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Abstract

Migratory species do not necessarily behave migratory continuously. An

important aspect of studying migratory species is therefore to distinguish

between movement and resident behaviour. Telemetry is a rapidly evolving

technique to study animal movement, but the number of data processing

techniques to account for resident behaviour remains limited. In this study

we describe how models that were initially developed to predict human cus-

tomer behavior, i.e. two-part and three-part models, provide new insights

in the movement of migrating eel by accounting for resident behaviour ap-

parent from telemetry data sets. In econometrics, two-part models take into

account that the decision of a customer to purchase an item and the deci-
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sion of the customer on the purchase quantity of the concerning product,

might be affected by different factors. Similarly, the decision of a fish to

migrate or to stay resident might be affected by different factors than the

decision of the fish to swim fast or slow. Telemetry data of eel movement in

the Permanent Belgian Acoustic Receiver Network (PBARN) of the Scheldt

Estuary was used. This network with high detection probabilities allowed

residencies to be recognized, defined, and introduced as zero values in a

movement-residency data set. Two-part models, which consider movement

decision, i.e. residency or movement, and movement intensity, i.e. swimming

speed, as two different processes or parts of one larger model, outperformed

one-part models that do not make that distinction. This underlines the com-

plex migration behaviour eels exhibit. These two-part models in turn were

outperformed by three-part models that also accounted for cryptic (i.e. un-

observed) residencies. While the one-part model identified the tides and the

distance from the most upstream gate as most important for movement, the

three-part models identified the tides as most important for the movement

decision and the distance from the most upstream gate as most important for

the movement intensity. Considering movement decisions, cryptic residencies

and movement intensity in modelling efforts increased model performance by

9.8 %, underlining the importance of acknowledging the potentially complex

behaviour animals exhibit.
Keywords: Acoustic telemetry, Fish movement, Residencies, Gates,

Two-part and three-part models, Eel migration
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1. Introduction1

Zero values are often encountered in ecological count data where they2

typically represent absences. However, zeros may have different meanings3

as they may arise from real absences due to habitat unsuitability, or from4

false absences due to observer and design errors (Blasco-Moreno et al., 2019).5

Similarly, in telemetry studies, data-sets can be heavily zero-inflated if mo-6

ments of non-detection are considered as zeros (Brownscombe et al., 2019;7

Whoriskey et al., 2019), with the meaningfulness of these zeros being strongly8

dependent on the network design (Bruneel et al., 2020). Since the objective9

of many telemetry studies is to describe movement behaviour of animals, zero10

values could be used as an indication of non-movement or residency. How-11

ever, accounting for resident behavior, represented as zero values in telemetry12

data, might require adapted models. Therefore, the aim of this study is to13

evaluate currently used models and to assess the potential of alternative14

models to deal with such data.15

A good network design is key to define zero values. In estuarine and16

riverine acoustic networks with good detection probabilities, receivers may17

act as gates that tagged animals need to pass to leave a specific area (Kraus18

et al., 2018; Steckenreuter et al., 2017). Therefore, animals which remain19

undetected could still be positioned within a zone of the study area, i.e.20

between two gates, allowing periods of non-detection to be considered as21

residencies between detections (Bruneel et al., 2020).22

However, the specific animal behaviour between detections remains often23

3



Two-part and three-part models for passive telemetry data

entirely unknown, unless some expert-knowledge, such as typical swimming24

speed and spawning period, is integrated. For example, a fish known to25

migrate during a certain period would be expected to perform highly uni-26

directional movement behavior and unexpected travel delays would be an27

indirect indication of resident behavior between detections. Since these resi-28

dencies between detections cannot be observed directly, they are referred to29

as cryptic residencies.30

Zero-inflated data sets often require adapted statistical tools. Depend-31

ing on the nature of zeros, different statistical ecological models have been32

suggested. If both false and true zeros are likely to be present, zero in-33

flated models are typically used, while hurdle models are used when there34

are only true zeros (Zuur et al., 2009). More specifically, hurdle models as-35

sume that two processes result in two distinct signals, i.e. zero versus not36

zero, while zero-inflated models assume that both processes can yield zero37

values. For example, in case detection probabilities are low, individual fish38

not being detected might actually be present, yielding false zeros in addi-39

tion to structural zeros. In such a case, zero-inflated models would be most40

appropriate. Within the field of ecology, zero-inflated and hurdle models41

typically refer to models able to deal with count data inflated with observed42

absences (Blasco-Moreno et al., 2019; Joseph et al., 2009; Zuur et al., 2009).43

Although continuous and proportional ecological data sets are omnipresent,44

model equivalents for these types of data are not often used. However, for45

continuous ecological data, such as fish swimming speed, models with a sim-46
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ilar approach but different underlying distribution could be useful. More47

specifically, for count data, Poisson or negative binomial distributions are48

typically used, while for continuous data, Gaussian or Gamma distributions49

would be more appropriate. In econometric studies for example, the contin-50

uous equivalents of hurdle models, known as two-part models, have already51

been used frequently (Deb and Holmes, 2002; Farewell et al., 2017).52

Excess zeros are often considered a nuisance as they typically require53

more complex models with more parameters to be defined (Warton, 2005).54

However, explicitly accounting for zero-values may be useful as they may55

represent a unique signal of an unconsidered process. For example, in econo-56

metrics, two-part models have been widely used to study customer behaviour57

(Neelon et al., 2016; Pohlmeier and Ulrich, 1995). A customer might decide58

to purchase a product (Will I buy this?), but after that decision he/she would59

also need to decide on the quantity of the product (How much of it will I60

buy?). The conditions that drive the customer to purchase may be differ-61

ent from those driving the level of consumption. Hence, accounting for each62

process separately may be necessary to understand customer behavior.63

Similarly, the factors that trigger fish movement, i.e. the movement de-64

cision, may be different from the factors determining the distance or speed65

with which the fish moves, i.e. the movement intensity. Hence, accounting for66

movement decision and intensity separately may also be necessary to under-67

stand fish movement behavior. Therefore, the aim of this study was to assess68

the added value for predictions and the implications for ecological knowledge69
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of distinguishing between both processes of fish movement behavior. More70

specifically, we compared the predictive performance and inferred ecological71

knowledge of one-part and two-part models describing the movement be-72

haviour of migrating eel (Anguilla anguilla L.) in the Scheldt Estuary. In73

addition, to assess whether a further compartmentalization (e.g. distinction74

between upstream and downstream movement) would provide added value,75

different three-part models were constructed and compared with the one-part76

and two-part models.77

Given the increasing data availability and complexity entailed by the ex-78

ponential increase of possible associations among predictors, machine learn-79

ing is gaining ground among movement ecologists because of its high predic-80

tive performance and alleged ease of use (Wang, 2019; Joseph et al., 2017).81

However, although machine learning is built on a statistical framework, the82

outputs of pattern-learning algorithms are often difficult to interpret in the83

wider context of system functioning (Bzdok et al., 2018). Therefore, in prac-84

tice, the choice between machine learning and statistical models is typically85

determined by the purpose, which is either to make predictions or to infer86

knowledge, respectively. However, since ecologists typically want the best of87

both worlds, i.e. a model that is interpretable in terms of ecological knowl-88

edge while remaining broadly applicable for predictions, statistical models89

and machine learning should be treated as complementary tools. Therefore,90

we also compared the interpretability and the predictive performance of sta-91

tistical models (i.e. one-part and two-part regression models), hybrid models92
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(i.e. three-part models that combine neural networks with generalized lin-93

ear regression) and machine learning algorithms (i.e. conditional inference94

random forests (RF)) for the current telemetry data set.95

2. Materials and methods96

2.1. Study area97

The Schelde Estuary is a well-mixed estuary of 160 km long without98

transversal man-made migration barriers and characterized by strong cur-99

rents, high turbidity and a large tidal amplitude up to 6 m (Cornet et al.,100

2016). The estuary can be divided in two regions (upstream to downstream):101

the Zeeschelde, which spans 105 km from Ghent to Antwerp (Belgium), and102

the Westerschelde, which covers the 55 km from Antwerp to the mouth of103

the estuary at Vlissingen (The Netherlands). The width of the Zeeschelde104

varies between 50 to 1350 m while the width of the Westerschelde varies105

between 2000 and 8000 m (Fig. 1). The description of the study area was106

adopted from Bruneel et al. (2020). This study was limited to the part of the107

Zeeschelde, because of the relatively low detection probability of the gates in108

the Westerschelde (see section 2.3).109

2.2. Tagging procedure110

At the tidal weir in Merelbeke (Ghent), 100 eels were caught and inter-111

nally tagged with V13 (VEMCO Ltd., Canada) coded acoustic transmitters112

(Verhelst et al., 2018). After capture, surgery and recovery (Thorstad et al.,113
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2013), fish were released at the nearest receiver. Of the 100 tagged eels, 58114

migrated. The migration period of these 58 eels was determined (Verhelst115

et al., 2018) and used for further analysis. A more detailed description of the116

tagging procedure is provided in Appendix A. The description of the tagging117

procedure was adopted from Bruneel et al. (2020).118

2.3. Acoustic network119

Within the framework of the Belgian LifeWatch observatory, a permanent120

longitudinal network of receivers (VR2W, VEMCO Ltd, Canada) has been121

deployed since the spring of 2014 in the Schelde Estuary (Reubens et al.,122

2019a). Currently, the network consists of 25 receivers, deployed from the123

river bank, which were combined into 18 gates and are on average 4969 m124

apart (Fig. 1 and Table B.1). At four locations (s15, s16, s17 and s18), a125

receiver on each side of the estuary was deployed to cover the whole width.126

The exact detection range for the different receivers in the Zeeschelde was127

unknown, but ranges between 300 m and 1000 m (Verhelst et al., 2018). Re-128

sults from the network in the North Sea suggest that it is strongly dependent129

on current velocity and wave action and will therefore be characterized by130

a strong spatial and temporal variability (Reubens et al., 2019b). The de-131

tection probability of the gates was estimated using the conditional nature132

of fish movement throughout the system (Brownscombe et al., 2019). Since133

there are no other pathways to the North Sea, tagged fish have to pass the134

different gates in a well-defined order and detection probability can be defined135
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as the probability of detecting a tag moving past a specific gate (Melnychuk,136

2012; Perry et al., 2012). The detection probabilities of the different gates137

are given in Table B.1. The description of the acoustic network was adopted138

from Bruneel et al. (2020).139
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Figure 1: The Schelde Estuary comprises the Zeeschelde (Ghent-Antwerp) and Wester-
schelde (Antwerp-Vlissingen). The receivers are represented as orange circles. The gates
are indicated as labels for different groups of receivers. The weir in Ghent where the
eels were caught and released is depicted as a red cross. Detections at the three gates in
the Westerschelde (ws1, ws2 and ws3) were not considered in this study because of their
relatively low detection probabilities. Adapted from Bruneel et al. (2020).

2.4. Eel movement140

Given the high average detection probability of 97.0 % in the Zeeschelde,141

the number of false zeros was likely limited. In addition, since the movement142

of eels is highly unidirectional once they have started migrating, eels not143
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being detected at one gate are likely to be detected at the next gate, causing144

some reduction in resolution, but still providing a reliable position estimate.145

Since false zeros, due to low detection probabilities, are unlikely, we decided146

to work with two-part models instead of zero-inflated models.147

When a tagged eel was consecutively detected at two different gates,148

we considered the time lapse between these two detections as a movement149

interval and the distance between the two gates was determined. When150

a tagged eel was detected multiple times at a specific gate without being151

detected at any other gate, the time lapse between the earliest and last152

detection was considered as a residency interval and was assigned a distance153

value of zero. It should be noted that some short intervals might actually have154

been identified incorrectly as residency intervals. For example, a migrating155

eel might come within the detection range and have multiple detections while156

moving from one side of the gate to the other. Although considered as157

highly variable in literature (Breukelaar et al., 2009; Verbiest et al., 2012),158

we assumed an average migration speed of 0.25 m s−1 and a detection range159

of 250 meter, yielding an approximate threshold value of at least 30 minutes160

for residency intervals. To ensure that movement was not wrongly identified161

as residencies, this value was doubled and all residency intervals with a time162

span below 1 hour were omitted from the analysis (10.80 % of the residency163

intervals were retained for analysis).164

It is possible that, before heading to the next gate, a tagged eel was165

resident between two gates without entering either gate’s detection range.166
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Such unobserved or cryptic residencies are not directly apparent from the167

data as they are observed as being part of the movement interval. However,168

these cryptic residencies can be accounted for indirectly as they will cause a169

travel delay in the movement interval, negatively affecting the time necessary170

to reach the next gate.171

Recognizing resident behavior in acoustic telemetry networks based on172

position estimates alone often remains a difficult objective (Cagua et al.,173

2015). In this specific study, indirect (i.e. through travel delays) and di-174

rect indications of apparent non-movement can be either the result of (i) fish175

choosing to be resident and to discontinue swimming or (ii) fish swimming176

against the currents without much net gain in distance covered. However, if177

there are clear signs of individual variation and enough individuals to account178

for it, a distinction between both can be made. When animals are resident,179

they cannot be distinguished from each other using position estimates alone.180

However, when they migrate, even against the current, the strongest and181

fastest individuals will reach higher swimming speeds and can as such be182

distinguished from weaker and slower individuals. It should be noted that183

throughout the manuscript, swimming speed represents the ground speed184

(i.e. geographical progress per unit of time) without correction for current185

speed. As each tag emits a signal at a unique frequency, individuals can be186

identified and individual variation in swimming speed can be determined and187

used to analyse the behavior associated with apparent non-movement. Since188

European eel and other migrating fish have been found to apply different189
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strategies to save energy, it is much more likely that eels would choose the190

most energy efficient option and choose to be resident when facing currents191

rather than to swim without much net gain in distance covered (Arnold and192

Cook, 1984; Glebe and Leggett, 1981; Metcalfe et al., 1990). Therefore, we193

consider measurements of apparent non-movement as residencies and eval-194

uate afterwards whether this choice was justified based on the outcomes of195

the models.196

To normalize the data, distances were divided by time, yielding swimming197

speed. Residency and movement intervals with a time lapse higher than198

one full tidal cycle were removed (13.42 % data removal) as they do not199

allow to contribute movement behaviour to either ebb tide, flood tide or a200

combination of both (see section 2.5). To account for telemetry detection201

errors that might cause unrealistic swimming speeds, movement intervals202

with a swimming speed of 1.5 interquartile ranges (IQRs) below the first203

quartile or above the third quartile were considered outliers and removed204

from the data set (Tukey, 1977). In practice, all movement intervals with a205

swimming speed higher than 2.7 or lower than -1.5 m/s were omitted from206

the analysis (additional 2.20 % data removal). In summary, first 89.20 % of207

residency intervals were removed, followed by a 13.42 % removal from the208

entire data set (movement intervals + residency intervals), followed by a 2.20209

% removal from the entire data set. The final data set contained 19.24 and210

80.76 % residency and movement intervals, respectively.211
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2.5. Environmental data212

As the biological response in this study was analysed at a relatively fine213

spatiotemporal resolution (Bultel et al., 2014; Verhelst et al., 2018), a sound214

coupling of biological and environmental data would have been challenging215

and use of daily averages would have yielded inconclusive results on within-216

day movement patterns. Therefore only variables were included that were217

fixed in time (i.e. distance from source), fixed in space (i.e. day phase),218

known to be accurate at high spatial and temporal resolutions (i.e. period219

of flooding and period of ebbing), or known to be well represented by daily220

averages (i.e. moon and tidal phase). It should be noted that the main221

aim of this study was to assess the potential of alternative ecological models222

rather than to identify all environmental factors affecting eel migration. To223

obtain a more comprehensive understanding of these environmental factors,224

more fine-scale measurements and/or simulations of potentially important225

environmental variables, such as discharge, temperature, salinity and precip-226

itation could be used to fine-tune the developed models.227

To account for the distances between the locations of the gates and of the228

tidal measuring stations, a weighted average method was applied to estimate229

the precise moments of low and high water at the gates. The closest upstream230

and downstream tidal measuring stations were assigned to each gate. Based231

on the distances between these tidal stations and the gate, linear weights were232

assigned to both tidal stations. When tidal data at the respective upstream or233

downstream tidal station was absent or of questionable quality (e.g. outliers234
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and known periods of malfunctioning measuring devices) at the time interval235

of interest, the next upstream or downstream tidal station was chosen. This236

allowed us to estimate the duration of ebbing and flooding for each movement237

and residency interval. The ratio of period flood tide (minutes) over total238

period of the interval (minutes) was determined and used as a predictor, i.e.239

flood ratio. Per gate, the ratio of the maximum difference in water level of240

the concerning day over the median of the maximum difference in water level241

per day of the entire study period was used as a proxy for tidal phase, with242

low values being associated with neap tide and large values with spring tide.243

Moon phase was a numerical value representing the degree of illumination of244

the moon, ranging from new moon (0) to full moon (1). Time of day was a245

categorical variable with the classes Day, Night, Dusk and Dawn. Distance246

from source gave the distance (km) from the most upstream gate to the247

detecting gate.248

2.6. Model construction and evaluation249

All analyses were performed using the R software (version 3.6.2, R Devel-250

oper Core Team, R Foundation for Statistical Computing, Vienna, Austria).251

To construct the different models, the stats, nnet and ranger packages were252

used.253

2.6.1. Model construction254

In the one-part, two-part, three-part and random forest models, swim-255

ming speed was used as response variable, while flood ratio, tidal phase,256
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moon phase, day phase and distance from source were evaluated as potential257

predictors. Linear weights were introduced in model construction and eval-258

uation to account for the different number of observations between eels. As259

a consequence each eel contributed equally to the constructed models. First,260

a one-part model was constructed for the entire data set which consisted of261

a multiple linear regression model with Gaussian distribution.262

Second, continuous two-part models were constructed which consisted263

of two sub-models (Belotti et al., 2015; Humphreys, 2013): (1) A binomial264

model for the entire data set, with movement and residency as contrasts,265

Pr(y 6= 0|x) = F (xTα) (1)

where y is the response variable, x is a vector of predictors (x = (1, x1, . . . , xk),266

with k the number of predictors), α is the corresponding vector of parameters267

to be estimated (α = (α0, α1, . . . , αk), with k the number of parameters), and268

F is the cumulative distribution function of an independent and identically269

distributed error term from a probit model. (2) A multiple linear model with270

Gaussian distribution solely for the movement data,271

θ(y|y 6= 0,x) = h(xTβ) (2)

where θ is the probability density function, β is the corresponding vector of272

parameters to be estimated, and h is a Gaussian density function for y with273

expectation xTβ and some constant variance σ2. The likelihood contribution274
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for an observation can be written as,275

θ(y) =
{

1− F (xTα)
}i(y=0) ×

{
F (xTα)h(xTβ)

}i(y 6=0) (3)

where i(.) denotes the indicator function. Then, the log-likelihood contribu-276

tion is,277

ln(θ(y)) = i(y = 0)ln
{

1− F (xTα)
}

+i(y 6= 0)[ln
{
F (xTα)

}
+ln

{
h(xTβ)

}
]

(4)

Because the α and β parameters are additively separable in the log-likelihood278

contribution for each observation, the models for the full data set and the non-279

zeros can be estimated separately. Predictions of yi, ŷi|xi, were obtained by280

multiplying the predictions from each part of the model for the corresponding281

observations,282

ŷi|xi = (p̂i|xi)× (ŷi|yi 6= 0,xi) (5)

where p̂i|xi is the predicted probability that yi 6= 0. To obtain the most283

parsimonious model, each part of the model was constructed using a step-284

wise approach with AIC as selection criteria,285

AIC = −2lnL+ 2k (6)

where L is the maximum value of the likelihood function and k the number286

of estimated parameters.287
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By definition, two-part models assume that both parts of the model are288

independent. However, this should not always necessarily be the case. There-289

fore, the added value of accounting for any dependence between both parts290

was also assessed. This type of models are referred to as selection models in291

literature, and can be constructed using a two-stage estimation procedure:292

(1) The Inverse Mills Ratio (IMR) is determined from the binomial model293

for the full data set, and (2) the linear regression model for the movement294

data is constructed with IMR as additional covariate (Heckman, 1979). The295

IMR is,296

IMR(x) =
φ(x)

Φ(x)
(7)

with φ the standard normal density, Φ the standard normal cumulative dis-297

tribution function and x the vector of linear predictors of the binomial model.298

To assess whether further distinction between upstream and downstream299

movement would improve the predictions, a three-part model was constructed.300

This model consisted of 1) a multinomial model (via neural networks) with301

three contrasts: residency, upstream movement and downstream movement;302

2) a linear model of the upstream movement; and 3) a linear model of the303

downstream movement.304

One could argue that the few upstream intervals (3.7 % of the total305

amount of intervals per eel), actually represented residency intervals gone306

wrong (i.e. eel trying to stay resident are in fact slightly pushed back up-307

stream; see also section 3.1). Therefore additional one-part and two-part308
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models were constructed after transformation of the few upstream movement309

intervals into residency intervals, i.e. they were given a value 0.310

Additionally, a three-part model was constructed as an attempt to ac-311

count for the bimodal pattern of the data (See section 3.1). The three parts312

in this model were: 0 vs 0 to threshold vs threshold to 2.7 m s−1. After assess-313

ing the predictive performance of models with different thresholds (threshold314

interval selection based on inspection of stacked density plots in section 3.1)315

from 0.3 to 0.7 with a step-size of 0.01 and 104 Monte-Carlo cross-validations,316

the threshold that yielded the model with the highest predictive performance317

was retained (threshold = 0.45 m s−1; see section 3.2).318

Finally, conditional inference random forests were used to analyse both319

data sets, i.e. with and without upstream movement intervals. Different320

parameter settings were assessed, but since default parameters gave slightly321

higher performances, only these results were reported.322

2.6.2. Model performance323

To assess the performance of the models, Monte Carlo cross-validations324

were performed with 106 repeats, during which some individuals were used325

for training and some for testing. Different ratios (2/3, 3/4, 4/5, 5/6, 6/7,326

7/8, 8/9 and 9/10 for training) were assessed but since very similar results327

were obtained within each model, e.g. 0.1 % difference in Root Mean Square328

Error (RMSE), only results for a ratio of 9/10-1/10 for training-testing, were329

reported. Per repeat, a step-wise approach with AIC as selection criterion330
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was used to arrive at the most parsimonious model. Per repeat the RMSE331

was calculated as given in Eq. 8, with m the number of eels in the test data332

set, nk the number of observations of eel k, yj the actual value and ŷj|xj the333

predicted value of the swimming speed. Finally, the average RMSE over all334

repeats was determined.335

RMSE =
1

m

m∑
k=1

√√√√ 1

nk

nk∑
j=1

(yj − ŷj|xj)2 (8)

2.6.3. Model validation336

To quantify the uncertainty of the parameter estimates, bootstrap confi-337

dence intervals were determined. While standard parametric inferences rely338

on a-priori assumptions of the underlying distribution of the population, the339

non-parametric resampling approach of bootstrapping provides an estimate340

of the statistic’s sampling distribution using within-sample variation. More341

specifically, by considering the sample distribution as representative for the342

population distribution, bootstrapping can be used to estimate the quality of343

the predictive model. First, to develop the most parsimonious models, model344

selection was performed using the procedure described by Austin and Tu345

(2004), based on bootstrap samples, backwards elimination and AIC (n=104).346

Second, the coefficient estimates of the retained variables and their 95% boot-347

strap percentile confidence intervals were determined (n=104) (Davison and348

Hinkley, 1997). Linear bootstrap sampling weights were used to account for349

the different number of observations between eels.350
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2.6.4. Extension to one-part and two-part mixed models351

One major advantage of telemetry is its ability to provide data on the352

level of individuals and therefore mixed models that account for individual353

correlation are commonly used. Therefore, we also compared the explanatory354

power of one-part mixed models and two-part mixed models. Both models355

had eel ID as random intercept. The RMSE values were used as proxies356

of explanatory power. Since in the two-part models independence between357

parts is assumed, we did not account for any correlation across both fixed358

effects and random effects from the different parts of the two-part model (i.e.359

the random effects of the binomial model and those of the linear model were360

determined independently).361

3. Results362

3.1. Exploratory analysis363

An exploratory analysis of the data suggests that downstream movement364

intervals generally took place during ebb tide (Figs 2 and C.1). The nor-365

malized duration of flood tide in the downstream movement intervals was366

either 0 or to a lesser extent 100 % (Fig. 2), suggesting that downstream367

movement intervals contained either no flooding at all or a full flood cycle.368

On the other hand, upstream movement intervals typically took place during369

flood tide (Figs 2 and C.1). Finally, residencies seemed to occur more often370

during flood tide than during ebb tide (Fig. 2).371
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Figure 2: Graphs of discrete movement. Downstream movement (1); upstream movement
(-1); residency (0) versus the relative (%) and actual (minutes) period of flooding and
ebbing. All movement and residency intervals are depicted. Different colors represent
different eels.

Transformed stacked density plots of swimming speed gave additional in-372

sights into the distribution of the data (Fig. 3). It is clear from these figures373

that the bimodal pattern in the data is the result of different tidal conditions374

rather than of individual differences. Most eels have swimming speeds rang-375

ing from 0 to 2 m s−1, but swimming speeds from 0 to approximately 0.45 m376

s−1 typically occurred during pure flooding or a combination of flooding and377

ebbing, while swimming speeds of approximately 0.45 to 2 m s−1 typically378

21



Two-part and three-part models for passive telemetry data

(A)

0

200

400

−1 0 1 2
Swimming speed (m s−1)

C
ou

nt

(B)

0

200

400

−1 0 1 2
Swimming speed (m s−1)

C
ou

nt

Tide

Ebbing

Ebbing and
flooding

Flooding

(C)

0

500

1000

−1 0 1 2
Swimming speed (m s−1)

C
ou

nt

(D)

0

500

1000

−1 0 1 2
Swimming speed (m s−1)

C
ou

nt

Tide

Ebbing

Ebbing and
flooding

Flooding

Figure 3: Transformed stacked density plots of eel swimming speed (m s−1). To determine
the count of the stacked density plots, the amount of movement (and residency) intervals
for each swimming-speed-interval is divided by the width of a single swimming-speed
interval (0.05 m s−1). For example, in the swimming-speed interval centering the value
1 m s−1, 25 intervals were found. Hence, 25 intervals divided by a width of 0.05 m s−1

yield a count of 500. In A and B the density plots of all movement intervals are given.
The different colors in A depict the different eels, while the different colors in B depict
whether movement intervals occurred during flooding, ebbing or a combination of both. In
C and D the density plots of all residency intervals and movement intervals are given. The
different colors in C depict the different eels, while the different colors in D depict whether
residency and movement intervals occurred during flooding, ebbing or a combination of
both.

occurred during pure ebbing events. This suggests that movement intervals379

with a swimming speed below approximately 0.45 m s−1 are likely to contain380

cryptic residencies, causing a delay in travel time.381
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Data Model RMSE

Original

data

set

One-part model 0.4165

Two-part model: 0 vs not 0 m s−1 0.4073

Selection model: 0 vs not 0 m s−1 0.4132

Three-part model: 0 vs 0 vs 0 m s−1 0.4055

Conditional inference random forests 0.3941

No

upstream

movement

One-part model 0.4051

Two-part model: 0 vs not 0 m s−1 0.3804

Selection model: 0 vs not 0 m s−1 0.5410

Three-part model: 0 vs 0-0.45 vs 0.45-2.7 m s−1 0.3653

Conditional inference random forests 0.3669

Table 1: RMSE values (Eq. 8) after Monte Carlo cross-validations (104 permutations) for
different models and different data subsets.

3.2. Model construction and evaluation382

For the original data set, Monte-Carlo cross-validations indicated that the383

three-part model, which compartmentalized predictions into (1) residencies384

and (2) downstream and (3) upstream movement, had the highest predic-385

tive performance (RMSE = 0.4055), followed by the two-part model (RMSE386

= 0.4073), which compartmentalized predictions in (1) residencies and (2)387

movement, the selection model (RMSE = 0.4132) and the one-part model388

(RMSE = 0.4165) (Table 1). After transformation of the upstream move-389

ment intervals to residency intervals, Monte-Carlo cross-validations indicated390

that the three-part model, which compartmentalized predictions into classes391
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Figure 4: Violin plots representing the distribution of RMSE values obtained through
cross-validation (n=104) for the different models. RMSE distributions are given for the
one-part model, two-part model (0 vs not zero m s−1), three-part model (0 vs 0-0.45 vs
0.45-2.7 m s−1) and random forests model (RF). The data set without upstream intervals
was used to construct the models.

of (1) 0, (2) 0 to 0.45 and (3) 0.45 to 2.7 m s−1, had the highest predictive392

performance (RMSE = 0.3653) followed by the two-part model (RMSE =393

0.3804), which compartmentalized predictions into (1) residencies and (2)394

movement, one-part model (RMSE = 0.4051) and selection model (RMSE =395

0.5410) (Table 1). Since the three-part model performed best, it was retained396

for further analysis (Table 2).397

The results of the multinomial model of the three-part model indicated398

that the distinction between <0.45 and >0.45 m s−1 was significantly better399

than the distinction between 0 and 0 to 0.45 m s−1. The relative risk ratio400

for a one-percentage increase in the flood ratio was 0.987 for being between401
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Intercept Flood ratio Distance Moon phase Tidal phase

One-part

model

Estimate 0.704 -0.0124 4.94*10−3 0.0885

CI [0.629 0.780] [-0.0133 -0.0116] [3.57*10−3 6.32*10−3] [0.0105 0.166]

p-value 0 0 0 0

Two-

part

model

Binomial

model

Estimate 2.68 -0.0464

CI [2.37 3.03] [-0.054 -0.0395]

p-value 0 0

Linear

model

Estimate 0.795 -0.0137 5.16*10−3 0.0915

CI [0.725 0.866] [-0.0151 -0.0123] [3.90*10−3 6.43*10−3] [0.0101 0.174]

p-value 0 0 0 0.00258

Three-

part

model

Multi-

nomial

model

0-0.45

vs

0 m s−1

Estimate 0.507 -0.0134

CI [0.0830 0.973] [-0.0212 -0.00595]

p-value 0.105 8.00*10−4

0.45-2.7

vs

0 m s−1

Estimate 2.96 -0.0987

CI [2.57 3.43] [-0.117 -0.0835]

p-value 0.126 0.00152

Gamma

model

0-0.45

m s−1

Estimate -2.2 -0.00548 0.870

CI [-3.31 -1.12] [-0.00893 -0.00204] [-0.192 1.94]

p-value 0.650 0.00167 0.648

Linear

model

0.45-2.7

m s−1

Estimate 0.82 -0.00455 7.22*10−3 0.0425

CI [0.750 0.889] [-0.00690 -0.00219] [5.93*10−3 8.53*10−3] [-0.0436 0.127]

p-value 3.00*10−4 0 0 0.0011

Table 2: Parameter estimates, 95% percentile confidence intervals (CI) and p-values of the
one-part, two-part and three-part models obtained using a weighted bootstrap approach
(n=104). The models had swimming speed as response and predictors were selected using
a bootstrap selection procedure based on backwards elimination and AIC. The considered
predictors were flood ratio (% percentage flood over total period), distance from source
(km), moon phase (degree of moon illumination ranging from 0 to 1), tidal phase (ratio
of the maximum difference in water level of the concerning day over the median of the
maximum difference in water level per day of the entire study period) and day phase
(categorical: day, night, dusk or dawn). The data set without upstream intervals was used
to construct the models.
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0 and 0.45 m s−1 versus 0 m s−1 and 0.907 for being between 0.45 and 2.7402

m s−1 versus 0 m s−1. The higher the flood ratio, the higher the probability403

of an observed residency interval (0 m s−1) and the lower the probability404

of a movement interval with a swimming speed above 0.45 m s−1. The405

probability of a movement interval with a swimming speed below 0.45 m406

s−1 shows an increasing trend with flood ratio similar to the probability of407

residency intervals until a flood ratio of approximately 40 %, after which the408

probability decreases (Fig. 5).409
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Figure 5: Output of the most parsimonious multinomial model with as response the three
categories: 0, 0 to 0.45, 0.45 to 2.7 m s−1 and as predictor the flood ratio. The probability
of each class is given as a function of the flood ratio.
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However, distinction between swimming speeds of 0 and 0 to 0.45 m s−1410

was necessary in order to fit a generalized linear model with gamma dis-411

tribution through the data. Using a binomial model with contrasts <0.45412

and >0.45 m s−1 followed by two linear models yielded a lower predictive413

performance (RMSE = 0.3712) and would have violated model assumptions.414

The multinomial model on its own provided a relatively low predictive per-415

formance (RMSE=0.3940), but addition of a generalized linear model with416

gamma distribution from 0 to 0.45 m s−1 and a linear model from 0.45 to417

2.7 m s−1 increased the predictive performance with 7.3 % (RMSE=0.3653).418

The gamma model from 0 to 0.45 m s−1 indicated a significant negative effect419

of flood ratio. However, it should be noted that the model fit was relatively420

poor as using a null model instead decreased the overall predictive perfor-421

mance with only 1.1 % (RMSE = 0.3693). More benefit was gained from422

the linear model for the part of 0.45 to 2.7 m s−1 as its omission reduced423

overall predictive performance with 6.7 % (RMSE = 0.3898). The flood ra-424

tio and moon phase had a significantly negative and positive effect on the425

swimming speed, respectively, but were found to be far less important than426

the significant positive effect of the distance to source. During ebbing tide,427

eels closer to the North Sea had relatively higher swimming speeds. Finally,428

all full model-parts of this three-part model were offered the variable eel ID429

as fixed factor in the model selection process, but it was only retained in430

the latter linear model from 0.45 to 2.7 m s−1. This suggests that individual431

differences were important to predict swimming speeds from 0.45 to 2.7 m432
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s−1, but not to distinguish between classes (1) 0, (2) 0 to 0.45 and (3) 0.45433

to 2.7 m s−1 or to predict the swimming speed from 0 to 0.45 m s−1.434

Similar predictors with reliable parameter estimates were retained in the435

different models (Table 2). For the binomial part of the two-part models436

only flood ratio was retained, while the one-part models and linear parts of437

the two-part models retained, in order of decreasing importance, the factors438

flood ratio, distance to source and moon phase. The variable importance439

provided by the conditional inference random forests indicated that flood ra-440

tio (0.3733) was most important, followed by distance from source (0.0609),441

moon phase (0.0218), tidal phase (0.0204) and day phase (0.00796). The442

conditional inference random forests performed better (2.8 %) than the best443

statistical model when considering upstream movement intervals, but per-444

formed slightly worse (0.4 %) than the best statistical model when upstream445

movement intervals were not considered.446

RMSE values of the one-part and two-part mixed models for the data447

set without upstream movement intervals were 0.373 and 0.347 respectively.448

Hence, the two-part mixed model explained patterns in the data 7.0 % better449

than the one-part mixed model.450

4. Discussion451

4.1. Evaluating one-part, two-part and three-part (mixed) models452

Movement decisions have been assessed in depth for a wide range of ani-453

mals (Berdahl et al., 2017; Dechmann et al., 2017; O’Neal et al., 2018), but454
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the number of studies combining movement decisions with movement inten-455

sity, e.g. swimming speed or distance covered, has been limited (Broder-456

sen et al., 2008). Because zero values describe a unique behavioral aspect457

in movement behavior, i.e. residencies, defining observed zeros and iden-458

tifying cryptic zeros in telemetry data sets allowed to improve predictive459

performance and to obtain more detailed ecological insights. The predictive460

performances of the original three-part and two-part models were higher (be-461

tween 2.2 and 9.8 %) than those of the one-part models, suggesting that the462

conditions that affect the movement decision are not necessarily the same as463

the conditions that affect the movement intensity. Taking into consideration464

that both processes might be correlated did not improve predictions as the465

selection models had a lower predictive performance. This is in concordance466

with many econometric studies in which accounting for potential dependen-467

cies between both parts of the model did not seem to add to the quality of468

the predictions (Smith, 2003; Madden, 2008).469

Although distinguishing between movement and residencies provided clearly470

better predictions, further distinction between upstream and downstream471

movement only provided marginally better predictive performances (0.4 %).472

This might be because of the limited amount of upstream movement inter-473

vals and the limited amount of individuals exhibiting upstream movement,474

causing only a limited increase in explanatory power in the test set. How-475

ever, the poor gain in explanatory power of the model may also be the result476

of the similar conditions in which upstream movement and residencies oc-477
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curred. Indeed, considering upstream movement as residencies gone wrong,478

resulted in a 6.6 % and 2.7 % increase in performance for the two-part and479

one-part model respectively. This suggests that some eels are unsuccessful480

in remaining resident during flooding as they are pushed back, or that they481

mistake flooding for ebbing when moving along with the current. A final482

improvement of model performance was apparent from further compartmen-483

talization. Distinction between swimming speeds of (1) 0, (2) 0 to 0.45 and484

(3) 0.45 to 2.7 m s−1 caused predictions of swimming speed to be 9.8 % bet-485

ter. This model improvement was mainly the result of the contrasting tidal486

conditions before and after 0.45 m s−1, with eels facing or not facing a flood-487

ing event respectively. Hence, compartmentalization was successful because488

it adequately classified observed residencies (0 m s−1), cryptic residencies (0489

to 0.45 m s−1) and movement intervals (0.45 to 2.7 m s−1).490

The results of the three-part model suggest that the movement decision491

depends only on the tides, while the swimming speed is dependent on the492

tides and the distance from source. The larger the contribution of flood, the493

more likely a specific time lapse will be a residency interval rather than a494

movement interval. In addition, eels which migrated during ebb tide and495

which were already close to the sea, typically had the highest swimming496

speed. The conditions during which the movement intervals of the first peak497

of the bimodal pattern (<0.45 m s−1) occurred were actually more closely498

related to those of residency intervals than those of movement intervals of499

the second peak of the bimodal pattern (>0.45 m s−1). Within the ob-500
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served movement intervals characterized by a swimming speed below 0.45 m501

s−1, cryptic or undetected residencies were invoked by flooding events. Dur-502

ing these flooding events, eels had to interrupt their journey, causing lower503

observed swimming speeds. For swimming speeds above 0.45 m s−1, the dis-504

tance to the North Sea seemed to play a more important role than the tides.505

In addition, individual variation was significantly more important for swim-506

ming speeds above than below 0.45 m s−1 and also the movement decision507

did not show any significant individual variation. This suggests that all eels508

stay resident during flood, but also that some eels swim faster or slower than509

others once the decision to continue their migration has been made. The510

simple position estimates of a single individual would have made it difficult511

to classify apparent non-movement as either (i) residencies or (ii) movement512

without net gain in distance covered. However, the ability to quantify indi-513

vidual variation from a large number of tagged individuals provided evidence514

in favor of the first option. More specifically, as there were clearly faster515

and slower swimming individuals, the second option would have resulted in516

meaningful differences between individuals across all parts of the model (i.e.517

some individuals would be pushed back while others would advance during518

flood). This was, however, not the case.519

One major advantage of telemetry is its ability to provide data on the520

level of individuals, and therefore mixed models that account for individual521

correlation are commonly used (Gillies et al., 2006; Hooten et al., 2017).522

Two-part and three-part models can be easily extended to include mixed523
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effects in order to provide a higher explanatory power. In this study, the524

explanatory power of mixed two-part models was 7.0 % higher than their one-525

part equivalents. However, it should be noted that potential dependencies526

between the elements of random and fixed factors across the different parts527

were not considered. If correlation between the random effects across the528

different parts is expected, a joint maximization of the likelihood functions529

would be required. More research is needed to evaluate the added value of530

such an approach as its importance is likely to be case-specific.531

Eels have already been shown to exhibit selective tidal stream transport532

(STST), as they make use of the tides to reach their destination with as little533

energy expenditure as possible (Barry et al., 2016; Verhelst et al., 2018).534

However, by comparing one-part with two-part and three-part models, we535

illustrated that migrating fish exhibit complex behaviour and that models536

initially constructed to assess human customer behavior, might also be of537

use to study other animals (Farewell et al., 2017).538

4.2. Statistical models versus machine learning539

Statistical models are generally preferred over machine learning when the540

number of available predictors is limited and the main purpose is to infer541

ecological knowledge, while the contrary is true if predictive performance is542

deemed more important than inference. Since researchers often seek to opti-543

mize both knowledge and predictions, a mutually exclusive approach should544

be avoided. In this study we started off with a simple linear regression (i.e.545
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one-part model), then moved further to a two-part model which combined a546

binomial regression with linear regression, and finally ended up with a three-547

part model which combined a multinomial model (via neural networks, i.e.548

machine learning), generalized linear regression with gamma distribution and549

linear regression. Because each step of the model improvement was supported550

by ecological knowledge, i.e. being aware that the conditions that cause eels551

to reside or to move might be different, and methodological considerations,552

i.e. residencies taking place between gates are not directly observed but do553

cause a travel delay, the final three-part model remained interpretable. The554

conditional inference random forests provided similar results, though less in-555

formative, and had only slightly higher or lower predictive performances than556

the developed three-part models. Hence, appreciating the potential complex-557

ity of animal behaviour and awareness towards the statistical framework that558

machine learning algorithms are built upon, will provide researchers with the559

best machine learning has to offer without compromising the lessons learnt560

from statistical models.561

4.3. Recommendations for future studies562

In order for zero values to provide useful information, a good under-563

standing of the meaning of zeros in the data is required. In this study we564

considered all observed zeros to be true zeros, which is a plausible assumption565

given the high detection probability of the network and mainly unidirectional566

movement of migrating eel. In contrast, in case detection probabilities are567
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low, many zero values might actually be false zeros as the result of impor-568

tant design and/or observer errors, and hence the probability of a false zero569

should be explicitly integrated in the model. Since the detection probabil-570

ity is affected by the network design, transmission intervals and detection571

range, which in turn is affected by environmental conditions (Reubens et al.,572

2019b), an elaborate addition to the two-part models may be required to deal573

with high levels of false zeros. In addition, a good understanding of the de-574

tection range variability is also necessary to estimate any difference between575

the observed and actual biological response. For instance, in this study, the576

observed swimming speed of eel likely differed from the actual swimming577

speed because of the unaccounted detection range variability. Furthermore,578

the factors known to affect the detection range, i.e. tides (Mathies et al.,579

2014), also seem to be affecting the movement behaviour of eel, introducing580

not only noise but even a potential bias in the data. Independent range581

tests at different locations along the estuary and at different moments within582

the tidal cycle are a necessary addition to quantify the noise and/or bias583

associated with detection range variability (Kessel et al., 2014).584

It should also be noted that some limitations are inherent to the ap-585

plied technique of passive telemetry and can only be resolved by additional586

data collection. For example, when eels are between gates and there seem587

to be travel delays during flood, apparent from reduced swimming speed,588

it is difficult to tell whether eels (i) remained stationary near the bottom589

to preserve energy or (ii) swam against the currents without much gain in590
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distance covered. Although the constructed models indicated that the first591

option is much more likely than the second, depth profiles and actual swim-592

ming speed measurements, obtained through archival tags with depth sensors593

and accelerometers, would provide more direct estimates of specific animal594

behavior and would allow to validate the results of this study.595

5. Conclusion596

In this study we illustrated how accounting for both well-defined and597

cryptic residencies provides a better insight into the movement behaviour598

of migrating eel. Two-part and three-part models turned out to be promis-599

ing tools to deal with zero-inflated telemetry data, underlining the complex600

behaviour of migrating fish. Nevertheless, a sound assessment of the detec-601

tion range variability in combination with more fine-scale measurements of602

environmental variables, is necessary in order to confirm the observed pat-603

terns in eel movement and its relationship with environmental variables. Al-604

though only data from one species, one telemetry network and one telemetry605

technique was used, the proposed model framework can be used for study606

cases with other species, networks and techniques (e.g. passive integrated607

transponder and radio telemetry).608
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Appendix A. Tagging procedure795

The following description is adopted from Verhelst et al. (2018). 100 Eels796

were caught and tagged at the tidal weir in Merelbeke in the Zeeschelde dur-797

ing late summer and autumn (September–November) of three consecutive798

years (2015 till 2017) using double fyke nets. After periods of heavy rain,799

water flows over the sluices allowing eels to swim over the sluices. Placing800

the fyke nets behind the sluices and during periods of heavy rain, allowed to801

coordinate capture events and improve the chance of capturing eel. Several802

morphometric features were measured in order to determine the eel matura-803

tion stage (Durif et al., 2005): Total length (TL, to the nearest mm), body804

weight (W, to the nearest g), the vertical and horizontal eye diameter (EDv805

and EDh respectively, to the nearest 0.01 mm) and the length of the pectoral806

fin (FL, to the nearest 0.01 mm) (Table A.1). Only females were tagged, since807

males are smaller than the minimum size handled in this study (< 450 mm808

(Durif et al., 2005)). Eels of three different maturation stages were tagged:809

premigrant (F3, n = 51) and the two migrant stages F4 and F5 (n = 21 and810

n = 28, respectively). The eels were tagged with V13 coded acoustic trans-811

mitters (13 x 36 mm, weight in air 11 g, frequency 69 kHz, ping frequency:812

60–100 s; estimated battery life: 1021-1219 days (battery life time depended813

on specific transmitter settings), (Table A.2)) from VEMCO Ltd (Canada).814

After anaesthetizing them with 0.3 ml/L clove oil, tags were implanted with815

permanent monofilament (Thorstad et al., 2013). Eels recovered in a quar-816

antine reservoir for approximately one hour and were subsequently released817
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at the nearest receiver.818
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Stage Number TL (mm) BW (g) EDh (mm) EDv (mm) FL (mm)

F3 51
702±57

(568 - 835)

674±165

(324 - 1106)

8.08±0.57

(6.77 - 9.08)

7.55±0.60

(6.20 - 9.70)

32.92±3.29

(26.76 - 40.32)

F4 21
810±57

(707 - 932)

1162±217

(771 - 1830)

10.41±0.92

(9.13 - 12.49)

9.66±0.78

(8.60 - 11.86)

40.86±4.32

(30.84 - 48.18)

F5 28
662±56

(575 - 775)

585±144

(417 - 912)

9.33±0.80

(8.14 - 11.18)

8.80±0.79

(7.62 - 10.39)

34.41±3.68

(28.97 - 45.37)

Table A.1: Number of all tagged female eels per stage with the different morphometrics:
total length (TL), body weight (BW), horizontal and vertical eye diameters (EDh and
EDv, respectively) and pectoral fin length (FL). Mean, standard deviation and range
(between brackets) are indicated (Adopted from Verhelst et al. (2018)).
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Number
of
transmitters

Step 1 Step 2 Battery
life
(days)

PO
Ping
frequency (s)

Duration
(days)

PO
Ping
frequency (s)

Duration
(days)

20 L 60 - 100 1216 NA NA NA 1216
40 H 60 - 100 120 L 60 - 100 901 1021
40 H 60 - 100 120 L 60 - 100 902 1022

Table A.2: The number and settings of the transmitters of all tagged eels per step: power
output (PO; L = low power output, H = high power output), ping frequency (s) and the
time duration (days) per step as well as the total battery life time (days). (Adopted from
Verhelst et al. (2018))
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Appendix B. Telemetry network819
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gate
name

Distance
(km)

Deployment
date

Number
of receivers

Receiver inactivity
Det. prob.

(%)

s1 0.0 31/03/2015 1 100.0
s2 6.6 20/03/2016 1 100.0
s3 12.1 20/03/2016 1 97.1
s4 16.8 20/04/2015 1 97.4
s5 26.7 31/03/2015 1 99.1
s6 30.6 2/04/2015 1 98.7
s7 33.0 24/03/2016 1 17/10/2017 - 24/11/2017 96.7
s8 39.3 24/03/2016 1 81.6
s9 40.8 20/04/2015 1 99.9
s10 44.1 20/04/2015 1 99.3
s11 46.5 27/04/2015 1 100.0
s12 49.0 2/04/2015 1 98.4
s13 53.8 2/04/2015 1 93.2
s14 55.6 2/04/2015 1 100.0
s15 63.3 2/04/2015 2 100.0
s16 68.6 2/04/2015 2 100.0
s17 75.8 30/09/2015 3 100.0
s18 88.2 3/09/2015 2 77.8
ws1 112.8 22/09/2015 6 91.3

Table B.1: List of gates, with distance from Ghent (km), deployment date, number of
included receivers, period of receiver inactivity and detection probability. Receiver inac-
tivity represents the period during which one receiver of the gate was inactive. Adapted
from Bruneel et al. (2020).
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Appendix C. Figures820
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Figure C.1: Movement intervals of all tagged eels depicted by the departure (DEP) from
a receiver and arrival (ARR) at another receiver. The swimming speed (m s−1) during
a movement interval is given in function of the moment within the tidal cycle. In the
ZS, the period of ebbing is larger than the period of flooding, with differences being most
pronounced upstream. However, for visualization purposes the average period of flooding
(300 minutes) and period of ebbing (450 minutes) of the city of Dendermonde (in the
center of the ZS) were used to rescale the TMIs (Levy et al., 2014)
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