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Abstract. Automating the task of assessing an asset’s status based on
sensor data would not only relieve trained engineers from this time inten-
sive task, it would also allow a continuous follow-up of assets, potentially
resulting in a fine-grained view on the asset’s status. In this work three
unsupervised machine learning approaches that define a Health Indicator
(HI) based on acoustic and vibration signals were empirically assessed.
Such a HI indicates the similarity of the current measured state to the
baseline/normal operational state. The lower the HI score the worse the
asset’s condition. In this way the condition of an asset can be automat-
ically monitored. Gaussian mixture models, Variational Autoencoders
(VAE) and One Class Support Vector Machine (OC-SVM) were consid-
ered for this task. To enable the empirical assessment, a toy data set was
created in which vibration and acoustic data was recorded simultane-
ously from a coffee vending machine with rotating elements in the bean
grinder and water pump with relatively fast changing levels in the water
and bean containers, and several stages in the coffee making cycle. Exper-
iments were performed to analyse whether subtle changes in the sensor
data due to changing container levels could be automatically detected
and discriminated. Moreover, it was studied if a change could be rooted
back to a cause (being a low level in the water or bean container). A set
of temporal and spectral domain features were extracted and considered,
while experiments were also performed by fusing the acoustic and vibra-
tion signals. The applied models achieved a comparable performance in
terms of detecting low and empty container levels, with VAE using con-
volutional layers and OC-SVM achieving a further better discrimination
of the different container levels when using the fused signals. It was also
determined that the root cause of a level change can be determined by
looking at the HI in the various stages.

Keywords: Gaussian Mixture Models (GMMs) · One Class Support
Vector Machine (OC-SVM) · Variational Autoencoder (VAE) · Condition
Monitoring · Health Indicator · Data Driven Modeling.



1 Introduction

In condition monitoring assets are continuously tracked by sensors to follow-up
their operational status and identify possible changes that might indicate future
faults. In this way interruption due to failure of the asset is prevented and main-
tenance can be applied only when it is required which reduces the down time.
Nowadays, a multitude of sensors are installed to monitor an assets condition.
This work focuses on the use of an acoustic sensor, which is contactless and
retrofittable, and a vibration sensor, which requires contact with the asset. Such
sensors are typically applied when the asset contains rotating elements. Manually
inspecting the large amount of data these sensors generate is not feasible. There-
fore, robust algorithms that automatically identify anomalous behavior within
the data are required.
When data-driven modeling (machine learning) techniques are used to detect
faulty conditions in most cases example data from both normal as anomalous
cases are assumed. For example, in [6] the authors propose a feature learning
model for condition monitoring based on convolutional neural networks and vi-
bration signals for rotary machinery. However, in practice the type of anomalies
that can occur is not clearly defined and when data of anomalies is available it is
scarce. Other approaches define a Health Indicator (HI) which uses a model that
was estimated only (or mainly) based on data acquired when the asset operated
in a normal way. Such HI should indicate the similarity of the current measured
state to the baseline/normal operational state. A low HI relates to a poor asset’s
condition while a high HI points to a healthy condition. In [7] the authors de-
fined a HI based on the Mahalanobis distance of vibration signals to indicate the
health condition of a cooling fan and induction motor. Deep statistical feature
learning based on Gaussian-Bernoulli deep Boltzmann machine from vibration
measurements of rotating machinery was used in [9] as a fault diagnosis tech-
nique. In [11] acoustic signals were used to define a HI based on the residual
errors of an autoencoder to detect abnormalities in a Surface-Mounted Device.
Other examples that use acoustic signals are found in [3,12,4].
The main contributions of this work focus on an empirical assessment of three
unsupervised machine learning approaches to generate a HI based on acoustic,
vibration and fused signals. Two generative methods, Gaussian Mixture Models
(GMM) and Variational Autoencoders (VAE), and a discriminative method, One
Class Support Vector Machines (OC-SVM), were considered. Moreover, differ-
ent types of features were compared. In case of VAE, convolutional layers were
added to let the model automatically discover higher level features based on the
handcrafted lower level features. Using the models built, a root cause analysis
that pin points a change in HI to a specific operational state of the asset (where
specific parts are being used) was performed. As an input to the models, a toy
data set is collected that enables the empirical assessment. To the best of our
knowledge no data set is publicly available that recorded both vibration and
acoustic data simultaneously from an asset that has rotating elements as well
as relatively fast behavioral changes and contains several operational states (or
contexts). In this work, a coffee vending machine with rotating elements in the
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bean grinder and water pump, relatively fast changing levels in the water and
bean containers, and several stages in the coffee making cycle were used to gen-
erate the data set.
The remaining part of the paper is organized as follows. Section 2 discusses the
collected toy data set, the feature extraction, modeling algorithms and model
formulation. Sections 3 discusses the experimental setup. In Section 4 the ob-
tained results are discussed in detail. Finally, Section 5 concludes the paper by
summarizing the results obtained from the set of experiments.

2 Toy data set for condition monitoring of assets

In order to study the machine learning methods that generate an asset’s HI
based on vibration, acoustic or both signals, a toy data set from a coffee vending
machine, was recorded in an office environment that has:

a) synchronized recordings of both vibration and acoustic signals to capture
the dynamics of rotating elements in the bean grinder and water pump,

b) relatively fast changes in the underlying physics (the change in levels of the
bean and water container),

c) several operational states or contexts (different stages in the coffee making
cycle).

First, the operational characteristics of the coffee vending machine will be in-
troduced. Then, the sensing mechanisms used to collect a toy data set and the
models built to calculate the HI will be briefly reviewed.

2.1 The Coffee Vending Machine

The coffee vending machine used in this research work is a Bosch-TCA53. It is
a fully automatic espresso machine with desirable characteristics suitable for the
planned experiments. The important concepts and components in the condition
monitoring of the coffee vending machine are:

1) Process States: The coffee preparation process of Bosch-TCA53 vending
machine goes through the set of states shown in Fig. 1 from start to finish,
when the machine is operating in normal conditions.

Fig. 1: Coffee preparation states of the vending machine.

In the grinding state, the machine will grind enough coffee beans to prepare
a cup of coffee. Then it progresses to the rinsing state which will wash the
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brewing tank and make it ready to brew the coffee. After brewing, the final
state is finishing where optional operations are performed (like adding sugar
and/or cream). Each input data stream from the sensors is annotated in the
pre-processing phase to extract the different states.

2) Sensors used for data collection: The two sensors used are:
(i) Accelerometer : A three axis-accelerometer is used to collect the vibra-

tion data generated by the vending machine. This sensor is attached to
the side of the machine in direct contact with the bean container. The
sampling rate of the sensor is 1037Hz.

(ii) Microphone: is used to collect the acoustic data generated by the vending
machine. This sensor was positioned next to the machine roughly in 2cm
distance without being in direct contact with it. The sampling rate of
the sensor is 48kHz.

Fig. 2 shows the acoustic and vibration signals acquired during a normal
coffee preparation process.

Fig. 2: Acoustic and vibration signals during a normal coffee preparation process.

3) Monitored Tasks: The main interest of using the coffee vending machine
in an experimental setup originates from detecting subtle changes in sig-
nals received from the sensors which correspond to a change in operating
behavior. Two tasks were defined based on the sensor data:
a) to discriminate the situation of above half-full bean and water containers

from all other situations where at least one container is below half level;
b) to output a HI that correlates with the different container levels.
Lower container levels should correspond to lower HI meaning the condition
of the machine is further apart from the normal situation.

4) Data collection: To ease the analysis three discrete container levels were
defined:
– Normal Set: This data set represents a condition when the bean and

water in the containers are above half of the respective tank levels.

4



– Low Level Set: This data set represents a low, below half, bean and/or
water container level condition.

– Empty Set: This data set represents an empty bean or water container
level condition.

Table 1: Collected training and test data set

Cycle Combinations # of Cycles

Normal Bean/Normal Water 9

Low Water /Normal Bean 6

Low Bean/Normal Water 7

Low Bean/Low Water 4

Empty Bean/Normal Water 1

Empty Water/Normal Bean 4

In total 31 full cycle espresso coffee samples were collected for experimental
purpose. The toy data collected from the coffee vending machine tried to capture
all possible combinations of the specified status conditions as shown in Table 1.
For the sake of having a more balanced number of abnormal cycles to be used
in the test phase, the bean and water containers were filled, unfilled and refilled
with no-specific order in the collection procedure.

2.2 Feature Extraction

When extracting features from sensor data, one should try to capture the relevant
information from the input data as much as possible. The features are extracted
to capture both the time and spectral domain signal properties of the input data,
collected from the sensors. Prior to calculating the features, the sensor signals
first pass through a framing operation, which transforms the raw signals into
short overlapping segments or frames. In this work the following set of features
are assessed:

1. Time Domain Energy
For a sequence of samples in a frame, its energy is calculated as a sum of
the squares of the samples in the frame [2].

2. Spectral Centroid
The spectral centroid measures the spectral position of a signal. This mea-
sure is obtained by evaluating the ”center of gravity” using the Fourier trans-
form’s frequency and magnitude information. The individual centroid of a
spectral frame is defined as the average frequency weighted by their corre-
sponding amplitudes, divided by the sum of the amplitudes [2].
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3. Linear and mel spectra
After transforming the signal from the time to the frequency domain, the
resulting spectra generally have too high dimensionality. These spectra are
then further compacted by passing them through a number of linear or mel
filter banks. Mel spectra are commonly used in acoustic signal processing,
as can be seen in [1]. Linear spectra are chosen for the accelerometer signal
since less dimensionality reduction is needed, due to a lower signal band-
width.

4. Mel-frequency cepstral coefficients
Mel-frequency cepstral coefficients (MFCCs) are used in the representation of
acoustic and low frequency dominant signals. The MFCC feature extraction
technique basically includes windowing the signal, applying the DFT, taking
the log of the magnitude, and then warping the frequencies on a Mel scale,
followed by applying the inverse DCT as can be seen in detail from [15].

2.3 Modeling Algorithms

Normal profiles are created using the data obtained from baseline operating con-
ditions of the machine, reflecting the fact that no faulty condition occurs in the
coffee making cycles. A model is built from the normal profiles using unsuper-
vised algorithms to automatically label significant deviations. The algorithms
used are:

1. Gaussian Mixture Model
A Gaussian mixture model (GMM) is a weighted sum of M component
Gaussian densities as given by [13],

p(x|λ) =

M∑
i=1

wig(x|µi,Σi) (1)

where x is a D-dimensional data vector (i.e. measurement or features), wi,
i = 1, . . . ,M , are the mixture weights, and g(x|µi,Σi), i = 1, . . . ,M , are
the Gaussian densities of each component that have the following D-variate
form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
− 1

2
(x− µi)

TΣ−1
i (x− µi)

}
(2)

with mean vector µi and covariance matrix Σi.
The HI (hgmm) of an observation is directly tied to it’s weighted log proba-
bility (log(p(x|λ))).

2. One-Class Support Vector Machine
One-Class Support Vector Machine (OC-SVM)[14] is a variant of SVM method
trained on data from only a single class by computing a bounding hyper-
sphere that encompasses as much of the training data as possible. Given
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training vectors xi ∈ Rn, i = 1, . . . , l without any class information, OC-
SVM is defined as:

Primal problem:

min
w,ξ,ρ

1

2
wTw− ρ+

1

νl

l∑
i=1

ξi

subject to wTφ(xi) ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , l.

(3)

Dual problem:

min
α

1

2
αTQα

subject to 0 ≤ αi ≤
1

νl
, i = 1, . . . , l,

αTα = 1.

(4)

where Qij = K(xi,xj) = φ(xi)
Tφ(xj) is the kernel function. Then an RBF

kernel (exp(−γ ‖ xi − xj ‖2), γ > 0) is used, which is a popular and mostly
used kernel in practice. The decision function is defined as:

f(x) = sgn((wTφ(xi))− ρ) = sgn(

l∑
i=1

αiK(x, xi)− ρ) (5)

The resulting HI (hOCSVM ) of an observation is measured by the score of
each sample.

3. Variational Autoencoder
As described in [10], the goal of a standard autoencoder (AE) is to use an
encoding network (E) to create a compact representation z from an input x
and then use a decoding network (D) to make a reconstruction x̂.

z = E(x|θE), (6)

x̂ = D(z|θD). (7)

Variational autoencoders are a modification of this AE to a generative model.
This is done by replacing the representation z of an input x by a posterior
distribution q(z|x), z will then be sampled from this distribution.

q(z|x) = E(x|θE), (8)

This posterior is usually chosen as a Gaussian, where the mean and variance
are the output of the encoder. To ensure valid outputs when sampling from
the posterior, the Kullback-Leibler (KL) divergence from a prior distribution
p(z) is used as regularization. During inference the sampling of z is fixed to
the mean of the posterior distribution q(z|x), to remove randomness in the
reconstruction. Using this reconstruction, the error with the original input
can be calculated using Equation 9, we will call this error the HI hV AE .

hV AE = −Σn
i=1(xi − x̂i)

2 (9)
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2.4 Sensor Data Fusion

Observational data collected by sensors can be combined, or fused, at a variety of
levels for an improved performance of the detection system. This fusing can take
place at the raw data (or observation) level, feature level, or at the decision level
[5]. Raw sensor data can be directly combined if the sensors are commensurate
(i.e. if the sensors are measuring the same physical phenomena). Conversely, if
the sensors data are noncommensurate, the data can be fused at a feature or
decision level. In this work, since we are using two sensor data streams that
are not necessarily commensurate, fusing is performed at the feature level for
performance comparison purposes with the individual sensor HI results.

3 Experimental Setup

This section presents and discusses the empirical results obtained by using GMM,
OC-SVM and VAE models for HI estimation and related fault detection on
the acoustic and vibration data sets. A comprehensive set of experiments are
performed to compare and demonstrate the detection accuracy and asset change
trends in HI by the models using vibration, acoustic and fused features.

3.1 Experimental Settings

From the acoustic and vibration data collected in different operating conditions,
two categories of features are extracted to be used as input to the developed
models.

Category 1: uses higher level features of time domain energy, spectral cen-
troid and MFCCs. For this category, frames of size 500ms equating to a
window size of 24000 for the acoustic signal and 518 for the accelerometer
signal, with an overlap of 50% were used. For the MFCC features, 128 mel
bands are used with the first 13 cepstral coefficients being retained.
Category 2: uses linear and mel spectra as an input to the models. The
window size is reduced to 100ms and the overlap remained 50%. This reduc-
tion was done to provide a more detailed input to the convolutional network,
since it will discover its own features. A total of 64 mel and linear bands were
used for acoustic and accelerometer signals respectively. In this category the
spectrograms are divided into frames of 32 timesteps, which roughly equates
to 1.5s of data, and are then used as input for the machine learning model,
allowing it to automatically discover features.

The extracted features are standardized to have a zero mean and unit variance so
that they will have an equally weighted effect in the modeling phase. For the sec-
ond category features this is done before the division into frames. Since we have
9 coffee making cycles in the normal data set, a 9-fold split is created with each
fold containing 6 cycles in the training, 2 in the validation and 1 in the test set.
This approach prevents data from the same cycle to appear in the different sets.
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When applying GMM models, the optimal number of components are obtained
by calculating the Bayesian Information Criterion (BIC) value which achieved a
minimum for 4 number of components. For OC-SVM, the hyper-parameter set-
tings which consistently gave a better performance for the different experiments
are a 0.1, 1/30 for the fused signals and 1/15 for the other signals and RBF ker-
nel values for nu, gamma and the kernel type respectively. The evaluation will
be done both on a frame level, for each separate input, and on a run level, for
a complete coffee making cycle. The run level results are obtained by averaging
the frame level results.

3.2 Autoencoder architectures

In this research two kinds of VAE will be used: one with convolutional layers
(VAE-Conv) and one without (VAE-FC). Due to these layers, VAE-Conv will be
able to automatically discover features from low level features (e.g. mel spectra).
The VAE-FC uses only fully connected layers on the first category of features.
The model consists of 6 fully connected layers, 3 in the encoder and 3 in the
decoder, with 16, 8, 4 neurons and 4, 8, 14 neurons respectively. The neurons
are doubled when using the fused signal.
In the architecture that uses the second category of features, convolutional and
deconvolutional layers are needed. This VAE model consists of 5 2D convolu-
tional layers and a fully connected layer in the encoder and a fully connected
layer and 5 2D deconvolutional layers in the decoder, with 8, 16, 32, 64, 128, 32
and 256, 64, 32, 16, 8, 1 neurons in the encoder and decoder respectively.
In both models, the activation functions are relu in all but the final layers of the
encoder and decoder, where linear functions are used instead. L2 regularization
and the adam [8] optimizer are used with a factor of 1e−4 and 1e−3 respectively.

4 Results and Discussion

In this section the results obtained with the various models will be discussed.
Initially, the performance of individual and fused sensor input is evaluated with
respect to discriminating normal and abnormal conditions. The performance in
terms of correct classifications is given on the frame and complete run level. Then
additional analysis is done to further discriminate between the various container
levels on a chosen model. Finally, a frame level analysis of the HI outcomes is
performed to determine the root cause of the observed trends.

4.1 Model comparison

As explained in Section 3.1 two categories of features are used. The results of
the experiments are summarized in Table 2. All results shown are calculated by
taking the mean and standard deviation of the AUC score across the 9 folds.
Looking at the results from the models, on the frame level a quite good dis-
tinction can be made between the normal and abnormal cycles using acoustic
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signals, while the accelerometer signals provide a weaker distinction. However,
by fusing both signals the majority of the models attained a slight performance
increase. On the run level, an even better distinction is achieved compared to the
frame level. This difference is likely attributed to the lowered HI in the grinding
phase compared to the other phases. This will be discussed in more detail in
Section 4.3. In general we see that using only the acoustic signal provides a close
performance compared to the fused signal, while the accelerometer signal has a
lower performance.

Table 2: Status prediction results where the models in an orange cell use the
category 1 features and the model in the green cell uses category 2 features.

Sensors

ACM Audio Fused

Frame Level 0.703± 0.082 0.826± 0.081 0.854± 0.071
GMM

Run Level 0.871± 0.043 0.945± 0.060 0.945± 0.060

Frame Level 0.774± 0.079 0.885± 0.056 0.874± 0.032
OC-SVM

Run Level 0.894± 0.141 0.990± 0.019 0.994± 0.027

Frame Level 0.660± 0.061 0.827± 0.081 0.855± 0.046
VAE-FC

Run Level 0.919± 0.093 0.990± 0.019 1.000± 0.000

Frame Level 0.704± 0.117 0.811± 0.123 0.802± 0.058
VAE-Conv

Run Level 0.904± 0.087 0.939± 0.171 0.995± 0.014

4.2 Level/Trend Analysis

This section investigates whether there is a correlation between the HIs delivered
by the considered models and the levels of the bean and water containers. Focus-
ing on the results from OC-SVM and VAE-Conv, with the remaining algorithms
showing similar trends, the accelerometer performed poorly in distinguishing ab-
normal data when compared to the acoustic signals as shown in Table 2. Based
on these results, one may be inclined to conclude that using only the acoustic
signals might be enough or better to purely determine if the current situation
deviates from the normal operation.
However, when considering the HI in relation with the container levels no clear
correlation is observed for the acoustic signals, however the accelerometer seems
to perform slightly better in this task, as can be seen on Fig. 3 and 4. Another
interesting aspect of the result is observed from the fused signal of Fig. 4, re-
vealing a better correlation with the container levels, meaning that the cycles
are becoming more anomalous as the container levels decrease.

10



Fig. 3: OC-SVM: average of the run level results for category 1 features across
all folds

Fig. 4: VAE-Conv: average of the run level results for category 2 features across
all folds

A more detailed view of the HI for the different cycles is shown in Fig. 5 and 6.
The most noticeable observations are:

– For OC-SVM model with category 1 features, there is an overlap between
the three low container level runs of the acoustic signal. When we look at
the accelerometer signals, we notice a better discrimination of the various
levels compared to the acoustic signals. Looking at the fused signals, they
achieve a much better discrimination between almost all the various cycles,
with an overlap only in between the LowBean and LowWater scenarios.

– For VAE-Conv model with category 2 features, there is an overlap between
four low and empty container level runs of the acoustic signal. This indicates
that the acoustic signal is less correlated with the container level. When we
look at the accelerometer signals, we notice a clear difference in HIs for the
various levels. However, the accelerometer is not able to properly separate
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Fig. 5: OC-SVM: average HI of all cycles per scenario for each fold

Fig. 6: VAE-Conv: average HI of all cycles per scenario for each fold

whether the resulting conditions are due to the water or bean container lev-
els. Finally, when looking at the fused signals, they achieve a much better
discrimination between almost all the various cycles, with only an overlap
between the EmptyBean and LowWaterLowBean scenarios. A possible ex-
planation could be found in the in-depth analysis of the HIs in Section 4.3.

In conclusion, the fusion of both signals provides a complementary solution in
achieving a high performance in normal/abnormal cycles separation and a clearer
discrimination between the abnormal cycles in both models and feature cate-
gories.

4.3 Causality

In the previous sections we discussed both a quantitative comparison of the per-
formance of our models based on the AUC score and an analysis of the ability to
differentiate the various abnormal cycles on the run level. However, another way
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to approach this problem is to examine if the root cause of the abnormal cycle
(e.g. a low bean container) can be found based on the shift in HI in the states
on the frame level. The VAE-Conv model will be used for this examination.
In Figure 7, a comparison between the different abnormal and normal container
situations is shown. The first image shows the average HI of the cycles in the nor-
mal situation, and the other images show how the average HI of these situations
compares to the normal situation. These HIs are all scaled by dividing them by
the maximum of the HI of the normal situation. Firstly, we noticed that the HI

Fig. 7: Average HI across folds per container situation, compared to the the
normal situation. The black lines indicate the state changes. The average relative
distance in HI between the normal and selected situation is shown in the legend.

for the first state ”grinding” is noticeably lower than for the other states. This
can likely be attributed to two factors. The first factor could be the imbalance in
the data, with the brewing phase being roughly five times as long as the grinding
phase. Due to this imbalance, the VAE will train more on the brewing phase and
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be able to reconstruct it better compared to the grinding phase, resulting in a
difference in HI. A second factor is the amount of energy in the different states,
with the grinding state features having more energy compared to the brewing
state, which could contribute to the lower HI.
Secondly we examined the different states in these situations to determine if the
correct container situation could be selected based on the average HIs in the
states. These HIs are once again scaled, so we can calculate a relative instead of
absolute difference, to achieve a fairer comparison. For this scaling we attached
more importance to deviations on a high HI, so we flipped (1+hV AE) the scores
before scaling them. One noticeable thing is that for both situations with empty
containers a clear distinction can be made. When looking at the situations with
low containers, this distinction is less clear, but still visible. These observations
show that the root cause of the abnormal cycle can possibly be found by looking
at the frame level results.

5 Conclusion

In this paper, three machine learning methods GMM, OC-SVM and VAE were
used to define a HI. The HI generated by each method was analyzed on a newly
collected toy data set that includes acoustic and vibration signals from a coffee
vending machine. Different features were extracted from the input data enabling
in identifying a behavior that deviates from the normal situation. It was observed
that in most cases an improved detection performance can be achieved when
vibration and acoustic data was fused compared to using a single modality. A
sensor can have a robust performance in detecting deviating behavior, while
another sensor can give a good discrimination of the different types of abnormal
conditions. The experimental results obtained on this toy data set indicate this
property. While acoustic signals enable a better discrimination of the normal and
abnormal operational conditions, the vibration signals are better in identifying
subtle differences in the abnormal signals leading to an enhanced root cause
analysis. Furthermore, leveraging on the use of both sensors, a sensor fusion
approach consistently outperformed the case when a single sensor was used.
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