηk

k∏
i=1

∫
A

f (xi)dxi

=

+∞∑
k=0

∫
A

1
k!

f̃ ({x1, . . . , xk})dx1 · · · dxk (7)

where we have defined:

f̃ (x̃) = k! ηk

k∏
i=1

f (xi) (8)

for k > 0 and f̃ ({∅}) =
∑+∞

n=0 P(N = n)(1 − pA)n, when
k = 0. The density function f̃ associated with the proba-
bility measure P of the PPM X̃ is also called the Janossy
density function of the PPM X̃.

There is one final point to be noted here. As PPMs are
treated as a theory of unordered point patterns (2), real-
isation of the random variable X̃ can be considered as
a point in a quotient space3 in which point patterns are
determined up to permutations. To be consistent, the
density function f̃ is likewise considered on this quo-
tient space, yielding the additional factorial k! in (7).

4.4. Point processes of exceedances
PPMs are closely related to the study of exceedances

in EVT. To see this, the PPM of exceedances must be
considered studying those observations from a sequence
of i.i.d. univariate random variables W1, . . .Wn which
exceed a given threshold u.

A basis result of EVT, termed peaks over threshold
(POT), models complete tails of a univariate distribu-
tion W, defined as those measurements that fall above
some threshold u. In [15] the use of the POT approach
is extended to its multivariate use. For this purpose,

3A space where points are identified with respect to some equiva-
lence relation.
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Figure 2: A realization Z̃e
n of a point process of exceedances with

Nn
A(ω) = 2.

those measurement x of a multivariate variable X are
described for which z = − log( f (x)) falls above some
threshold u:

Au = {x | f (x) < e−u}

It can be shown that when, the distribution of the ex-
ceedances Z − u, conditional on Z > u, satisfies the lim-
iting property:

lim
u→+∞

P(
Z − u
σ

< z|Z > u) = F(z). (9)

for some scaling factor σ, then:

F(z) = 1 − e−z.

The limiting distribution in (9) is an exponential distri-
bution which belongs to the family of generalized Pareto
distributions.

For a fixed choice of n ∈ N, the PPM of exceedances
associated to Z is then defined on regions of the form
]0, 1[×]u,+∞[:

Z̃e
n =

{
(

i
n + 1

,Zi)|1 ≤ i ≤ n
}
∩ ]0, 1[× ]u,+∞[,

where we use the superscript e to denote exceedances.
The indices are divided by the factor n + 1 to rescale the
process to the interval ]0, 1[ as illustrated in Figure 2.

The link between PPMs and EVT is obtained by let-
ting n→ +∞ and u→ +∞ [17, 5]. It can be shown that
when the limit in (9) holds for the random variable Z for
some scale parameter σ, the corresponding sequences
of PPMs of exceedances Z̃e

n will converge to a Poisson
point process (PPP) for large u, meaning that the corre-
sponding sequence of counting measures Nn

A associated
with Z̃e

n converge in distribution to a Poisson distribu-
tion:

Nn
A

d
→ Pois(Λ(A)) as n→ +∞,

on sets

A =]t1, t2[× ]w,+∞[, w > u, ]t1, t2[⊂ ]0, 1[

5
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and where the intensity measure Λ(A) can be
parametrised in terms of the scale parameter σ and a
rate parameter λ:

Λ(A) = (t2 − t1) exp
(
−

w − u
σ

)
λ.

Thus, for large u and n, the PPM of exceedances on
]0, 1[× ]u,+∞[ can be approximated by a PPP where
the number of exceedances is distributed according to a
Poisson distribution with a rate parameter λ and where
the locations of the exceedances are distributed accord-
ing to an exponential distribution with scale σ, when-
ever the limit in (9) holds. The choice of u for this ap-
proximation to be valid is well-studied in the field of
EVT and can be assessed by means of a mean excess
plot. The latter is a graphic diagnostic tool in which the
sample means of the excesses (Z−u) are plotted against
a range of thresholds [13]. When the approximation is
valid for u > u0, this plot should be linear for u > u0.
Alternatively, an empirical rule-of-thumb can be chosen
that specifies the tail fraction of exceedances above u.
One commonly-used choice is to set u as the quantile at
1 − n2/3

n log log(n) of a sample of length n of the distribution
Z [23]. The parameters σ and λ may then be estimated
by means of maximum likelihood estimation.

5. Novelty detection for point patterns

In this section, we treat the problem of classifying
patterns as introduced in Section 2:

x̃ = {x1, . . . xN}, (10)

with respect to a distribution X modelling location in
space Rd and a distribution N modelling the stochastic
behaviour of the length of the pattern. To tackle this
novelty detection problem in its full generality, a PPM
is proposed where x̃ is viewed as a realised point pattern
of the i.i.d. cluster process X̃ associated with the random
variable X.

In Section 5.1 the infinite-dimensional study of the
distribution X̃ on the quotient space of configurations is
translated into a one-dimensional study by considering
a distribution of Janossy densities f̃ (x̃). In Section 5.2
it is shown that for a normal distribution X, this distri-
bution is analytically tractable. In Section 5.4, PPMs of
multivariate exceedances are introduced that completely
characterise the low-density regions of a point pattern
and this yields a model that unifies the methods previ-
ously introduced in [14, 15, 17].

5.1. Distributions of Janossy densities

Consider a finite i.i.d. cluster PPM X̃, as introduced
in Section 4.3, defined by a random variable N describ-
ing the length of the point patterns and a multivariate
distribution X with a PDF y = f (x) onD ⊂ Rd describ-
ing the locations of the points. In this section a numer-
ical method is proposed to evaluate patterns realised by
X̃ that fall in a subset A ⊂ D.

For this purpose consider a given subset A ⊂ D and
denote X̃A as being the PPM describing those points
within the point patterns x̃ that fall in A:

x̃A = x̃ ∩ A = {x ∈ x̃|x ∈ A}.

The length of these patterns is governed by a discrete
distribution ηk = P(NA = k) as given in (6) depending
on the random variable N. We remark that X̃D = X̃. The
distribution of all possible point patterns x̃A on A ⊂ D is
impossible to visualise. Therefore it can be very useful
to reduce the analysis of a PPM to the study of a uni-
variate variable V describing the Janossy densities of
point patterns v = f̃ (x̃A) distributed according to some
cumulative distribution function (CDF) G(v). This dis-
tribution will make it possible to evaluate configurations
of point patterns x̃A by using novelty scores that have a
suitable probabilistic meaning.

The corresponding CDF describes the probability that
we might observe a point pattern with a Janossy density
that is smaller than some density v. In particular the fol-
lowing event in the probability space of X̃ is considered:

Xv =
{
x̃ = (x1, x2 . . .)

∣∣∣( f̃ (x̃) ≤ v) ∧ (xi ∈ A)
}

=
⋃
k≥0

{
x̃ = (x1, . . . , xk)

∣∣∣( f̃ (x̃) ≤ v) ∧ (xi ∈ A)
}

=
⋃
k≥0

Ak
v, (11)

where we introduced the disjoint sets:

Ak
v =

{
(x1, . . . , xk)| f̃ (x1, . . . , xk) ≤ v

}
, k ≥ 1. (12)

and

A0
v =

{
{∅} when v ≥ η0
∅ when v < η0,

with η0 = f̃ ({∅}) being the probability for X̃A to generate
an empty point pattern. The univariate distribution G(v)
is now given by the probability ofXv; i.e., G(v) = P(Xv)
or:

G(v) =
∑
k≥0

P(Ak
v).

6
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Applying the same reasoning used in (7) for the events
Ak

v and using the abbreviation dx̃ for dx1 · · · dxk, one
finds:

G(v) = η0H(v − η0) +
∑
k≥1

∫
Ak

v

1
k!

f̃ ({x1, . . . , xk}) dx̃

= η0H(v − η0) +
∑
k≥1

ηk

k∏
i=1

∫
A

f (xi)dxi, (13)

where we have used the Heavyside step function:

H(v) =

{
1, v ≥ 0,
0, v < 0 (14)

to describe the probability mass associated with an
empty pattern. The distribution G(v) can in any case be
calculated numerically for a given PDF y = f (x); e.g.,
obtained by a kernel density estimation (KDE) [24]. For
this purpose, G(v) can be approximated by an empiri-
cal CDF of Janossy densities of point patterns simulated
from the cluster PPM X̃A.

5.2. Point patterns of multivariate normal distributions

In this section an analytic expression is derived for
the CDF G(v) and PDF g(v) of Janossy densities of an
i.i.d. cluster PPM X̃ associated with a random variable
X distributed according to a multivariate normal distri-
bution N(µ,Σ). In particular, in equation (13), one sets:

f (x) =
1√

(2π)d |Σ|
exp

(
−

M(x)2

2

)
(15)

with:
M(x) = ((x − µ)TΣ−1(x − µ))1/2.

In the theorem below we will show that the distribution
of V is one of mixed type [25]. Random variables of
mixed type are neither discrete or continuous, but are a
mixture of both. The discrete component results from
the Janossy density η0 of empty patterns which have a
strictly positive probability mass η0 > 0. This implies a
discontinuity in the CDF that we will describe using the
Heavyside step function (14).

Theorem 1 Consider the random variable V describ-
ing Janossy densities v = f̃ (x̃) of random point pat-
terns drawn from an i.i.d. cluster PPM X̃ of normal
distributed variables Xi ∼ N(µ,Σ). The distribution of
V is one of mixed-type with CDF:

G(v) = η0H(v − η0) +
∑
k≥1

ηk

[
1 − Fkd

(
−2 log

(
ckv
ηk

))]

where ck =

√
(2π)kd |Σ|k

k! and for each k > 0, Fkd denotes
the CDF of a chi-squared distribution with kd degrees
of freedom. Furthermore, conditioned on the non-empty
patterns, the random variable V has a PDF given by:

g(v|x̃ , ∅) =
∑
k≥1

ck

η0Γ( kd
2 )2

kd
2 −1

(
−2 log

(
ck

ηk
u
)) kd−2

2

with η0 = 1 − η0.

Proof We proceed by the derivation of the distribution
of the random variable W = −2 log(V) whereafter a
transformation V = e−

W
2 recovers the original distribu-

tion. From (8), one finds for k > 0:

w = −2 log

k!ηk

k∏
i=1

f (xi)


= −2 log(k!ηk) − 2

k∑
i=1

log f (xi)

= −2 log(k!ηk)+2 log
(√

(2π)kd |Σ|k
)
+

k∑
i=1

M(xi)2

= 2 log
(

ck

ηk

)
+

k∑
i=1

M(xi)2

where ck =

√
(2π)kd |Σ|k

k! and clearly w > 2 log
(

ck
ηk

)
. Con-

ditioned on the length k > 0 of a non-empty pattern,
the random variable W − 2 log

(
ck
ηk

)
is given by a sum

of k Mahalanobis distances which is distributed accord-
ing to a chi-squared distribution with k degrees of free-
dom [25]. Therefore the CDF G(w) associated with
W = −2 log(V) is given by:

G(w) = P(W < w)

=
∑
k≥0

ηkP(W < w|N = k)

= η0H(w + 2 log η0) +
∑
k≥1

ηkP(W < w|N = k)

= η0H(w + 2 log η0)+
∑
k≥1

ηkFkd

(
w − 2 log

ck

ηk

)
.

To recover the distribution of V we transform back by
means of V = e−

W
2 :

G(v) = 1 −G(−2 log v)

= η0H(v − η0) +
∑
k≥1

ηk

[
1 − Fkd

(
−2 log

ckv
ηk

)]

where we have used the fact that
∑

k≥0 ηk = 1. This
yields us the expression for the CDF G(v).
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For the conditional PDF g(v|x̃ , ∅), we proceed by
calculating the conditional probability

G0(v) = P(V ≤ v|N > 0),

which is given by:

G0(v) =
P(V ≤ v,N > 0)

P(N > 0)

=
∑
k≥1

ηk

η0

[
1 − Fkd

(
−2 log

ckv
ηk

)]
where η0 = 1 − η0. Using the expression of the PDF of
a chi-squared distribution one finds:

G0(v) =
∑
k≥1

ηk

η0Γ
(

kd
2

)
2

kd
2

∫ +∞

αk(v)2
u

kd
2 −1e−u/2du.

where αk(v)2 = −2 log
(

ck
ηk

v
)

for v > ck
ηk

and zero else-

where. Using the substitution u =
ηk
ck

e−ρ
2
k/2 with inverse

ρk =
√
−2 log( ck

ηk
u), this integral simplifies to:

G0(v) =
∑
k≥1

ck

η0Γ( kd
2 )2

kd
2 −1

v∫
0

(
−2 log(

ck

ηk
u)

) kd−2
2

du (16)

yielding the expression of the conditional PDF g(v)
given earlier. �

5.3. Examples and special cases

As an example, Figure 3(a) shows the CDFs of log-
transformed Janossy densities w drawn from multi-
dimensional standard normal distributions where the
number of dimensions is respectively given by d = 2,3,
and 4. The length N of the patterns is distributed ac-
cording to a binomial B(n, p) with parameters n = 20
and p = 0.7. At w = −2 log η0 a discontinuity appears
as is shown in Figure 3(b) for d = 3. It is clear that
the Janossy densities are generally decreasing with in-
creasing dimension. This is a consequence of increasing
dimensionality implying that the mass of the Gaussian
distribution moves away from the mode [24].

The special case in which the length of the point pat-
terns is fixed and known is worth studying in more de-
tail. In this case the random variable N describing the
length of patterns is deterministic meaning that ηk = 1
for some k > 0 and all other ηi = 0 such that:

G(v) =

v∫
0

ck

Γ
(

kd
2

)
2

kd
2 −1

(
−2 log(

ck

ηk
u)

) kd−2
2

du

For k = 1, one obtains the distribution of densities of
samples x drawn from a normal distribution with PDF:

g(v) = |Σ|1/2
2π

d
2

Γ
(

d
2

) ∫ v

0
(−2 log(c1u))

d−2
2 du, (17)

obtaining a result that was previously found for the spe-
cial case in [14].

5.4. Multivariate point patterns of exceedances
As mentioned in Section 5.1 the distribution of

Janossy densities (13) is not analytically tractable for
general random variables. However, in this section it is
shown that the distribution of Janossy densities of point
patterns that occur in low-density regions of a multivari-
ate distribution can be analytically approximated using
EVT.

Consider a i.i.d. cluster PPM X̃ associated with the
random variable of X distributed according to a PDF
y = f (x) on D ⊂ Rd such that point patterns (almost
surely) have a minimal length nmin. In this section a
PPM of exceedances (PPM-ex) X̃e

u is defined describing
patterns in low-density region Au(u ∈ R) w.r.t. y = f (x);
i.e.,

Au = {x| f (x) < e−u}. (18)
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Figure 3: (a) Distribution of the log-transformed Janossy densities
of point patterns drawn from a i.i.d. cluster PPM associated with a
multidimensional standard normal distribution where the number of
dimensions is respectively given by 3,4 and 5. (b) The discontinuity
that appears at −2 log η0 for d = 3.
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A realisation of X̃e
u is a pattern of exceedances, defined

as those points of a point pattern x̃ realized by X̃ that fall
in the low-density region:

x̃e = {x ∈ x̃| f (x) < e−u}.

In the theorem that follows, an analytic approximation
of the distribution of the PPM-ex is found when nmin and
u are sufficiently large.

Using the transformation
z : Rd 7→ R : x 7→ − log f (x) the PPM X̃ is trans-
formed into an i.i.d. cluster process Z̃ associated
with the random variable Z of NLLs. An observed
non-empty point pattern of exceedances:

x̃e = {x1, . . . xN} ∩ {x| f (x) < e−u}

is transformed into a point pattern of univariate ex-
ceedances of Zi = − log f (Xi) above u:

z̃e = {z1, . . . zN}∩]u,+∞[= {ze
1, . . . z

e
K}, (19)

where K denotes the counting variable associated with
the PPM-ex X̃e

u. From Section 4.4, we know that for
large nmin and u, the distribution of K, conditioned on
the length of the underlying point pattern x̃ of X̃, is Pois-
son with a rate λ:

P(K = k|N = n) =
λk

k!
e−λ, (20)

and the exceedances are distributed according to an ex-
ponential distribution with scale σ, whenever the distri-
bution of Z satisfies the limiting property in (9). There-
fore, the Janossy density of an observed point pattern of
K = k extremes (19) can be approximated by:

f̃ (z̃e) = k!αk

k∏
i=1

1
σ

exp
(
−

ze
i − u
σ

)
, (21)

where we have introduced αk = P(K = k) and by using
(20):

αk =
∑

n≥nmin

ηnP(K = k|N = n) =
∑

n≥nmin

ηn
λk

k!
e−λ. (22)

For k = 0 one obtains the likelihood of an empty point
pattern of extremes:

α0 =
∑

n≥nmin

ηne−λ. (23)

In the following theorem an analytical expression is ob-
tained for the distribution of Janossy densities f (z̃e) of
the univariate point patterns of exceedances {ze

1, . . . z
e
K}.

Theorem 2 Consider the random variable Ve describ-
ing Janossy densities ve = f (z̃e) as defined in (21) of
point patterns of exceedances that are distributed ac-
cording to an exponential distribution with scale param-
eter σ. The CDF of Ve is given by:

Ge(ve) = α0H(ve−α0)+
∑
k≥1

αk

[
1 − F2k

(
−2 log(

σk

k!αk
ve)

)]
where F2k denotes the CDF of a chi-squared distribu-
tion with 2k degrees of freedom.

Proof We proceed as in the proof of Theorem 1 and
first determine the distribution of We = −2 log Ve. From
(21), one finds for k > 0:

we = −2 log
(

k!αk

σk

)
+

k∑
i=1

ze
i − u
σ

.

The rescaled exceedances Ze
i −u
σ

are distributed accord-
ing to an expontial with scale 1 which coincides with
a chi-squared distribution with 2 degrees of freedom.
Conditioned on a length k > 0, the random variables
We − 2 log

(
σk

k!αk

)
are therefore distributed according to a

chi-squared distribution with 2k degrees of freedom and
thus the CDF G

e
(we) associated with We is given by:

G
e
(we) =

∑
k≥0

αkP(We < we|K = k)

= α0H(we + 2 logα0) +
∑
k≥1

αkF2k

(
we − 2 log

(
σk

k!αk

))
Transforming back to the original distribution, one ob-
tains the desired result for Ge(ve). �

Figure 4 (a)-(c) shows the analytic approximation ob-
tained in Theorem 2 of point patterns of exceedances
drawn from an i.i.d cluster PPM associated with a Gaus-
sian mixture model (GMM) X with 4 components. The
value of Ge(we) corresponding to the pattern of ex-
ceedances z̃e

0 is given by 84%. Therefore, at a signifi-
cance level of 5%, one cannot reject the null hypothesis
that the sample x̃0 was generated from X.

The approximation obtained in Theorem 2 holds
whenever the PPM of exceedances associated with Z is
approximately a PPP for large u and nmin as noted in
Section 4.4. For Gaussian mixture models X, a min-
imum length of nmin = 10 may already lead to valid
approximations [16, 14].

6. Experimental results

In this section the finite PPM introduced in Sections
5.1 and 5.2 and the PPM-ex model introduced in Sec-
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Figure 4: (a) A GMM of 4 components centered at (±3,±3) and with
Σ = I. The dots depict a pattern x̃0 with a length that is distributed ac-
cording to a binomial distribution B(50, 0.7). For this pattern 5 points
exceed the contour corresponding to a threshold u on the NLLs de-
termining the tail of the distribution. (b) Histogram of exceedances
above u of NLLs drawn from the GMM and the point pattern of ex-
ceedances z̃e

0 corresponding to x̃0. For large u the PDF is approxi-
mately exponential. (c) Emperical CDF of Janossy densities of 104

patterns of exceedances generated from the GMM after the transfor-
mation w = −2 log(v) together with the analytic approximation ob-
tained via Theorem 2. The transformed Janossy density we = 5.14
of the pattern of exceedances corresponding to x̃0 is indicated with a
cumulative probability of 84%.

tion 5.4, are demonstrated using three datasets. In Sec-
tion 6.1, the responsiveness of the PPM to changes of
the variance of the components in GMMs is studied us-
ing artificial data. Section 6.2 examines the detection
of adverse outcomes in patients during their stay in a
post-operative ward, using vital-sign data acquired in a
clinical trial at the Oxford University Hospitals [26]. Fi-
nally, in Section 6.3, an online novelty detection prob-
lem is considered that is based on the PPM-ex model
to monitor the extremes of a time-series. Calculations4

were performed in Matlab R© and R 3.4.2 [27, 28].

4A Matlab R© & R library and accompanying data sets supporting
the results of Sections 6.1 and 6.3 are available on www.kuleuven.

be/advise

6.1. Capability of industrial processes
In the field of statistical process control, a vital part

of an overall quality-improvement program of a manu-
facturing process is capability analysis [29]. One way to
express process capability is by the ratio of the natural
or inherent variance a process experiences and the range
of the specification limits in which it is allowed to oper-
ate. When the natural variance of the process increases,
the capability ratio decreases indicating a decrease in
the overall quality of the manufacturing process. Con-
versely a decrease in natural variance can indicate un-
necessarily precision of the process, which may be too
expensive to maintain in practice.

In this section, two experiments are considered where
data from the normal class are generated via GMMs. In
a first experiment, a multivariate normal distribution is
considered centred at the origin with a covariance ma-
trix given by Σ = 3I3, where I3 denotes the three- di-
mensional identity matrix. In a second experiment a
GMM is considered with two modes centered at respec-
tively the origin and (3, 3, 3) with covariance matrices
that are respectively given by 3Σ = 3I3 and I3. In both
experiments, the performance of a one-class classifier
is studied when a change of δI3 is adapted to the co-
variance matrix 3I3 of the component centred at the ori-
gin, where δ ranges from −2.5 to 3 with a step size of
∆δ = 0.5.

Training data consists of 400 patterns with a length
governed by a binomial distribution with a probability
parameter p = 0.8 and n = 25 trials. For each change
of the covariance matrix 320 patterns were simulated
that constitute the abnormal class. (The choice of 320
ensures that test and validation sets are balanced in 5-
fold cross-validation). Training involves a 5-fold cross-
validation process, where in each run, the data set is
randomly partitioned into 5 subsets; one subset is used
for training; two subsets are used to optimize the hy-
perparameters in a validation step; and two subsets are
hold out for testing. F1 scores on the test data are used
to compare performances of our models, which is the
harmonic mean of precision and recall [31]. The PPMs
are trained using a KDE with isotropic Gaussian ker-
nels (i.e., the covariance matrix Σ = σIn, is given by
a scalar multiple of the identity matrix in n variables)
to estimate a distribution X of the training data. Perfor-
mance scores are compared with a OCSVM algorithm
(ν-SVM with a Gaussian kernel [6]) and a HMM [30],
which are commonly-used methods for sequence clas-
sification, as described earlier [10]. During training, the
kernel width of the OCSVM and the KDE was varied
in the range [10−3, 0.3]. The number of states of the
HMM was varied between 3, 6, and 9, where each state
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Figure 5: F1 scores for the PPMs and one-class classifiers: the
OCSVM and the HMM. (a) F1 scores when the covariance matrix
of a multivariate normal distribution is changing from 3I3 to (3+δ)I3.
(b) F1 scores where a GMM model consisting of two components at
(0, 0, 0) and (3, 3, 3) with covariance matrices 3I3 and I3 is perturbed
by changing the covariance matrix of the first component to (3 + δ)I3.

presented a Gaussian mixture with a number of compo-
nents that varied between 1 and 2. The novelty scores
for each of the points within a sequence that are ob-
tained by applying the OCSVM method are combined
by calculating the mean score.

Figure 5(a) shows the results of the simulation based
on the unimodal multivariate normal distribution. In
this experiment, Theorem 1 is used to obtain novelty
scores of patterns in the test sets. Performance of the
models are compared using the F1 score which consid-
ers both sensitivity (SS) and positive predictive value
(PPV) [32]. When the variance increases, the PPMs are
competitive with the OCSVM and outperform a HMM.
However, none but the finite PPM is able to detect a
decrease in variance. For this a PPM, X̃A is consid-
ered for the region A that contains 50% of the training
data and that is estimated using a KDE. When variance
decreases, sequences situated in these high-density re-
gions are indeed expected to be longer inducing a de-
crease in the probabilities ηk = P(NA = k), (6), and
hence in their Janossy density.

Figure 5(b) shows the results of the simulation per-
formed using a GMM consisting of two components.
Novelty scores of patterns in the test sets are obtained
numerically by simulation. In this experiment, one sees
that the finite PPM is able to outperform each method
indicating that a change in the spatial configuration of
patterns drawn from the perturbed GMM is more promi-
nent than a change in the boundary of the normal class.

6.2. Predictive monitoring of patients
In this section a clinical data set is considered com-

ing from a study that is carried out at the Oxford Cancer
Hospital in the Oxford University Hospitals NHS Trust
(Oxford, UK) [26]. During this study, 407 patients were
monitored using bedside monitors during a stay in a
post-operative ward after an upper-gastrointestinal can-
cer sugery. The data set involves manual observations of
heart rate (HR), systolic blood pressure (BP), and respi-
ratory rate (RR) that are taken at regular times with a
mean of 3.5 hours between two observations (but which
can rise to as long as 14 hours). The novelty detection
problem in this section addresses the prediction of phys-
iologically deterioration resulting in adverse outcomes
(such as readmission to the intensive care unit, or death)
by detection of novelties in the observation sequence of
a patient. The data set is highly unbalanced, where only
13% of the patients suffered from post-surgical compli-
cations at some point in their stay.

Clinical guidance in the UK recommends the use of
an early warning score (EWS) system in combination
with vital-sign measurements [33]. This system ap-
plies a univariate scoring to each vital sign and warns
of patient risk when any of the scores, or the sum of
all scores, exceed some threshold. However this cur-
rent standard of care treats each vital sign independently
and thus disregards the correlations between vital signs.
Furthermore, it is expected that information is contained
in the length of observation sequences of patients, as
a higher frequency of measurement indicates increased
concern of the clinician taking the measurements [34].
A PPM will allow us to combine information obtained
from the values of the vital signs with that obtained from
the measurement frequency.

As is clear from Figure 6(a), the length of the stay in
the post-operative ward varies substantially from patient
to patient. The distribution of the durations is skewed
with a maximum of 71 days and a mean of 10 days. It
is expected that shortly after the surgery (at t = 0) care
is given at a higher level and so more measurements are
expected to take place during the start of each patients’
stay on the ward. Figure 6(b) shows the expected num-
ber of measurements taken in the past 5 hours as a func-
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Figure 6: (a) Histogram of the length of stays of 407 patients stay-
ing in the post-operative ward after an upper-gastrointestinal cancer
sugery. (b) The expected number of measurements as a function of
time t taken in the past 5 hours in the post-operative ward.

tion of time t (the length of this window is empirically
chosen to be 5 hours for illustration). The expectation
(dashed curve) and its confidence interval is obtained by
fitting a Poisson distribution to the number of measure-
ments at each time ti using a maximum likelihood esti-
mator (MLE). To obtain a continuous estimate at each
time t, a model for λ(t) was obtained:

λ(t, a, b, c) = exp

a +

(
b

c + t

)2
and plugged into the likelihood of all Poisson counts Nti
taken at available times ti:

L(a, b, c) =

k∏
i=1

λ(t)Nti

Nti !
e−λ(ti).

Maximising L leads to an overall estimate of the param-
eters (a, b, c) given by (23.27, 3.62, 0.90), as shown in
Figure 6(b).

The fit of λ(t) was used to apply the PPM. For this
purpose, a multivariate normal distribution was fitted to
the measurements after an appropriate Box-Cox trans-
formation [29]. To mimic the unbalanced nature of the
data set in our experiments, unbalanced test sets were

constructed containing 20 abnormal patients and 142
normal patients (noting that only 13% of the patients
had a readmission to the intensive care unit or death at
the end of their stay). Accounting for the underlying
prior probability of readmissions allows us to obtain re-
alistic estimates of how the system will perform in prac-
tice. Unlike previous sections, the PPMs were trained in
a semi-supervised manner, meaning that the covariance
matrix of the Gaussian kernel in a KDE on the train-
ing data was chosen based on data from the ‘normal
class’ only (i.e. data from patients not having any post-
surgical complication during their stay). This is a prag-
matic assumption, as in practice no (or only few data)
from the abnormal class are available, making it diffi-
cult to optimise parameters using a validation step with
cross-validation. The covariance matrix of the KDE was
estimated using a minimum covariance determinant es-
timator which is robust to outliers [35]. Using Theorem
1, risk score for each patient were obtained at each time
t by considering patterns of measurements from the past
5 hours. This risk score was threshold at G

e
(we) = 95%

corresponding to a significance level α = 5%.
The selection of the patients was randomised in a 5-

fold cross-validation experiment to train a HMM and
a OCSVM on the point patterns. The same partitions
in training and test set were used to calculate the perfor-
mance scores of a PPM and the EWS system to allow for
a consistent comparison. As in Section 6.1, the scores
obtained from the OCSVM for each of the points within
a pattern were combined by calculating the mean score.
For the EWS scores, a pattern was classified as anoma-
lous when one of the scores exceeded the threshold de-
fined by the EWS system [33]. The kernel width of
the OCSVM was optimized over the range [10−4, 10−2].
The number of states of the HMM was varied between
3, 6, and 9, where each state presented a Gaussian mix-
ture with a number of components that varied between 1
and 2. Table 1 shows performance scores for the various
classifiers considered. It may be seen that the PPM out-
performed both the HMM and OCSVM. Compared to
the clinically-recommended EWS score, the PPM was
able to increase the PPV scores without decreasing the
SS score, which is one of the challenges when working
with unbalanced data sets [2].

Figure 7 shows empirical estimates of the expected
FP rates invoked by each classifier during the stay of
patients that had no post-surgical complications. Esti-
mates were obtained by averaging rates over the differ-
ent patients on time intervals of a 0.5 day. The num-
ber of stays with a duration longer than 35 days was
too small to obtain reliable estimates (see Figure 6(a)).
A higher number of FPs is expected during the start of
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Table 1: F1, SS, and PPV scores for the prediction of readmissions of
patients staying in a post-operative ward. Means and standard devia-
tions are calculated over a 5-fold cross-validation.

Patient F1 SS PPV
EWS 55.00 ± 1.70 82.00 ± 3.74 41.48 ± 1.34
PPM 72.27 ± 1.88 82.00 ± 3.39 65.00 ± 2.57

OCSVM 59.44 ± 2.28 65.00 ± 4.74 56.31 ± 3.96
HMM 62.54 ± 1.92 80.20 ± 3.54 51.61 ± 2.11
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Figure 7: Empirical estimates of the FP rates invoked by the vari-
ous classifiers considered during the stay of patients that had no post-
surgical complications. The dashed line indicates the 5% level. (a)
The FP rate of the PPM compared with the HMM and OCSVM. (b)
The FP rate of PMM compared with the EWS method.

each stay as during that period more measurements are
expected to take place. However, the PPM is able to re-
duce this increase in FP rate considerably compared to
the other classifiers. This is because a PPM enables to
prevent those misclassifications induced by the multiple
hypothesis testing problem. The OCSVM and HMM
classifier both show an increased FP rate during the
complete period. Compared to the EWS method, the
FP rate of the PPM shows a lower variability and fluctu-
ates around 5% which corresponds to the choice of the
95% threshold on the Janossy likelihoods.

6.3. Online novelty detection

In this section, a public available time series data
set is used that consists of the global mean land-ocean

temperature index from 1880 to 20165. In particular
the data are deviations from measures in degrees centi-
grade, from the 1951 − 1980 average. To study climate
changes, often it’s not the distribution of the bulk of de-
viations that is of interest, but rather the behaviour of
patterns in larger deviations [37].

As noted in previous studies, there is an apparent up-
ward trend in the data as indicated by the linear regres-
sion fit in Figure 8. In the latter part of the twentieth cen-
tury, however, there is an increase in the upward trend
starting in the period 1980 − 1990 and which may be
used as an argument for an acceleration of the global
warming hypothesis [38]. We will show in this sec-
tion how the PPM-ex introduced in Section 5.4 can be
used to test whether this increase during the last decen-
nia is statistically significant with respect to the overall
increasing trend that is observed. Furthermore there is
a levelling off at about 1940 that may be interesting to
investigate further.

We will apply an online novelty detector based on the
use of a Kalman filter model (KFM) and the PPM-ex ap-
proach and will compare its performance with the EVT
approach introduced in [14]. In particular, an online lin-
ear regression model yt = β0 +β1t+εt with εt ∼ N(0, σ2)
is fitted to the data through the use of a KFM with the
following state space form:{

yt = HT
t ξt + εt,

ξt+1 = ξt,
(24)

5Data was downloaded from https://data.giss.nasa.gov/

gistemp/
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Figure 8: Time series of the global warming dataset3 consisting of
temperature deviations from the 1951−1980 average. The dashed line
shows a linear regression model. The bold line shows the forecasts
ŷt|t−1 of an online linear regression model using a KFM where the
coefficients are updated at each time step t given the previous data up
to time step t − 1.
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where yt denotes the temperature deviation at time t,
Ht the observation matrix consisting of the explanatory
data Ht = (1 t)T and ξt the state vector consisting of the
unknown regression coefficients ξt = (β0 β1)T .

The KFM allows at each time step t an update of
the estimated regression coefficients ξ̂t|t−1 given the past
data. This update can be calculated by a set of well-
known recursive linear estimation steps:

ξ̂t+1|t = ξ̂t|t−1 + Pt|t−1Ht(HT
t Pt|t−1Ht + σ2)−1et,

where Pt|t−1 denotes the variance-covariance matrix of
the estimated coefficients ξ̂t|t−1:

Pt+1|t = Pt|t−1 − Pt|t−1Ht(HT
t Pt|t−1Ht + σ2)−1HT

t Pt|t−1

and et denotes the error yt − yt|t−1 on the forecast yt|t−1 =

HT
t ξ̂t|t−1 of yt at time t given the past observations. The

distribution of the random variable Yt conditioned on
the past observations Y1, . . .Yt−1 is given by a normal
distribution:

p(yt |y1, . . . yt−1) ∼ N(HT
t ξ̂t|t−1, S t),

with
S t = σ2 + HtPt|t−1HT

t .

The first 30 observation are used to find the unknown
variance σ2 and the initial state vector ξ1|0 by a max-
imum likelihood criterion [39]. The matrix P1|0 is set
to a diffuse prior stating that there is no prior knowl-
edge available about the true regression coefficients ξt =

(β0 β1)T .
For each time t the window of the past n = 10 mea-

surements ỹ = {yt−n+1, . . . , yt} is considered together
with the pattern ẽ = {et−n+1, . . . , et} of i.i.d. standard-
ized errors:

et−i := S −1/2
t

(
yt−i − yt−i|t−i−1

)
∼ N(0, 1). (25)

The patterns ẽ may now be evaluated by considering the
corresponding patterns of exceedances ẽe together with
their Janossy likelihoods ve and corresponding cumula-
tive probabilities Ge(ve) as obtained from Theorem 2.
The exponential fit on the exceedances ei − u is esti-
mated using a MLE and a mean excess plot [13] us-
ing the first 30 observations. The scale parameter σ of
the exponential model and Poisson rate λ of the Poisson
model on the number of exceedances were estimated as
(σ̂, λ̂) = (3.35, 1) for û = 3.5. The fit can be assessed
by a quantile-quantile (QQ) plot that shows he empir-
ical quantiles versus the theoretical quantiles obtained
from the fitted exponential distribution, see Figure 9.
While the fit follows the data well over the majority of
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Figure 9: QQ-plot of emperical quantiles of exceedances ei −u versus
quantiles of the exponential fit. If the exponential model approximates
well, the points on the graph are expected near the diagonal y = x,
shown as a dashed line.

the range, the quality of the fit is lower for higher quan-
tiles. This divergence of the fit from the more extremal
data is known in the EVT literature and is also noticed
in [4].

Figure 10(a) shows the cumulative probabilities
Ge(ve) at each time step t ≥ n associated with the pat-
tern ỹ = {yt−n+1, . . . , yt} of the past n = 10 measure-
ments. The scores identify the levelling off starting at
1940 and the increase in the upward trend starting at
1990 by setting a probabilistic threshold of 95%. Figure
10(b) shows the NLLs of the observations yt with re-
spect to the normal distributions N(HT

t ξ̂t|t−1, σ
2). Com-

monly used methods for novelty detection rely on a
threshold for this likelihoods, e.g. by setting a thresh-
old as the 95% quantile that is estimated during a run-in
period of e.g. the first 30 observations. However, even
though novelties could be detected, the threshold should
be further optimized to overcome the false alarms dur-
ing the period 1900 − 1920, which is undesirable for
a novelty detection problem. Furthermore, the likeli-
hoods oscillate over the whole period while the cumu-
lative probabilities Ge(ve) are much easier to interpret
as they are low where they have to be and show steep
peaks where patterns become less likely. Figure 10(c)
show novelty scores that are defined by using a Gumbel
model for the most extreme measurement as proposed
in [40]. In this approach, at each time t, only the most
extreme standardized error is used to evaluate a pattern
ỹ = {yt−n+1, . . . , yt} of the past n = 10 measurements.
In particular, for each time t, the maximum Mn of the
NLLs of the standardized errors {et−n+1, . . . , et} as de-
fined in (25) is modelled. These maxima will follow ap-
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Figure 10: (a) Cumulative probabilities Ge(ve) of patterns of measure-
ment evaluated with respect to the KFM (24). (b) Likelihoods of ob-
servations yt with respect to the normal distributions N(HT

t ξ̂t|t−1, S t).
(c) Novelty scores χ(ỹ) of the most extreme errors. Thresholds are
shown as dashed lines and correspond to 95% quantiles.

proximately a Gumbel distribution and can be evaluated
using:

χ(ỹ) = exp
(
− exp

(
−

Mn − µ

σ

))
,

where µ = u + σ log λ. As can be seen from figure
10(c), these scores show an increase at the levelling off

at about 1940, but do no exceed the probabilistic 95%
threshold border. Moreover, the score Ge(ṽe) is able to
detect the increase in upward trend in the latter part of
the twentieth century earlier. The score χ(ỹ) only in-
cludes information about the most extreme error and is
not able to recognize the change in pattern that occurs
before the year 1998.

7. Conclusion

This paper is concerned with the problem of identify-
ing novel point patterns x̃ = {x1, ...xN} with respect to a
statistical distribution X and with a length governed by
a discrete random variable N. PPMs explore the spatial
configuration contained in x̃ while jointly modelling the
random length of x̃.

It is shown that the complex distribution of a PPM
for a space of point patterns can be translated to a uni-
variate formulation (in Janossy densities) that is readily
analysed. For multivariate normal data, our formulation
is exact. Moreover, for other multivariate distributions,
point patterns occurring in regions of lower density can
be evaluated by an analytic approximation that is ob-
tained by the use of EVT. This model is of particular
importance when not the bulk of data is of interest, but
rather the behaviour of extremes.

We have demonstrated the use of our PPMs us-
ing multiple synthetic and real-world data sets, and
showed that for these data our models can outperform
commonly-used methods for sequence classification,
such as HMMs and OCSVMs. For a synthetic data
set it was shown how PPMs can detect reductions in
variances in the components of Gaussian mixture mod-
els by monitoring the expected number of instances in
high density regions. The PPM can easily be trained
when few or no data of the abnormal class are available
in a novelty detection setting. This is in contrast with
OCSVMs and HMMs that need the tuning of several
hyperparameters. We demonstrated this on a real-world
data set consisting of vital signs of patients staying in
a postoperative hospital ward. The data set was highly
unbalanced as readmission was infrequent compared to
the normal state present in the data. For this particular
application and data set, the proposed models matched
clinical best-practice for sensitivity, while substantially
improving PPV in comparison to HMMs and OCSVMs.
Furthermore, a real-world time series data set was used
to illustrate the use of the method when observations
are not independent. The combination of a KFM and
the PPM-ex model allowed us to define an online ap-
proach to detect novelties in the extremes of time series.
In contrast to other EVT methods, the PPM was able to
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monitor the spatial configurations of exceedances lead-
ing to models that were able to detect changes in pat-
terns rather than detecting point anomalies.

There are several interesting extensions of the method
possible for future research. Firstly, an extension of the
calculation of the distribution of Janossy densities can
be considered for random variables that are not multi-
variate normally distributed. Secondly, we would like
to study how this method can be used to model depen-
dent sequences of point patterns including a temporal
variation into the model.
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