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Summary

In this dissertation, we aim at handling the problem of uncertainty in medicine and health care.
This problem is at the core of clinical practice as clinicians have to make decisions on a daily basis
for the good of their patients. Uncertainty in medicine and healthcare has several taxonomies,
one of them classify it into three categories: personal, conceptual and technical uncertainty. In
this thesis, we focus on technical uncertainty which is data related. Therefore, technical uncer-
tainty is handled as a data analysis problem in which analytical methods (e.g. machine learning)
can be used. From a clinical perspective, technical uncertainty comprises three elements: prob-
ability, ambiguity and complexity. Probability element reflects the risk and imprecision about
future outcomes of a specific decision or action from a temporal perspective. For ambiguity, it re-
flects the imprecise predictions, conflicting information and lack of evidence. Finally, complexity
reflects the multiplicity of influential factors.

A possible solution to technical uncertainty in medicine is developing reliable clinical decision
support systems (CDSS). The CDSS covers several categories; the most relevant one to our study
is the diagnostic decision support system (DDSS). The main components of DDCS are medical
data and analytical methods. Medical data can be collected using either conventional or wearable
medical devices. Each option has its advantage; for example, conventional medical devices still
provide the most accurate and gold-standard measurements. On the other hand, wearable medi-
cal devices provide continuous monitoring and ease of installation. For analytical methods, there
is a broad spectrum of methods that can be used in the context of human-health applications.
Our first candidate amongst these methods is machine learning given its high computational
capabilities and efficient error performance. In this thesis, we use simple but powerful machine
learning approaches. One approach is intended to be used for online and streaming analytics with
wearable devices which is the localised learning approach of k nearest neighbours least squares
support vector machine (kNN-LS-SVM). The other method is a linear hard margin approach to
support vector machines which is used to engineer explainable features.

Developing a reliable decision support system faces many challenges; these challenges are
data and model-based. In this thesis, we focus on some of these challenges: class-imbalance,
non-uniform data distribution, ambiguity (confusion), continuously increasing data-size, model
personalisation, black-box nature, online and streaming analytics. These challenges are linked
to the aforementioned elements of technical certainty. Therefore, handling these challenges can
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restrain the elements of technical uncertainty.
This dissertation’s main objective is to investigate the possibility to limit and reduce the tech-

nical uncertainty of applying machine learning approaches in human health applications. Reduc-
ing and restricting this uncertainty can be achieved by developing machine learning algorithms
that can enhance the reliability of human health applications’ decision-making process.

Five human health applications are investigated in this dissertation: human activity recogni-
tion, thermal comfort prediction, vital signs prediction, intensive care unit (ICU) mortality pre-
diction, and COVID-like patient mortality prediction at ICU. These applications cover the afore-
mentioned challenges. The human activity recognition (HAR) application focuses on recognis-
ing daily life activities and postures based on accelerometer data. The application of thermal
comfort prediction focuses on developing a machine learning model to predict the thermal com-
fort level based on a set of vital signs that can be easily measured using wearable sensors. The vital
signs prediction application focuses on estimating the monitored vital signs’ early warning score
with a relatively high rate (every minute). Moreover, in this application, we develop a machine
learning predictive model to predict the monitored vital signs for the upcoming 1, 2, and 3 hours
ahead. For these three applications, all measurements are obtained using wearable sensors and the
used machine learning algorithm is kNN-LS-SVM for classification and regression. Moreover,
these three applications cover the challenges of class-imbalance, non-uniform data distribution,
ambiguity, increasing data-size, model personalisation, online and streaming analytics.

The fourth application of ICU mortality prediction focuses on engineering explainable fea-
tures extracted from the monitored vital signs during patients’ ICU stay. These engineered fea-
tures are meant to provide clinical insight to medical staff. In this application, the used machine
learning algorithm is a linear hard margin approach to SVM’s which used to control the com-
plexity of the model and assure a linear separation of the data points in the input space. The last
application focuses on ICU mortality prediction of a specific profile of patients compared to the
previous application which investigates multiple profiles together. The fifth application’s profile
of patients is pulmonary disease patients with infection and/or pneumonia, which experiences
similar symptoms of COVID-19 patients. Both fourth and fifth applications are based on ICU
data obtained using conventional ICU devices. Moreover, both applications cover the challenge
of black-box nature and the resulting lack of interpretability and explainability.



Samenvatting

In dit proefschrift willen we het probleem van onzekerheid in de geneeskunde en de gezond-
heidszorg aanpakken. Dit probleem staat centraal in de klinische praktijk omdat clinici dagelijks
beslissingen moeten nemen voor het welzijn van hun patiënten. Onzekerheid in de geneeskunde
en de gezondheidszorg kent verschillende taxonomieën, waarvan er één de onzekerheid in drie
categorieën indeelt: persoonlijke, conceptuele en technische onzekerheid. In dit proefschrift
richten we ons op technische onzekerheid, die gerelateerd is aan gegevens. Daarom wordt tech-
nische onzekerheid behandeld als een data-analyse probleemwaarbij analytische methoden (bijv.
machine learning) kunnen worden gebruikt. Vanuit een klinisch perspectief bestaat technische
onzekerheid uit drie elementen: waarschijnlijkheid, ambiguïteit en complexiteit. Het element
waarschijnlijkheid weerspiegelt het risico en de onzekerheid over de toekomstige uitkomsten
van een specifieke beslissing of handeling vanuit een temporele invalshoek. Meerduidigheid
weerspiegelt de onnauwkeurige voorspellingen, tegenstrijdige informatie en gebrek aan bewijs.
Complexiteit, ten slotte, weerspiegelt de veelheid van invloedrijke factoren.

Een mogelijke oplossing voor de technische onzekerheid in de geneeskunde is de ontwikke-
ling van betrouwbare klinische beslissingsondersteunende systemen (CDSS). CDSS omvat ver-
schillende categorieën; de meest relevante voor onze studie is het diagnostic decision support sys-
tem (DDSS). De belangrijkste onderdelen van DDCS zijn medische gegevens en analysemetho-
den. Medische gegevens kunnen worden verzameld met behulp van conventionele of draag-
bare medische apparatuur. Elke optie heeft zijn voordeel; zo levert conventionele medische
apparatuur nog steeds de nauwkeurigste en meest gouden standaardmetingen op. Draagbare
medische apparatuur daarentegen biedt continue monitoring en is gemakkelijk te installeren.
Wat de analysemethoden betreft, is er een breed spectrum van methoden die kunnen worden
gebruikt in het kader van toepassingen op het gebied van de menselijke gezondheid. Onze
eerste kandidaat onder deze methoden is machinaal leren, gezien de hoge rekencapaciteiten en
efficiënte foutprestaties. In dit proefschrift gebruiken we eenvoudige maar krachtige machine
learning benaderingen. Eén benadering is bedoeld voor gebruik voor online en streaming ana-
lytics met draagbare apparaten en is de gelokaliseerde leerbenadering van k nearest neighbours
least squares support vector machine (kNN-LS-SVM). De andere methode is een lineaire harde
marge-benadering van support vector machines die wordt gebruikt om verklaarbare kenmerken
te ontwikkelen.
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Het ontwikkelen van een betrouwbaar beslissingsondersteunend systeem kent vele uitdagin-
gen; deze uitdagingen zijn gebaseerd op gegevens en op modellen. In deze dissertatie richten we
ons op enkele van deze uitdagingen: klassenonevenwichtigheid, niet-uniforme gegevensverdel-
ing, ambiguïteit (verwarring), voortdurend toenemende gegevensgrootte, modelpersonalisatie,
black-box karakter, online en streaming analytics. Deze uitdagingen houden verband met de
hierboven genoemde elementen van technische zekerheid. Daarom kan het aanpakken van deze
uitdagingen de elementen van technische onzekerheid beteugelen.

Het hoofddoel van dit proefschrift is het onderzoeken van de mogelijkheid om de technische
onzekerheid van het toepassen van machine learning benaderingen in menselijke gezondheid-
stoepassingen te beperken en te verminderen. Het verminderen en inperken van deze onzeker-
heid kan worden bereikt door het ontwikkelen van machine learning algoritmen die de be-
trouwbaarheid van het besluitvormingsproces van humane gezondheidstoepassingen kunnen
verhogen.

Vijf menselijke gezondheidstoepassingen worden onderzocht in dit proefschrift: herkenning
van menselijke activiteit, voorspelling van thermisch comfort, voorspelling van vitale functies,
voorspelling van sterfte op de intensive care unit (ICU), en voorspelling van sterfte van COVID-
achtige patiënten op de ICU. Deze toepassingen bestrijken de bovengenoemde uitdagingen. De
toepassing van menselijke activiteitsherkenning (HAR) richt zich op het herkennen van dageli-
jkse levensactiviteiten en houdingen op basis van versnellingsmetergegevens. De toepassing voor
het voorspellen van thermisch comfort richt zich op het ontwikkelen van een machine-learning
model om het thermisch comfortniveau te voorspellen op basis van een set vitale functies die een-
voudig gemeten kunnen worden met draagbare sensoren. De toepassing voor de voorspelling
van vitale functies richt zich op het schatten van de vroegtijdige waarschuwingsscore van de
gecontroleerde vitale functies met een relatief hoge snelheid (elkeminuut). Bovendien ontwikke-
len we in deze toepassing een machine learning voorspellingsmodel om de bewaakte vitale func-
ties voor de komende 1, 2 en 3 uur te voorspellen. Voor deze drie toepassingen worden alle metin-
gen verkregen met behulp van draagbare sensoren en het gebruikte machine-learning algoritme
is kNN-LS-SVM voor classificatie en regressie. Bovendien hebben deze drie toepassingen be-
trekking op de uitdagingen van klasse-onbalans, niet-uniforme gegevensverdeling, ambiguïteit,
toenemende gegevensgrootte, modelpersonalisatie, online en streaming analytics.

De vierde toepassing van ICU-sterftevoorspelling richt zich op de engineering van verklaar-
bare kenmerken uit de bewaakte vitale functies tijdens het ICU-verblijf van patiënten. Deze
eigenschappen zijn bedoeld om klinisch inzicht te verschaffen aan medisch personeel. In deze
toepassing is het gebruikte machine-learning algoritme een lineaire harde marge benadering
van SVM’s die gebruikt wordt om de complexiteit van het model te controleren en een lineaire
scheiding van de gegevens te verzekeren.
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Chapter 1

General introduction

Decision-making is key in medical and clinical practice requiring adequate expertise from the
medical specialists as well as relevant clinical information of the considered cases. Utilising ana-
lytical thinking in medicine appeared already since early ages as illustrated by the case where an
ancient Egyptian physician drew inductive conclusions from observed facts while examining his
patients [1]. In the ancient Egyptian papyrus (Edwin Smith papyrus Figure 1.1), an Egyptian physi-
cian documented a number of cases of bodily injuries. In some of these documented cases, the
physician describes the steps of examination results, his diagnosis as well as suggested treatment.
An example case showing these three steps, as quoted from the original English translation [2, 3]
of the papyrus, is shown below:

1. Examination: If thou examinest a man having a gaping wound in a vertebra of his neck,
penetrating to the bone, (and) perforating a vertebra of his neck; if thou examinest that wound,
(and) he shudders exceedingly, (and) he is unable to look at his two shoulders and his breast.

2. Diagnosis: Thou shouldst say concerning him: ’(One having) a wound in his neck, penetrating
to the bone, perforating a vertebra of his neck, (and) he suffers with stiffness in his neck. An
ailment with which I will contend.

3. Treatment: Thou shouldst bind it with fresh meat the first day. Now afterward moor (him) at
his mooring stakes until the period of his injury passes by.

This papyrus is known as the oldest surgical text in history that contains the earliest known
evidence of an inductive process in the history of the human mind [2]. It is estimated that this
ancient Egyptian medical treatise is dating from c. 1600 BC [4].
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Figure 1.1: Photograph of an original scroll from The ancient Egyptian papyrus Edwin Smith
Papyrus, It is written right-to-left in Hieratic (the Egyptian cursive form of hieroglyphs). Rare
Book Room, New York Academy of Medicine.[5]

Nowadays, the (r)evolution in sensors and sensing-technology provides us with an enormous
amount of medical data which can help to improve clinical decision-making. However, despite
these huge evolutions since the era of the Edwin Smith Papyrus, healthcare outcomes today are
still mostly probabilistic in nature resulting in uncertainty [6, 7, 8, 9, 10]. Restraining this medical
and clinical uncertainty is needed since sound and accurate decision-making are crucial to clinical
practice. In this thesis, as shown in Figure 1.2a, we investigate this problem (Problem block) by
decomposing it into its elements and proposing potential solutions (Solution block) for these
different elements. For contributing to this solution, we define possible challenges (Figure 1.2b)
related to the different components and assign suitable methods to handle them. Finally, we assess
our proposed methods by applying them to real-world human health applications (Applications
block).

1.1 Uncertainty in Medicine and Healthcare

Uncertainty in medicine is a challenge faced by many medical specialists irregardless of their
experiences and the available information about the observed cases [11]. Three main sources of
uncertainty in medicine are identified [12], namely: conceptual, personal and technical sources
(Figure 1.2).
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(a)

(b)

Figure 1.2: a) Research Map indicating the problem, solution, and applications. b) Data and
model-related challenges from the clinical and data analysis perspectives and corresponding ap-
plications.
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1.1.1 Sources of Uncertainty

According to Beresford [12], sources of uncertainty are illustrated as follows:

• The personal source mainly focuses on the physician-patient relationship. Specifically, re-
lated to that knowledge obtained from patients themselves, which is based on their expec-
tations and experiences. For instance, some physicians face the challenge to treat patients
who are not able, for several reasons, to reveal their experience with treatment or their
expectations from it [12]. The accuracy of this type of knowledge may affect the prog-
nosis procedure. Another aspect of personal uncertainty is the attachment that can grow
between the care provider and the patient, which may affect the decision-making process.

• The conceptual source of uncertainty is resulting from missing a standard measure for
decision-making. In other words, the physician’s or the caretaker’s judgement in some
situations is not based on standard or commonmeasures. For instance, prioritising a patient
over another having the same condition to be treated (e.g. ICU admission, medication
provision) can be controversial in case of limited resources (e.g. COVID-19 pandemics).
Another aspect of conceptual uncertainty is resulting from the difficulty to apply general
criteria to specific situations [12].

• Finally, the technical source of uncertainty is the most apparent cause of medical uncer-
tainty and this one is data-related. Data-related challenges that contribute to technical
uncertainty have two main levels. One level concerns the data collection process, which
can suffer quantitative and qualitative insufficiency. This insufficiency can be due to the
limited amount of data and/or the quality of the collected data. In modern medicine,
the presence of advanced monitoring technology can restrain data insufficiency since the
amount of the collected medical data is enormous. Moreover, the new sensors technology
assures high-quality and reliable measurements of the different parameters.

The other level concerns the rapidly growing data flow, which is difficult for any individual
practitioner to process it analytically. Moreover, depending on the investigated case, it
is also challenging to define which part(s) of the data are of more relevance than others
[9, 12]. Therefore, the persistent challenge in the technical uncertainty is analytical, which
is reflecting the capability to analyse and interpret the enormous amount of the collected
medical data. Moreover, this analysis shall provide accurate and reliable decisions and/or
predictions.

We will further focus in this thesis on technical uncertainty and its impact on the clinical
decision-making process.

1.1.2 Technical Uncertainty

Elements of technical uncertainty emerge from the aspects of probability, ambiguity, and com-
plexity [11, 14]. These three aspects comprise the difficulties that are faced by the analytical ap-
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proaches of medical data and their outcome.

• Probability reflects the resulting risk from the indeterminacy of future outcomes [13]. In
other words, this aspect concerns the temporal uncertainty due to the lack of a time-related
predictive power.

• Ambiguity reflects the indecisiveness resulting from imprecise predictions, conflicting in-
formation, and lack of evidence.

• Complexity reflects the incomprehensibility resulting from the multiplicity of influential
factors and variables or the lack of interpretability [11].

A concrete example of the three technical uncertainty aspects is illustrated in Figure 1.3 for the
response to breast cancer treatment [14]. In this example, the three aspects of uncertainty, namely,
probability, ambiguity and complexity are illustrated in the context of a treatment effect. The
probability aspect reflects how likely the treatment will be successful. The ambiguity reflects the
imprecision about the benefit for a patient of the treatment. In addition, it reflects the conflicting
opinions of medical experts or insufficient information about the treatment benefit (effectiveness)
and its side effects. Finally, the complexity aspect reflects the existence of multiple potential
causal factors [14]. Another example is the diagnostic decision-making process and monitoring
of ICU patients. For instance, monitoring intensive care unit (ICU) patients would benefit from
an accurate prediction of the care outcome by predicting the behaviour of patients’ monitored
vital signs and general health status (probability). Moreover, the ambiguity aspect appears in the
difficulty of making diagnostic decisions that leads to therapeutic strategies based on conflicting
evidence or incomplete informationwhich can be harmful to patients. Ultimately, the complexity
aspect is present in the ICU decision-making process due to the influential factors’ multiplicity.

Figure 1.3: Three aspects of technical uncertainty: probability, ambiguity and complexity for the
response to breast cancer treatment (from [14]).
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Given the different aspects of technical uncertainty in medicine, we hypothesise that suf-
ficient medical data and proper analytics can play an essential role in restraining the technical
uncertainty. Especially that, technical uncertainty is data-related and can be tackled as a data
analysis issue in the context of the medical domain. A practical solution to the problem of techni-
cal uncertainty is utilising clinical decision support systems whose components are medical data
and analytical methods. Therefore, we propose restraining the technical uncertainty by provid-
ing proper analytical means, adequate and reliable analytical methodologies, to clinical decision
support systems. By analytic methodologies, we mean the set of algorithms by which the moni-
tored variables (e.g. vital signs) are analysed to extract useful information, define patterns and/or
predict events to assess the health status of the monitored patients. In the following section, we
will introduce the concept of clinical decision support systems and their components.

1.2 Data-Based Clinical Decision Support System

Figure 1.4: Solution block from Figure 1.2a

At the beginning of the information age (late
20th century), healthcare was expected to be
revolutionised given the increasing amount of
digital available medical data [15]. This expec-
tation is partially legitimate, considering the
ease of collecting medical data with advanced
monitoring technologies and high storage capacities. However, the human mind alone cannot
analyse this vast amount of data considering all potential factors reflected in these data. Hence,
data is not enough to be the sole game-changer for healthcare services. In order to be action-
able, data needs to be transformed into knowledge/insights. Advanced computer-based analytical
methods are candidate approaches allowing to make these necessary transformations. Specifi-
cally, using and integrating different kinds of medical data (e.g. patients’ information and clinical
knowledge) is at the core of the computerised clinical decision support system (CDSS) in making
clinical decisions [16].

Clinical decision support systems (CDSS) aim to enhance the clinical decisions by supporting
human experts and broadening the investigation horizons [17]. Although the CDSS started in the
1970s, they faced several challenges regarding ethical, legal and explainability issues [18, 19, 20].
Nowadays, CDSs are linked to the patients’ medical information collection and storing systems
(e.g. electronic medical records (EMR)) and electronic entry systems of medical practitioner in-
structions for the treatment of patients (e.g. computerised provider order entry (CPOE)). More-
over, CDSs can be linked to wearable health technologies and biometric monitoring [21, 22] as
sources of medical data.

CDSs can be categorised into knowledge-based and non-knowledge-based systems. The
former is based on decision rules (IF-THEN), and the latter is based on data-based modelling
algorithms [23].
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Based on their functions, CDSs can be classified into several categories. Diagnostic decision
support systems (DDSs), which are used for clinical diagnosis, is an important category of CDSs.
DDSs are developed to provide a computerised consultation in the form of diagnosis or prediction,
based on analysed medical data [24]. As indicated by Berner et al. [25] and Segal et al. [26],
such systems face different challenges restraining their influence on the healthcare field. These
challenges include, among others, negative perceptions of physicians and their biases against
computational methods reliability, non-reliable accuracy, and poor system integration [25, 26,
16]. These challenges clearly indicate that there are still important issues to be solved before DDSS
can become more influential in the field of medicine and healthcare (cf. objective section).

1.3 Decision Support Components

Two significant elements are necessary to develop a diagnostic decision support system: medical
data acquisition and analytics.

Figure 1.5: Solution components block from Figure 1.2a

1.3.1 Medical Data Acquisition

Figure 1.6: Solution material from Figure 1.2a

Medical data are collected either by conven-
tional bedside medical devices at hospitals or
clinics by specialised medical staff or, in a
growing amount of cases, by wearable sensors
attached to the body of the monitored patient.

1.3.1.1 Conventional Medical Devices

Conventional advanced bedside medical de-
vices at hospitals and clinics are still consid-
ered the gold standard monitoring and mea-
suring instruments because of their high accuracy and stability. However, these devices often
suffer from being cumbersome and they need to be operated by trained specialised medical staff.
Moreover, these devices are expensive and cannot be made accessible to all hospitalised patients.
Therefore, they are often used for intermittent measurements of the different vital signs, except
for critically-ill patients who are monitored continuously in intensive care units (ICU) using
such devices. At ICUs, different vital signs of the admitted patients are continuously monitored
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by bedside ICU equipment. However, the stored data in electronic medical records (EMR) are
approved/validated typically at a much lower frequency (e.g. once every 1-2 hours) by nurses.

1.3.1.2 Wearable Medical Devices

These days we witness revolutionary improvements in sensor and communication technologies,
leading to the development of more reliable wearable medical devices. It is envisioned that the
continuous data stream generated by these wearable devices, in combination with artificial intel-
ligence (AI), can revolutionise patient-care and health management in the future. In recent years,
wearable technology has become more advanced in terms of design, ease of sensing, accuracy,
power efficiency, and parameters to be monitored [27, 28]. This advancement makes the inte-
gration of wearable technology into healthcare applications a potential game-changer for health
monitoring [29, 30, 31]. One significant advantage of using wearable technology in health mon-
itoring is the continuous/high-rate monitoring of subjects. This continuous monitoring can
contribute to preventive medicine by predicting several health-related risks at an early stage. In
addition, it can provide a more complete picture of the health status of the subjects to the medical
staff. The amount and the importance of measurable parameters using wearable technology are
considered significant. In their study, King et al. [32] listed a set of these parameters/variables
and the possible extracted features from them. They categorised them into three groups, namely
physical activity variables, biometric variables, and environmental variables. The first comprises,
among others, motions (e.g. walking, jogging running, falling, and step-count), postures (e.g.
lying, sitting, and standing), sleeping duration, REM sleeping, and sleep latency by tracking
heart rhythm with physical activity. The biometric group comprises variables, such as, heart
rate, respiration rate, blood oxygen level, electrocardiogram (ECG), heart rate variability, blood
pressure, glucose level, skin temperature, electroencephalogram (EEG) and electromyography
(EMG). The third group comprises environmental variables such as environment temperature,
humidity, and CO2 concentration [32].

1.3.2 Analytics

The other key element that is necessary for a clinical decision support system is analytics. Several
analytical methods are used to analyse medical data such as data-based mechanistic (DBM) mod-
elling, statistical analysis and, in recent years, artificial intelligence (AI) and machine learning.
Each of these analytical methods has its advantages. For instance, DBM modelling [33] concerns
the mechanistic interpretation of the analysed systems, which can help to better understand the
system. On the other hand, DBM handles a limited number of variables and data points for
model development. AI approaches, especially machine learning, have shown a great potential
in contributing to medical diagnosis and decision-making, because of their advanced computa-
tional capabilities for solving problems [34, 35, 36, 37, 38, 39]. In essence, both, AI and medicine,
can be reduced to decision-making based on reasoning and inference. Hence, AI can work as a
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complementary cognitive aid contributing to the decision-making process in medicine. In the
review article of Yu et al. [40], a list of potential AI applications in medicine is discussed, includ-
ing clinical practice applications (i.e. patient monitoring and patient risk stratification) [39, 40].
It is worth mentioning that AI and machine learning are not equivalent, as machine learning
is only one branch amongst several emerging from AI. One of the first applications of AI in
medicine was developing clinical decision support systems [41, 42]. The rule-based approach, a
knowledge-based approach, is an AI branch that was used in the early days of clinical decision
support systems [43, 44]. Rule-based approaches were utilised in e.g. ECG interpretation, dis-
ease diagnosis, treatment recommendation, and several other clinical applications. For instance,
rule-based diagnosis follows the ’If (symptoms) Then (specific disease)’ procedures. However,
rule-based approaches require frequent human intervention as they incorporate expert judge-
ment in addition to the limited flexibility of the decision rules to adapt to the newly obtained
knowledge [45]. Another drawback of the rule-based approach is that its outcome is limited to
human expert knowledge and hence, it cannot add any new clinical insight. More specifically,
these reasoning rules translate the already existing medical knowledge into logical statements to
assure a consistent decision. With the rise of applying AI in healthcare and in parallel with the
evolution of machine learning methods, machine learning took the lead in AI applications in
healthcare [46]. This was especially fuelled by the fact that machine learning methods have the
power to handle complex medical problems and to identify data patterns which are too complex
to be recognised/extracted by human observers [46, 47, 48]. These medical problems can be an-
notated with predefined labels, events, or real values such as diagnostic problems since specific
outcomes are associated with obtained observations. This kind of problem requires ’supervised
learning’ (i.e. classification, regression) by which correct outcomes are assigned to new obser-
vations based on the learned model. On the other hand, some medical problems are without a
defined outcome, such as partitioning patients of specific disease into groups based on similarity.
This kind of problems requires unsupervised learning (e.g. clustering). Therefore, both super-
vised and unsupervised machine learning methods, enable discovering unrecognised patterns in
medical data [47].

1.3.3 Data and Model-based Challenges

Many challenges result from the nature of modelling methods (i.e. machine learning algorithms)
and medical data properties. In this section, we will elaborate more on these challenges. Im-
portant challenges resulting from the properties of medical data comprise class-imbalance and
non-uniform data distribution of the events/classes in the input space, ambiguity (confusion),
and continuously increasing data-size. Other important challenges result from machine learn-
ing algorithms such as model personalisation, black-box nature, online modelling and streaming
analytics.



10 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.7: Data and model-based challenges block from Figure 1.2b

1.3.3.1 Class-imbalance and Non-uniform Data Distribution

Class-imbalance occurs when data points (observations) from some events are outnumbered by
others. In the case of extreme imbalance, the challenge of rare events occurs (e.g. the detection of
falls among several daily routine activities). Non-uniform distribution occurs when data-points
of a specific class are scattered around the input space of the input features. Therefore, the model
can consider some of these points as outliers. As shown in Figure 1.8, a binary classification two-
dimensional problem with class-imbalance ratio of 1/9 is depicted. Moreover, few data points
reflect non-uniform distribution by being scattered over the input space away from the centre of
the class because of intra-class variance.

1.3.3.2 Ambiguity (Confusion)

Ambiguity or confusion from data analysis perspective occurs when an event is not distinguish-
able from another one. In the input space, where all data points are allocated representing the
tuples of input variables’ values, ambiguity could result from the overlap between the different
classes or due to a nonlinear decision boundary between two closely spaced classes. The decision
boundary is the boundary that partition the input space into two or more regions of the different
classes. For instance, in human activity recognition, walking upstairs might be confused with
walking downstairs depending on the accelerometer location. As shown in Figure 1.9, the test
point (x) is located close to the two classes and the pattern is nonlinear which is confusing to the
decision making process.
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Figure 1.8: Two-dimensional binary classification problemwith class imbalance ratio 1/9 between
classes 1 and 2 respectively.

Figure 1.9: Two dimensional binary classification problem with one test point (x) experiencing
ambiguity. Adapted from [51].

1.3.3.3 Continuously Increasing Data-size

The large and continuously increasing data-size is another challenge that faces the usage of ma-
chine learning. The continuously increasing medical data may reflect different dynamics and
behaviours of the monitored variables for the same subject or different subjects. Hence, contin-
uous streaming can change the distribution of the data over the input space.
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1.3.3.4 Model Personalisation

Personalised medicine is that approach in which patients are stratified based on their disease sub-
type, risk, prognosis, or treatment response using specialised diagnostic tests [52]. The concept
behind this approach is to make medical decisions based on individual patient data instead of av-
erages over a whole population [53]. From machine learning perspective, this approach requires
personalised models that automatically take into account the individuality of each patient. Some
machine learning approaches learn personalised models based on personal data only. Such an
approach requires a sufficient amount of labelled data from that person which can be challeng-
ing. Moreover, considering only the personal data may lead to forgetting the previously obtained
knowledge from other subjects’ data. On the other hand, machine learning algorithms aim to
generalise models which is a result of global learning via inductive inference [49]. By global
learning, we refer to training the model using all available training data to identify a pattern that
can be generalised over the training data in addition to the unseen data to be received. This aim
of generalisation does not consider the local specificity of the different regions in the input space.
Therefore, generalisation may lead to missing rare and minor events in terms of tolerance and
robustness. In other words, to generalise a global model, it is required to tolerate some error
to avoid overfitting and to obtain a robust model against outliers. From model personalisation
perspective, global models disregard the individuality of the different data sources’ profiles (e.g.
subjects). Hence, there is a need for a machine learning model that can learn from other persons’
data and the personal data in a balanced way that considers the individuality of each person’s data.

1.3.3.5 Black-box Nature

Machine learning algorithms are mostly black-box models. Black-box models are data-based
models that estimate input/output relationships without taking into account the internal under-
lyingmechanisms of the system. Black-boxmodels can be contrastedwithwhite-boxmodels that
are developed based on the system’s knowledge and thus have physical meaning. For instance,
black-box classifiers are developed by defining and optimising the function that associates input
features to output labels, regardless of the complexity, explainability and interpretability of that
function (model).

Briefly, model explainability is about how the model works, and model interpretability is
a domain-specific notion. Therefore, the black-box nature compromises model interpretability
and explainability. This compromise is not commendable in medicine, as obtaining clinical in-
terpretation and insight into human health problems is crucial, especially for decision-making
situations.

1.3.3.6 Online Modelling and Streaming Analytics

Another challenge of machine learning algorithms is related to the need for real-time model
adaption. For several health care applications, the stream of collected data is continuously increas-
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ing in time which requires streaming analytics. In streaming analytics, an enormous amount of
data in-motion flows over networks or clouds and is continuously collected, transmitted, analysed,
and the resulting analysis outcome is provided in real-time. Most machine learning algorithms
are basically global offline algorithms. In other words, they are trained by all available training
data (global) and then applied to new unseen data without adapting to newly measured informa-
tion (offline). Therefore, streaming new data points cannot be considered in the training process
unless the model is retrained or adapted to the new data points. Both options are expensive and
therefore enough new data points are required for an efficient update of the model. The other
option is to continuously add new data points to the training set and to develop a model that is
continuously updating (online) with a minimal computational cost.

1.3.4 Machine Learning in Medicine

The aforementioned challenges require applying adequate and reliable machine learning algo-
rithms. These algorithms need to be simple to implement, interpretable and efficient in terms
of performance and computation. An efficient performance considers a reliable error perfor-
mance (e.g. accurate predictions). For the higher mentioned challenges of class-imbalance and
non-uniform data distribution, ambiguity, continuously increasing data-size, model personali-
sation and streaming analytics, localised learning approaches of machine learning [51, 54] can be
an adequate analytic methodology, as will be shown later in this chapter. For the challenge of
the black-box nature (lack of interpretability and explainability), a feature engineering approach
in combination with a linear hard margin approach to support vector machines can be a useful
methodology. This approach can provide (partial) interpretability besides a high performance.
Both machine learning approaches are elaborated in detail within the upcoming chapters, but
meanwhile a brief introduction to them is presented in this chapter.

1.3.4.1 Localised Learning

Figure 1.10: Solutionmethods block from Figure
1.2a

As mentioned previously, machine learning
is used extensively and efficiently in several
applications, including medicine. Many ma-
chine learning approaches and algorithms are
used in medicine, from simple decision trees
up to advanced deep neural networks. The
majority of well-known moderate to pow-
erful supervised machine learning algorithms
are based on inductive inference which leads
to global learning [49, 55, 56, 57]. This ap-
proach establishes a generalised hypothesis (model) from specific examples (training data) to as-
sign a value/label to new data points based on the learned models. In other words, inductive
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inference aims to define a general theory from the observed examples (specific-to-general). This
inference has the advantage of providing general patterns that control the behaviour of the ob-
served examples [49, 57, 58]. However, the local properties of the observed examples are prone to
be compromised to obtain generalisation. Based on Bottou et al. [51], in case of uneven distribu-
tion of patterns in the input space, a proper local adjustment of the model capacity is needed to
enhance the performance. In other words, if the feature space is not providing the possibility to
find a solution considering both local and global properties of the observations, then the model
may tolerate minority data points as an error. In Figure 1.11, a two-dimensional nonlinear binary
classification problem is depicted. In Figure 1.11a, the global classifier of LS-SVM identifies the
pattern of class 1 within the discontinuous blue region, although the original pattern is supposed
to be continuous. This discontinuity results from the class imbalance with ratio 1/9 between
classes 1 and 2 and non-uniform data distribution . We have chosen a point with approximate
coordinates (0.44, 0.66) as a test point that is misclassified with the global model, as shown in
Figure 1.11a This point is chosen to be tested by a localised model (i.e. kNN-LS-SVM) to show
the influence of the localised algorithm on enhancing the classification performance. As shown
in Figure 1.11b, a close-up to the test point and its vicinity, the test point is classified correctly as
class 1 by being included in the blue pattern with the other class 1 instances.

In addition to the local learning challenge, another challenge that global learning algorithms
face, especially offline models, is the analysis of both time-series data and continuously growing
data. In the case of time-series data, online modelling is required to provide a real-time analysis
(e.g. time-series prediction) [59]. For instance, a real-time time-series predictive model cannot
be implemented without considering the new measured values or observations. Referring to the
medical domain, human vital-signs are dynamic as they are continuously changing for several
factors (e.g. activity, health status), which requires a real-time update of the model. For contin-
uously growing data, as mentioned in sections 1.3.1.3 and 1.3.1.6, data distribution can be affected
in the input space, which requires updating the model as well. To develop a global model that
is capable of predicting the outcome of new observations efficiently, this model has to be trained
with an enormous amount of data that is assumed to comprise all possible dynamics of the system,
which is difficult and expensive. On the other hand, conventional online modelling approaches
are time-dependent and prone to forget old observations in favour of most recent observations.
These analytical requirements regarding time-series and continuously growing data also apply
when using wearable technology for medical monitoring and real-time time-series prediction.
Therefore, we propose localised learning algorithms for wearable-based applications.

The analytical challenges of locality, time-series data, and continuously growing data require
a real-time modelling approach to handle them. Such an approach is challenging in case of global
learning as real-time modelling requires either retraining the model or applying model adaption
techniques (e.g. incremental, active, and transfer learning) [60, 61, 62, 63, 64]. These approaches
face difficulties that may cause lack of efficiency for our medical applications. These difficulties
include the catastrophic forgetting that may occur by forgetting the obtained knowledge from



1.3. DECISION SUPPORT COMPONENTS 15

(a)

(b)

Figure 1.11: Two-dimensional nonlinear binary classification problem. a) The classification out-
come of the global classifier of LS-SVM, b) The classification outcome of the localised classifier
of kNN-LS-SVM.
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previously collected data [65]. Another difficulty is applying gradual adaption with new data
points, avoiding complete retraining of the model. In addition, limiting the number of training
instances to control the computational complexity [65, 66]. These difficulties are still a matter of
current research.

Another approach of reasoning that can handle the challenges of locality, time-series data,
and continuously growing data is transductive inference. This approach uses the new observa-
tion(s) to build a dedicated model that is adapted to the local properties of new observations [56].
However, the transductive inference may experience the property of "laziness" as each model
is only built after receiving the observations which is the case for k-nearest neighbours (kNN).
KNN algorithm is a simple machine learning method that can be used for both classification
and regression. The algorithm briefly assigns a value or label to the data points based on the
majority vote of nearest k neighbours. As shown in Figure 1.12, for data point a, it is assigned
the label of class 2 based on its nearest neighbours’ labels. On the other hand, local learning
models such as kNN as an example of transductive inference, are less suited to deal with nonlin-
ear patterns that result from overlapping classes as shown in Figure 1.12 for point b. Therefore,
a more efficient transductive inference approaches can be achieved by developing hybrid algo-
rithms. These algorithms integrate a local learning algorithm (e.g. k-nearest neighbours) into a
powerful global learning algorithm (e.g. support vector machines) resulting in localised learning
algorithm [51, 54].

Figure 1.12: Two-dimensional nonlinear binary classification problem with two new data points
a and b.

Local algorithms can provide the advantages of adapting the model to the local properties.
On the other hand, the global algorithm shall provide the capability to handle complex and
nonlinear patterns as shown in Figure 1.11. Hence, considering the local properties could poten-
tially contribute to solving the challenges of ambiguity, class-imbalance, and data nonuniform
distribution [51]. Moreover, the challenge of model personalisation can be handled by training
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the model with the most similar observations from either the same subject or a similar subject
or a similar sub-population of patients. Therefore, considering the locality can provide model
personalisation, which reflects the individuality of each patient in the medical application. Fur-
thermore, the challenges of streaming analytics and online modelling in medical applications can
be handled by computationally efficient hybrid transductive algorithms (e.g. kNN-LS-SVM).
Moreover, time performance is also crucial to be considered to address both streaming analytics
and online modelling challenges. Optimising the time performance can be achieved by min-
imising the size of the local training set, such that the error performance is acceptable, as the
computational complexity of the global learning algorithm is a function of the training set size.
For instance, as shown in Figure 1.11b, the required number to train a model for a new data point
can be only 7 data points.

Based on these elements, we propose to select transductive inference approaches for a subset
of the aforementioned challenges. These challenges are namely class-imbalance and nonuniform
data distribution, ambiguity, increasing data-size, model personalisation, streaming analytics and
online modelling (Section 1.3.3).

1.3.4.2 Model Interpretability and Explainability

In the previous section, we referred to all challenges identified in Section 1.3.3 except for the
black-box nature (1.3.3.5). Therefore, the final challenge that we want to address here is the lack
of interpretability and explainability of the developed models as a result of the black-box nature.
Recently, this topic has received more and more attention. In their article, Gunning et al. [67]
are elaborating on the concept of explainable artificial intelligence (XAI) and how to optimise the
trade-off between explainability and the error performance as shown in Figure 1.13. For instance,
decision trees are considered one of the most explainable methods, but with less optimal accuracy.
On the other hand, deep learning shows excellent error performance but is least explainable. The
importance of interpretability and explainability is strongly linked to the application domain. In
medicine and healthcare, medical staff must understand the reasoning behind data-based models
in order to be confident while using them. Both interpretability and explainability can be full or
partial. For example, partial explainability may address a specific portion of an input signal that
impacts the predicted outcome. On the other hand, full explainability may indicate which exact
attribute(s) of this portion has this influence. Similarly, partial interpretability may indicate the
order of the model and weights of each input variable. However, full interpretability reflects the
meaning of the model’s order and weights within the domain context.

Interpretability of models results from the characteristics of the machine learning method
itself. For instance, as shown in Figure 1.14, a linear hard margin support vector machine (SVM)
model has the property of providing a linear model that maximises the margin between the dif-
ferent classes within a feature space that is limited to the provided input variables [50]. Therefore,
for a performant linear hard margin SVM model, the input features are supposed to provide lin-
early separable data points in the original input space where the margin between the different
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Figure 1.13: Performance vs explainability of different learning algorithms (e.g. and-or-
graphs (AOGs), support vector machines (SVMs), statistical relation learning (SRL), hierarchi-
cal Bayesian networks (HBNs), conditional random fields (CRFs), and Markov logic networks
(MLNs))(from [67]).

classes is maximised. By further investigation, we can identify the range of values for each feature
that reflects the margin between different classes. In other words, we can determine at which
value(s) within the range of values for each feature the label flips from one class to another. More-
over, calculating the distances between the decision boundary and different data points reflect the
confidence about the decision and the status of what these data points represent. For instance,
in mortality prediction problems for hospitalised patients, the decision boundary distinguishes
between mortality and survival subjects. Hence, the distance of a data point (subject’s attributes)
from the decision boundary indicates the subject’s status and the severity of his/her health status.

Moreover, model explainability can be achieved by either forward or backward methods. A
forward way can be achieved by engineering explainable features and integrating them into the
machine learning algorithm [68]. Engineering informative andmeaningful features (e.g. average
heart rate per hour) can explain to some extent the basis on which the model decision is made. On
the other hand, the backward way can be achieved by using techniques that backtrack the best
performant model and associate that performance to the most influencing features. A successful
example of such a method is the technique of heatmapping [69] and its application to deep neural
networks.
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Figure 1.14: Schematic representation of a two dimensional dataset consisting of two linearly
separable classes. The dotted lines indicate the boundaries where the margin is maximised.

1.4 Objective

After decomposing the technical uncertainty (1.1.2) problem to its essential elements (i.e. com-
plexity, probability, and ambiguity) 1.3, we can link it to the aforementioned challenges. These
challenges are class-imbalance, non-uniform data distribution, ambiguity, increasing data-size,
model personalisation, black-box nature, streaming analytics and online modelling.

Starting with probability, which reflects the resulting risk from the indeterminacy of future
outcomes, its essential challenge is related to time-based prediction accuracy. This accuracy is
directly influenced by the challenges of class-imbalance and non-uniform data distribution and
ambiguity.

For ambiguity, which reflects the indecisiveness resulting from imprecise predictions, lack
of evidence and conflicting information, its essential challenges are linked to relation-based pre-
diction accuracy, data sufficiency and engineered features’ efficiency. The relation-based pre-
diction (e.g. classification) is a time-independent prediction and its accuracy is influenced by
class-imbalance and non-uniform data distribution and ambiguity. Data sufficiency, which is
required for strong evidence, is directly linked to the amount of data and its challenges increasing
data-size and streaming analytics and online modelling. Moreover, sufficient data shall include
several sources of data (e.g. multiple subjects for human health applications) which imposes the
challenge of model personalisation. Engineered features’ efficiency is needed to synthesise the
different information pieces and resolve the conflict between them, which is linked to model
explainability (black-box nature).

For complexity, which results from the multiplicity of influential factors and variables or
the lack of interpretability, its essential challenges are related to the difficulty of considering
many influential factors and model interpretability. Therefore, we proposed machine learning
algorithms (e.g. SVM’s) to handle the computational problem as they can handle a large number
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of input variables. On the other hand, model interpretability is linked to the challenge of black-
box nature.

Motivated by the problem of technical uncertainty in medicine and healthcare, we aim in
this thesis at investigating the possibility to limit and reduce the technical uncertainty of apply-
ing machine learning approaches in human health applications. Reducing and restricting this
uncertainty can be achieved by developing machine learning algorithms that can enhance the
reliability of the decision-making process in human health applications.

Therefore, the main objective of this thesis is to develop performant machine learning algo-
rithms and approaches that contribute to handling the aforementioned challenges in the context
of human health applications. Such algorithms can be the core of reliable diagnostic decision sup-
port tools that can reduce and limit the technical uncertainty in the medical domain. In Section
1.5, we illustrate the human health application cases that will be investigated in this thesis.

1.4.1 Sub-objectives

In the light of the main objective of this thesis, we specify four sub-objectives that are addressing
more specific machine learning solutions to the main aforementioned challenges. More specifi-
cally, we aim at:

1. Developing machine learning algorithms for tackling the challenges of ambiguity, class-
imbalance, non-uniform data distribution, and continuously increasing data-size (Chap-
ters 2, 3, and 4).

2. Proposing a machine learning algorithm to the challenges of streaming analytics and on-
line modelling and their requirements (Chapters 2, 3, and 4).

3. Proposing a machine learning algorithm to the challenge of model personalisation (Chap-
ters 3, and 4).

4. Providing an approach that satisfies both partial interpretability and explainability for
black-box modelling (Chapters 5, and 6).

1.4.2 Research Questions

After defining the main objective and sub-objectives, two research questions are raised regarding
the aforementioned challenges. These questions are stated below:

• Question №1

Is the proposed localised learning algorithm of kNN-LS-SVMable to handle class-imbalance,
non-uniform data distribution, ambiguity, continuously increasing data, online mod-
elling, streaming analytics and model personalisation?
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• Question №2

To what extent can a feature engineering procedure integrated with a linear hard margin
approach of SVMprovide interpretability and explainability while providing an acceptable
error performance for prediction?

1.5 Human Health Applications

Figure 1.15: Applications block from Figure 1.2a

In this section, we list the set of human health applications investigated through the up-coming
chapters. They cover a spectrum of human health applications that goes from healthy subjects
over hospitalised patients at general wards to critically ill patients admitted to the ICU.

1. The first application (Chapter 2) focuses on human activity recognition (HAR) based on
daily life physical activities and postures monitored using wearable accelerometer sensors.
In this application we introduce kNN-LS-SVM algorithm in addition to investigating
the challenges related to class-imbalance and non-uniform data distribution, ambiguity,
increasing data-size in the context of HAR.

2. The second application (Chapter 3) focuses on human well-being and thermal sensation
and degree of comfort recognition using easily measurable variables by wearable sensors.
The main focus of this application is on developing personalised thermal comfort classifi-
cation models in the context of an automated climate control platform. This application
is based on wearable sensors for all vital signs considered in this study. Moreover this ap-
plication is investigating the challenges related to class-imbalance and nonuniform data
distribution, ambiguity, increasing data-size and model personalisation in the context of
thermal comfort prediction.

3. The third application (Chapter 5) concerns hospitalised patients and their continuously
monitored vital signs by wearable sensors to develop a high-rate (every minute) early
warning score (EWS) and predictive models by which the future vital sign values are
predicted. These hospitalised patients are admitted to general wards namely cardiology,
post-operative, and dialysis wards. All three applications are based on wearable sensors and
handle the challenges related to ambiguity, increasing data-size, model personalisation,
streaming analytics and online modelling.
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4. The fourth application (Chapter 6) concerns critically ill patients who are admitted to the
ICU for different hospitalisation reasons (e.g. cardiovascular, renal or pulmonary diseases).
This application focuses on themortality prediction of ICU patients based on gold standard
measurements at the ICU using standard ICU monitoring devices. The investigated data
in this application is discrete data with the rate of a single approvedmeasurement every one
to two hours. This application investigates the challenge of black-box nature and possible
model interpretability and explainability for ICU patients.

5. Finally, the fifth application (Chapter 7) is inspired by the recent situation of COVID-19
pandemic and the resulting under-capacity experienced at intensive care units. Therefore,
the developed predictive models and engineered features of the fourth application are ap-
plied to patients with a similar profile as COVID-19 patients (COVID-like patients) as a
basis for later applying to actual COVID-19 patients. The main objective of this applica-
tion is to predict the mortality and survival of COVID-like patients to support medical
decisions regarding the predicted outcome. This application investigates the challenge
of black-box nature and possible model interpretability and explainability for pulmonary
ICU patients.
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Chapter 2

A Localised Learning Approach Applied to
Human Activity Recognition1

Abstract

The recognition of human physical activities and postures based on sensor data has receivedmuch
research attention in several human health and biomedical engineering applications. In this study,
the challenges of class-imbalance and ambiguity (or confusion) are discussed that frequently arise
in data from human activity recognition (HAR) systems. In order to reduce the influence of im-
balance and ambiguity in HAR problems, a novel hybrid localised learning approach of K-nearest
neighbours least-squares support vector machine (KNN-LS-SVM) is proposed. The classifier is
applied to different synthetic and real-world datasets where imbalance and ambiguity are present.
In this study, it is novel to apply a hybrid localised learning algorithm to theHAR problem. When
compared to different global and local approaches, higher classification performances could be
obtained by using the proposed localised learning approach. Furthermore, the computational
effort could be reduced in an online learning mode.

2.1 Introduction

Recognising human physical activities automatically via soft computing techniques is at the core
of human activity recognition (HAR) studies. Human physical activities can be recognised by
using computer vision techniques through the analysis of images and videos or by exploring
sensory data that are obtained by wearable or portable sensors [1]. The importance of HAR
systems is illustrated by the various amount of applications where they are used, e.g. medical
monitoring [2], healthcare [3], military training, and sports [4]. Moreover, the use of HAR
algorithms is enhanced by rapid advancements in sensor technology that enable tomonitor people
in their daily environments, e.g. by using smart-phones [5] or wearables [6]. In this study, we

1https://doi.org/10.1109/MIS.2020.2964738
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will focus on the problem of activity classification based on accelerometer data acquired through
an inertial sensor-based HAR system.

For most of the real-world problems (e.g., HAR), data is not evenly distributed in the input
space [7] which is a challenge to global learning algorithms in general (e.g., SVM, conventional
and deep neural networks). In particular, we will discuss the problems of class-imbalance and
ambiguity that frequently arise in data obtained from HAR systems and how they can influence
the performance of a classifier. Class-imbalance occurs when instances from some activities are
outnumbered by others. In case of extreme imbalance, the problem of rare events occurs (e.g.
the detection of falls among several daily activities [8]). Ambiguity or confusion occurs when
an activity is not clearly distinguishable from another one (e.g. eating might be confused with
brushing teeth due to arm motion [9]). From input space perspective, ambiguity (confusion)
could be a result of the overlap between the different classes or due to a highly nonlinear decision
boundary between two closely spaced classes.

In order to reduce the influence of these problems (i.e. class-imbalance and ambiguity) on
HAR systems, we introduce a localised learning approach. This approach is leading to a novel hy-
brid algorithm which is obtained from integrating the K-nearest neighbours (KNN) algorithm
into a least-squares support vector machine (LS-SVM) algorithm, namely KNN-LS-SVM. In
this approach, a classification model is built for each test example using only the training ex-
amples located in the vicinity of the test example. This novel localised approach of an LS-SVM
algorithm is then applied to HAR problems. Which is the first time to apply a hybrid localised
learning algorithm to the HAR problem.

In addition to handling the problems of class imbalance and ambiguity, we will show that
the proposed kNN-LS-SVM has other advantages as well. These advantages include simplicity
of implementation that can lead to a computational advantage compared to other classifiers (e.g.,
deep learning neural networks). Moreover it can deal with non-linearity due to the use of the
LS-SVM method as opposed to a standard kNN. Our results indicate that the KNN-LS-SVM
can be a suitable approach for the HAR application especially when applied to online problems
and streaming analytics for which the data size is continuously increasing.

This article is structured as follows. In Section 2, an overview of related work on classification
techniques for HAR systems and local learning is given. Section 3, gives a gentle introduction
to LS-SVM and KNN-LS-SVM. Performances of LS-SVM and KNN-LS-SVM are compared
in Section 4 using synthetic datasets. In Section 5, KNN-LS-SVM, as well as various global and
local classifiers, are applied to four real-world datasets and their performances are compared to
those of a benchmark study of a deep-learning approach. The obtained results are discussed in
section 6. Finally, a conclusion is presented in Sections 7.
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2.2 Related Work

In this section, the state-of-the-art of the HAR problem and localised learning algorithms is
introduced. Moreover, the benchmark study is briefly introduced.

2.2.1 State-of-the-art

A variety of classification algorithms have been applied to the problem of HAR, such as decision
trees [10, 11], Naïve Bayes [10], Bayesian Networks [4], KNN [10, 11], convolutional neural net-
works [12], support vector machines (SVMs) [13, 3], and hidden Markov models (HMMs) [14].
Furthermore, deep learning approaches have recently gained much research attention [15, 16] and
have been applied for HAR using low-power wearable devices [17, 18]. Moreover, transfer learn-
ing applied to deep neural networks for HAR application has recently received some attention
in order to transfer models between different subjects. This approach is presented by Renjie et
al. in their study [19] by applying the maximum mean discrepancy (MMD) algorithm to a two-
layer convolutional neural network. However uncontrolled environment and online application
of such an approach is still a challenge. Developing HAR models to be compatible with wearable
systems is an important approach that is introduced by Cheng et al. in their work [20] namely In-
noHAR model. This model is developed by concatenating convolution kernels of different scales
and splicing with max-pooling layers. An important challenge that they are willing to tackle in
their future work is class-imbalance in real-life human activities. For the purpose of real-time
online data stream processing of HAR, the recent study by Amin et al. [21] developed a HAR
model based on visual sensory data. The developed model is an optimised convolutional neural
network (CNN) based model in which, deep features are extracted via a pre-trained CNN. The
extracted features are fed to a deep autoencoder (DAE) to learn the temporal behaviour of the
signal and finally, the classification is done via a quadratic SVM.

From the literature review, there are some challenges that need to be handled. These chal-
lenges are class-imbalance [20], and applicability to real-world online modelling [19]. These
challenges are motivating us to introduce a machine learning approach that can provide a high
error performance regardless of the balance degree between the available instances of different
activities. In addition, a low computational and temporal cost are desired in order to be suitable
for its application in an online mode. Ultimately, we aim at introducing an approach that is com-
patible with streaming data analysis in which the modelling complexity is not affected by the
continuously increasing size of the dataset.

Localised learning algorithms have been limited studied for HAR problems. A general frame-
work for local learning was introduced in [22], where it was demonstrated that a localised ap-
proach might be very efficient to deal with the problems of imbalance and ambiguity. Among
themost common local learning approaches are KNN algorithms which have been studied inten-
sively in the context of HAR problems, e.g. [6, 23]. Zhang et al. [24] introduced a KNN-SVM
algorithm that combined a KNN with an SVM for a visual object recognition problem. In [25]
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a more integrated framework, called localised support vector machine (LSVM), was introduced,
which incorporates the neighbourhood information directly into SVM learning. The use of such
localised approaches of SVMs, however, has not yet been studied in the context of HAR problems,
nor its influence on the classification performance when imbalance or ambiguity is present.

The design of the localised hybrid algorithm KNN-LS-SVM aims to reduce the influence of
imbalance and ambiguity in HAR problems. The choice of an LS-SVM classifier to be localised
rather than a standard SVM is inspired by its computational advantage of solving a set of linear
equations instead of solving the quadratic programming problem of standard SVM [26]. More-
over, an LS-SVM is considered as a very efficient global machine learning technique in many
fields [27]. Based on synthetic and real-world data, the difference in performance between a
KNN-LS-SVM and its alternative LS-SVM is illustrated for different degrees of class-imbalance
and ambiguity.

2.2.2 Benchmark Study

In their study [18], Ravi et al. developed their model based on extracting shallow features in
addition to deep learnt features via a CNN for HAR. The raw data from 3-axes accelerometer
are segmented into time-windows with specific widths. From the extracted segments, deep learnt
features and shallow features are extracted in parallel. Deep learnt features are extracted from the
spectrogram of the segmented signal via the temporal convolutional layer. All extracted features,
deep learnt and shallow features, are combined and fed to a fully connected layer whose output
is propagated to the soft-max layer to be classified. The proposed approach in [18] outperformed
other deep learning and ensemble approaches (MLP, J48 and logistic regression) [17, 28, 29] when
applied to a set of published datasets [30, 31, 32, 33]. Because of its high performance and recency,
the approach of [18] will be the benchmark of our study.

2.3 Local learning of SVMs

In this section, we start by reviewing the main concepts behind SVMs and localised approaches
for SVMs. We will proceed by introducing our hybrid KNN-LS-SVM algorithm.

2.3.1 Support vector machines

SVMs are originally presented as binary classifiers, that assign each data instance x ∈ Rd to one of
two classes described by a class label y ∈ {−1, 1} based on the decision boundary that maximises
the margin 2/||w||2 between the two classes as shown in Figure 1 [34]. Generally, a feature map
ϕ : Rd 7→ Rp is used to transform the geometric boundary between the two classes to a linear
boundary L : wTϕ(x) + b = 0 in feature space, for some weight vector w ∈ Rp×1 and b ∈ R.
The class of each instance can then be found by y = sgn (w⊤ϕ(x) + b), where sgn refers to the
sign function.
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Figure 2.1: Schematic representation of a two dimensional dataset consisting of two linearly
separable classes. The dotted lines indicate the boundaries where the margin is maximised.

The estimation of the boundaryL is performed based on a set of training examples xi (1 ≤ i ≤
N ) with corresponding class labels yi ∈ {−1, 1}. An optimal boundary is found by maximising
the margin that is defined as the smallest distances between L and any of the training instances.
In particular, one is interested in constants w and b that minimise a loss-function:

min
w, b; ξ

1

2
w⊤w+ C

N∑
i=1

ξi, (2.0)

and are subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N.

The constant C in (2.0) denotes the penalty term that is used to penalise missclassification through
the slack variables ξi in the opimisation process.

The so-called kernel-trick avoids the explicit introduction of a feature map ϕ and implicitly
allows to use feature spaces of infinite dimensionality. A commonly used kernel is given by the
Gaussian kernel:

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2
0

)
,

where σ0 denotes the kernel bandwidth. Both σ0 and C can be optimised as hyper-parameters in
a cross-validation experiment.

LS-SVMs are obtained by using a least-squares error loss function [26]:

min
w, b; e

1

2
w⊤w+

1

2
γ

N∑
i=1

ei
2, (2.1)
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such that

yi(w
⊤ϕ(xi) + b) = 1− ei, i = 1, 2, ..., N.

This optimisation procedure introduces errors ei such that 1 − ei is proportional to the signed
distance of xi from the decision boundary. In fact, the non-negative slack variable constraint is
removed and the solution of the optimisation problem can be obtained by a set of linear equations,
reducing computational effort [26].

2.3.2 localised LS-SVMs and KNN-LS-SVMs

In many HAR problems data are not evenly distributed in the input space. The presence of
underrepresented data and severe class distribution skews affects the performance of learning
algorithms that underly the HAR system [35]. Furthermore, the quality of a classifier further
decreases when patterns are ambiguous, i.e., when they are not clearly belonging to one class or
the other (i.e. ambiguity). Local learning approaches try to overcome such problems by building
models that fit the data in the local neighbourhood around a test example and by locally adjusting
to the properties of the data [22].

A well-known example of a local learning method is given by the KNN algorithm [36].
While nearest neighbours classifiers are very natural local learning methods, they suffer from
the problem of high variance in the case of limited sampling. The use of a localised SVM can
overcome such disadvantage as they often perform better than other classification methods in the
neighbourhood consisting of a small number of examples (k << N ) [24].

Furthermore, the complexity of global SVMs rapidly grows as the size of training instances
increases. Besides, determining the right hyperparameters (kernel width and penalty term) of
these models in a cross-validation experiment is computationally expensive. Local SVMs attempt
to overcome these disadvantages by building small SVMmodels based on data in the local neigh-
bourhood around a test example. This computational advantage is of particular importance in
an online learning mode where one is interested to cheaply update the HAR model with the
additional knowledge of a new data point. When using a global model, the model has to be
recomputed from scratch, while for a local model only the training instances in the vicinity of
the test examples matter.

While global SVMs consider the same weight for all training instances in the optimisation
process (2.1), local learning approaches allow that the training samples near a test point are more
influential than others. localised approaches of SVMs [25, 37] are based on weighting functions
λ(xs,xi) that express the similarity between the features vectors of the i-th data point xi and a
test instance xs. For an LS-SVM, this leads to the following cost function:

min
w, b; e

1

2
w⊤w +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i , (2.2)
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such that

yi(w
⊤ϕ(xi) + b) = 1− ei, i = 1, 2, ..., N.

Weighted least-squares support vector machines [43] use a similar approach, but here a different
weighting function can be used for any given test pointxs. In [37] the use of continuous similarity
functions were studied including the Gaussian similarity criterion given by:

λ(xs,xi) = exp

(
−||ϕ(xs)− ϕ(xi)||22

h2

)
,

where ||.||2 denotes the Euclidean norm and h denotes a bandwidth parameter to be tuned. In
this work we will study a binary valued similarity criterion:

λ(xs,xi) =

 1 if ||ϕ(xs)− ϕ(xi)||2 ≤ rs

0 otherwise,
(2.3)

where rs is the K-th smallest distance among {||ϕ(xs)− ϕ(xj)||; 1 ≤ j ≤ N} which has to be
tuned as a hyperparameter. This formulation leads to the hybrid KNN-LS-SVM method that
we will apply on HAR problems. In particular a classification model is built for each test example
using only the training examples located in the vicinity of the test example [39]. In contrast to the
localised LS-SVM proposed in [37], a KNN-LS-SVM has the additional advantage of sparseness.
Indeed, for an LS-SVM or the localised version that uses a continuous similarity function all
input data is required to construct the separating hyperplane [43]. This can be seen by solving
the optimisation problem (2.1). Using the method of the Lagrangian multipliers, we find:

L(w, b, e;α) =
1

2
‖w‖22 +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i −

N∑
i=1

αi(yi[w
⊤ϕ(xi) + b]− 1 + ei), (2.4)

where αi are the Lagrangian multipliers. The optimality conditions are found by setting the first
order partial derivatives to zero:

∂L

∂w
= 0 ⇒ w =

N∑
i=1

αiyiϕ(xi),

∂L

∂b
= 0 →

N∑
i=1

αiyi = 0,

∂L

∂e
= 0 ⇒ αi = γλ(xs,xi)ei,

∂L

∂α
= 0 ⇒ yi(w

⊤ϕ(xi)− b) = 1− ei, ∀1 ≤ i ≤ N.

From the third condition, it is clear that the support values αi are weighted by the similarity
function and are zero when λ(xs,xi) = 0. Thus, for a KNN-LS-SVM the sparseness charac-
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Figure 2.2: A flow chart illustrating the localised learning algorithm of KNN-LS-SVM.

teristic is returned to the LS-SVM. In an online learning mode, this sparseness will result in a
computational advantage compared to LS-SVM, as we will show in Section 2.5.
As shown in Figure 2.2, the algorithm of KNN-LS-SVM is implemented as follows:

1. Given a test example xs, compute distances to all training examples and pick the nearest
K neighbours;

2. If all K neighbours would have the same label, assign the same label to xs.

3. Else, train the LS-SVM model with the K nearest neighbours.

4. Use the resulting classifier to label xs.

The parameterK and the distance metric (e.g. Euclidean, Mahalanobis or Chebyshev) are addi-
tional hyperparameters next to the kernel width σ0 and the penalty term γ that are optimized in
a cross validation approach.

2.4 Simulation experiments

The objective in this section is to present the problems of class-imbalance and ambiguity, that
frequently arise in HAR problems, with controlled synthetic datasets. The generated synthetic
datasets are two dimensional in order to simplify and visualise the problems which is not possible
with high dimensional real-world datasets.

In this section, the performance of our KNN-LS-SVM method is compared with that of
a global LS-SVM using three synthetic datasets. Two challenges are presented where global
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classifiers perform suboptimally: class-imbalance and ambiguity (or confusion). This is the first
time to illustrate the problems of class-imbalance and ambiguitywith synthetic data in the context
of localised learning. Results are presented using the F1 score that is defined as the harmonic
average of precision and recall:

F1 = 2
precision · recall
precision+ recall

.

In a two-class setting, recall and precision are defined as follows:

1. Recall is the ratio of instances that are correctly classified as positive to all positive instances;

2. Precision is the ratio of the instances that are correctly classified as positive to all instances
classified as positive.

In case of multi-class setting, recall and precision are calculated based on one-vs-all approach
(one class is positive and all other classes are negative).

The training of a local learningmodel requires the training of a local model for each individual
test point. The selection of the hyperparameters of these local models is based on a cross-validation
experiment where the accuracy (i.e. the ratio of correctly classified instances) is maximised.
Accuracy-based model selection can handle the different distributions of the classes that can be
present in a local region [32, 31]. In contrast with the global learning algorithms where the F1-
score is recommended for hyperparameters selection in case of class-imbalance, accuracy provides
a balanced performance to the local learning algorithms as the majority/minority ratios changes
in the local scale.

2.4.1 Class-imbalance

Learning from imbalanced data is still a focus of intense research, treating the problem of skewed
class-distributions [40, 41]. It occurs when representatives of some classes appear much more
frequently which poses a difficulty for learning algorithms, as they will be biased towards the
majority group. In this section we study the use of a local learning method to deal with such
imbalance.

A synthetic dataset is constructed consisting of data generated from two planar Gaussian
distributions X+ and X−, that respectively represent a positive and a negative class, see Fig-
ure 2.3a. The distributions are centred at respectively m+ = ( 1

2
, 1
2
) and m− = (− 1

2
,− 1

2
),

with identical isotropic covariance matrices Σ+ = Σ− = 0.35I2, where I2 denotes the iden-
tity matrix in R2×2. Experiments were performed where a number of N = 400 instances
were simulated and the percentage p+ of instances in the positive class X+ varied in the range
p+ ∈ {50%, 25%, 12.5%, 5, 2.5%, 1.25%} with a number of instances {200, 100, 50, 20, 10, 5}
respectively. Both, an LS-SVM and a KNN-LS-SVM were trained with a Gaussian kernel. The
models depend on hyperparameters (kernel width, penalty term and number of neighbours), the
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value of which are estimated in a 10-fold cross-validation experiment, where 80% of the sim-
ulated instances were used for training and 20% for testing. Figure 2.4a shows the F1-scores
averaged over the folds as a function of the imbalance percentage.

(a) (b)

(c)

Figure 2.3: Two-dimensional datasets consisting of two classes with data generated fromGaussian
distributions X+ ∼ N(m+,Σ+) and X− ∼ N(m−,Σ−) with m+ = ( 1

2
, 1
2
), m− = (− 1

2
,− 1

2
)

and different covariance matrices: (a) Σ+ = Σ− = 0.35I2, (b) Σ+ = 2Σ− = 0.70I2 and (c)
Σ+ = 1

2
Σ− = 0.35I2.
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Clearly, the classifiers perform equally well when classes are balanced. However when there
is class-imbalance the localised KNN-LS-SVM outperforms the global LS-SVM. Furthermore,
the difference in performance tends to increase with an increasing degree of class-imbalance. At
the percentages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25%, the use of a KNN-LS-SVM results in
a mean increasing difference in F1-score of respectively 0.71%, 1.17%, 2.74%, 7.74%, 16.00%

and 19.68%. A statistical comparison of the F1 scores using a paired t-test resulted in one-sided
p-values: 0.4200, 0.4000, 0.2000, 0.0219, 0.0278, and 0.0276 respectively which show that the
differences corresponding to an imbalance percentage at and above 5% were statistically signifi-
cant with a significance level of 0.05.

The performance in case of class-imbalance can be further studied by changing the intra-
class variance while fixing the inter-class variance leading to overlapping classes as shown in
Figures 2.3b and 2.3b. Figures 2.4a, 2.4b, and 2.4c show respectively the difference in F1-scores
when Σ+ = 2Σ− = 0.70I2 (i.e. the variances of the positive class are as twice as large than
the variances of the negative class) and when Σ+ = 1

2
Σ− = 0.35I2 (i.e. the variances of the

positive class are as half as large than the variances of the negative class). Clearly, the overall
performance of both classifier decreases, when compared to the case where Σ+ = Σ−. The lo-
calised method, however, still outperforms the global LS-SVM for lower percentages p+. In case,
Σ+ = 2Σ−, there is a difference in F1-score of −1.17%, 3.30%, 8.82%, 12.45%, 51.59%, and
44.93% at the percentages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25% respectively. A paired t-test
showed that the differences were significant at the 0.05 level for imbalance percentages above
25% (with one-sided p-values 0.1310, 0.1300, 0.0236, 0.0296, 0.0204, and 0.0495 at the per-
centages 50%, 25%, 12.5%, 5%, 2.5%, and 1.25% respectively). In case,Σ+ = 1

2
Σ−, the perfor-

mance curves of both classifiers remarkably decrease due to the overlap between the two classes.
However, the KNN-LS-SVM still outperforms the LS-SVM with a difference in F1-score of
0.48%, 1.72%, 34.92%, 14.91%, 26.85%, and 40.00% at the percentages 50%, 25%, 12.5%, 5%, 2.5%,
and 1.25% respectively. The one-sided p-values of a paired t-test are 0.3500, 0.2445, 0.0034,
0.1498, 0.0160, and 0.0088 at the different imbalance percentages respectively. Thus, only at im-
balance percentages 12.5%, 2.5% and 1.25% a significant difference at the 0.05 level was found.
The significance is missed at the imbalance percentage of 5%, however the outperformance of
the KNN-LS-SVM still present. Conclusively, the performance of the classifiers is not only in-
fluenced by the class-distribution imbalance but also by the intra-class variance and besides the
inter-class variance in the input space. Moreover, as shown in Figures 2.4a, 2.4b, and 2.4c, the
kNN classifier shows a similar or a better performance than both kNN-LS-SVM and LS-SVM
especially for the cases of non-extreme class imbalance. This can be interpreted in light of the
importance of locality since kNN considers the local properties of the data points. However,
kNN is not expected to handle complex nonlinear and overlapping patterns.
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(a)

(b)

(c)

Figure 2.4: (a) Averaged F1-scores of a KNN-LS-SVM, KNN, and an LS-SVM obtained from
a 10-fold cross-validation experiment using the synthetic dataset shown in Figure 2.3a and using
different percentages p+ of instances from the positive class.(b) F1-scores of KNN-LS-SVM,
KNN, and LS-SVM at different degrees of imbalance when Σ+ = 2Σ− = 0.70I2. (c) F1-
scores of KNN-LS-SVM, KNN, and LS-SVM at different degrees of imbalance when Σ+ =
1
2
Σ− = 0.35I2 and averaged over the runs of a 10-fold cross-validation experiment.The labels

(*) indicated on top of the horizontal axis refer to the imbalance percentages where the difference
in performance scores between KNN-LS-SVM and LS-SVM is statistically significant at the 0.05
level.
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2.4.2 Ambiguity

Ambiguity (or confusion) arises when regions exist in data space that are occupied by more than
one class or when classes are very closely spaced [42]. In such cases, a global classifier will fit
highly nonlinear boundaries that can become very complex on input space. A local learning
algorithm attempts to locally adjust the complexity of the boundary to the properties of the data
in each area of the input space.

In this section, we will study a simulated experiment where ambiguity occurs proportion-
ally with the class-imbalance due to the discontinuity of the different classes’ patterns and that
is inspired from a general representation of Bottou & Vapnik [22], see Figure 2.5a. The data
of 1000 instances is generated by mapping two variables x1 and x2 that are distributed accord-
ing to a standard normal distribution N(0, 1) to an univariate score z = sin(x1) ∗ sin(x2) +

x1. By setting specific ranges on the distribution of z different degrees of imbalance can be
achieved. Where the percentage p+ of instances in the positive classX+ varied in the range p+ ∈
{50%, 33%, 20%, 10%, 5%, 2.5%, 1.25%}with number of instances {500, 333, 200, 100, 50, 25, 12}
respectively. To simulate the set of p+ of instances the range on z was chosen as:

0.5 < |z| < b, such that P (0.5 < |z| < b) = p+.

Hence, by varying b, the width of the positive class pattern and the number of the positive in-
stances varies proportionally. Figure 2.5a shows an example of the boundary between the classes
for p+ = 50%. The positive class is scattered in two stripes and surrounded by negative obser-
vations on both sides.

Figure 2.5b shows a comparison of the F1-scores between an LS-SVM and a KNN-LS-SVM
algorithm applied on the data set. For each percentage p+, a 10-fold cross-validation experiment,
similar as in Section 2.4.1, was performed. At the percentages 50%, 33%, 20% and 10%, the
performance of both local and global classifiers is more or less the same. However, the use of
a KNN-LS-SVM at the imbalance percentages of 5%, 2.5% and 1.25% lead to an increase in
F1-score of 10.86, 19.28 and 20.05% respectively. A paired t-test showed that these differences
were all significant at a 0.05 levels (with one-sided p-values below 0.05) with one-sided p-values
of 0.0245, 0.0150 and 0.0100 for p+ ∈ 5%, 2.5%, 1.25% respectively. Clearly, the F1-score
rapidly decreases as the imbalance percentage increases. For higher imbalance percentages, the
number of available instances from the positive class decreases making it hard for both classifiers
to model the complex boundary between the classes. Ultimately, as shown in Figures 2.4 and
2.5, the KNN-LS-SVM can handle overlapping and nonlinearity problems together with class
imbalance more efficiently than standard KNN.
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(a)

(b)

Figure 2.5: (a) Two-dimensional non-linearly separable dataset of two classes where p+ =
50%. (b) F1-scores of the KNN-LS-SVM, KNN, and LS-SVM averaged over the runs of
a 10-fold cross-validation test experiment. Performance scores are obtained by using the
synthetic dataset describing confusion where the degree of imbalance is varied in the range
{50%, 33%, 20%, 10%, 5%, 2.5%, 1.25%}. The labels (*) indicated on top of the horizontal axis
refer to the imbalance percentages where the difference in performance scores between KNN-
LS-SVM and LS-SVM is statistically significant at the 0.05 level.
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2.5 Real-world Data

As illustrated in section IV, class-imbalance is considered a challenge to global learning algorithms
under some conditions such as the imbalance ratio, the overlap between different classes, inter-
class and intra-class variances, and ambiguity.

In this section, four real-world datasets are used to compare the performances of a KNN-LS-
SVM to an LS-SVM [43], KNN, KNN-SVM [24], Profile SVM (PSVM) [25], Stacked Autoen-
coders (Stack-AE) [44]. Moreover, we compare our results with the results of a recent study of
HAR that is based on the use of deep learning techniques [18]. Through the rest of the study,
we will refer to the proposed algorithm of the benchmark study [18] as Ravi (2017). Finally, the
time performance of a KNN-LS-SVM is compared to those of the already mentioned classifiers
except for Ravi (2017) due to the dedicated platform used in their study [18].

2.5.1 datasets

WISDM v1.1 The first dataset that we will study has been used to evaluate a system that uses
phone-based accelerometers to performHAR [32]. Several activities were recordedwith different
frequencies of occurrence: walking (38.6%), jogging (31.2%), walking upstairs (11.2%), walking
downstairs (9.1%), sitting (5.5%), and standing (4.4%). Activities of 36 subjects were recorded
using an impeded accelerometer of a smartphone with a sampling rate of 20 Hz and that was
located in the front pocket. In this way, a total number of 1, 048, 576 samples were acquired
within approximately 14.56 recording hours. In a preprocessing phase, features were extracted as
will be discussed later using a non-overlapping sliding window of 10 seconds.

Daphnet FoG This dataset contains annotated readings of 3 accelerometers attached to
Parkinson’s disease patients that experience freezing of gait (FoG) during walking tasks [31].
Since freezing of gait occurs rarely compared to other movement activities, the data is very im-
balanced. Only 1/9 of all recorded instances corresponded to the freezing-class. Sensors were
attached to the shank (just above the ankle) and the thigh (just above the knee) using an elasti-
cised strap and Velcro. A third sensor was attached to the lower back via a belt. The number of
patients in this study is 10. The sampling rate of the accelerometers recordings was 64Hz and the
total number of the acquired samples is 1, 917, 887 within approximately 8.32 recording hours.
The features were extracted as will be discussed later from non-overlapping sliding windows of
length 4 seconds.

WISDM v2.0 This dataset is used to evaluate a system that uses phone-based accelerome-
ters to perform HAR [33]. Several activities were recorded with different frequencies of occur-
rence: walking (42.1%), jogging (14.7%), sitting (22.3%), standing (9.7%), Lying down (9.3%),
and stairs (1.9%). Activities of 563 subjects were recorded using an impeded accelerometer of a
smartphone with a sampling rate of 20 Hz and that was located in the front pocket. In this way,
a total number of examples 2, 980, 765 were acquired. In a preprocessing phase, features were
extracted as will be discussed later using a non-overlapping sliding window of 10 seconds.
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Skoda This dataset contains 10 manipulative gestures (classes) performed in a car mainte-
nance scenario [30]. They are a subset of the 46 activities performed in the factory in one of
the quality control checkpoints. Data is collected from one subject, with a sampling rate of 98
Hz. For comparison purpose, the accelerometer signals from one node are used (Node 16). The
total number of samples is approximately 705, 440 samples. The ten classes will be shown in
Classification Performance section.

2.5.2 Classification performance

Wecompare the classification performances of the KNN-LS-SVM to the LS-SVM,KNN,KNN-
SVM, PSVM, Stacked Autoencoders (Stack-AE) and Ravi (2017). For error performance evalu-
ation, precision, recall and F1 − score, are presented for the recognition of the activities present
in the studied datasets. To make a consistent comparison with the recent study of HAR that is
based on a deep learning approach, we use the same set of features of method Ravi (2017) [18] to
train the KNN-LS-SVM, LS-SVM, KNN, KNN-SVM, PSVM, and Stack-AE. Several features
are used: interquartile range, amplitude kurtosis, root mean square, variance, mean, standard de-
viation, skewness, minimum, median, maximum, mean-cross, and zero-cross. All these features
are used similar to the benchmark studies for a consistent comparison.

Tables 2.1, 2.2,2.3, and 2.4 show the recall/precision scores of the KNN-LS-SVM, LS-SVM,
KNN,KNN-SVM, PSVM, Stack-AE and Ravi (2017) applied to the datasetsWISDMv1.1, Daph-
net FoG, WISDM v2.0 and Skoda respectively. Figures 2.6, 2.7, 2.8, and 2.9 show the F1-scores
of the classifiers applied to the real-world datasets.

Table 2.1: Classification results of the KNN-LS-SVM, LS-SVM,Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to WISDM v1.1.

Walk Jog Sit Stand Walk Up Walk Down

KNN-LS-SVM Recall 99.36 96.70 97.97 99.04 93.88 95.34
Precision 96.99 99.73 99.18 98.10 95.47 96.41

LS-SVM Recall 99.51 99.87 96.25 96.19 94.22 90.39
Precision 98.68 99.87 96.65 96.65 93.55 96.06

Ravi (2017) Recall 99.37 99.40 98.56 97.25 95.13 95.90
Precision 99.37 99.64 97.85 98.15 95.52 94.44

KNN Recall 100 100 100 95.2 96.7 100
Precision 98.9 100 96.77 100 100 100

KNN-SVM Recall 82.7 89.12 86.40 95.23 80.36 74.00
Precision 83.1 96.32 95.00 100 65.22 70.83

PSVM Recall 78.05 96.15 96.30 100 55.56 56.41
Precision 79.60 96.77 100 90.05 47.62 64.71

Stack-AE Recall 98.50 98.70 90.30 89.50 87.30 74.30
Precision 96.60 99.40 87.50 89.50 82.80 92.9
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Figure 2.6: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to WISDM v1.1

Table 2.2: Classification results of the KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to Daphnet FoG.

Non-Freezing Freezing

KNN-LS-SVM Recall 97.79 72.92
Precision 97.18 77.55

LS-SVM Recall 98.31 62.66
Precision 95.96 79.89

Ravi (2017) Recall 98.15 59.92
Precision 97.40 67.89

KNN Recall 98.88 82.85
Precision 98.34 82.32

KNN-SVM Recall 97.80 60.00
Precision 96.23 72.00

PSVM Recall 91.94 54.72
Precision 94.63 43.88

Stack-AE Recall 97.00 70.12
Precision 96.6 72.93
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Figure 2.7: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to Daphnet FoG

Table 2.3: Classification results of the KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to WISDM v2.0.

Walk Jog Sit Stand Lying Down Stairs

KNN-LS-SVM Recall 97.00 98.00 91.79 78.00 85.82 95.00
Precision 96.60 97.41 86.62 92.00 88.80 97.96

LS-SVM Recall 97.94 94.39 89.00 63.23 82.48 88.90
Precision 95.96 98.54 80.59 92.45 83.09 88.90

Ravi (2017) Recall 97.19 97.73 89.28 82.11 85.80 76.98
Precision 97.17 98.01 87.32 82.05 88.65 85.00

KNN Recall 96.53 92.83 82.46 66.20 42.45 61.76
Precision 91.84 96.92 69.80 75.81 75.64 70.00

KNN-SVM Recall 97.96 97.29 84.79 74.63 86.99 96.15
Precision 96.64 98.17 88.81 79.37 76.98 96.17

PSVM Recall 83.54 71.36 51.00 32.12 76.19 32.00
Precision 90.88 56.72 72.11 70.97 34.78 15.69

Stack-AE Recall 95.43 95.75 76.01 70.31 80.39 29.63
Precision 92.79 96.21 79.22 73.77 70.29 100
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Figure 2.8: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to WISDM v2.0

Figure 2.9: F1-Scores of the classifiers KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to Skoda dataset
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Table 2.4: Classification results of the KNN-LS-SVM, LS-SVM, Ravi (2017), KNN, KNN-SVM,
PSVM, and Stack-AE applied to Skoda dataset.

Write Open hood Close hood Check gaps
Front

Open Left
Front

KN
N-L

S-S
VM

Recall 100 93.62 88.90 100 100
Precision 100 93.62 81.84 93.33 100

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 100 91.30 97.50 100 100
Precision 100 100 100 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

LS-
SVM

Recall 100 96.97 95.08 94.59 89.47
Precision 98.33 92.75 96.67 100 77.27

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 73.33 97.37 96.55 100 100
Precision 91.67 100 96.55 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

Rav
i (2

017
)

Recall 91.34 97.78 94.44 92.79 100
Precision 96.67 97.78 89.47 91.15 100

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 80.00 94.20 97.59 98.04 100
Precision 88.89 92.86 98.78 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

KN
N

Recall 90.00 91.67 82.35 87.50 80.00
Precision 100 84.62 82.35 87.50 80.00

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 85.1 77.80 94.44 100 100
Precision 85.71 70.00 94.44 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

KN
N-S

VM

Recall 100 100 87.5 66.67 100
Precision 100 75.00 87.50 100 100

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 100 77.78 100 100 100
Precision 100 100 88.90 100 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

PSV
M

Recall 100 100 80.00 100 100
Precision 85.71 64.29 61.54 100 100

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 75.00 44.44 50.00 90.00 100
Precision 100 100 100 81.82 100

Write Open hood Close hood Check gaps
Front

Open Left
Front

Sta
ck-

AE

Recall 100 86.96 88.89 91.67 100
Precision 95.65 86.96 92.31 100 87.50

Close Left
Front

Close Both
Left

Check Trunk
Gaps

Open and
Close Trunk Check Steering

Recall 83.33 94.12 96.30 100 100
Precision 100 94.12 96.30 100 93.75
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2.5.3 Time Performance

To compare the time performance between an LS-SVM and KNN-LS-SVM, we make use of
a non-dedicated platform (i.e. System Type x64-based PC, Processor Intel(R) Core(TM) i7-
6820HQ CPU @ 2.70GHz, 2701 MHz, 4 Core(s), 8 Logical Processor(s), Installed Physical
Memory (RAM) 8,00 GB). We compare the elapsed time that is required to run the algorithms
in an online mode. In an online mode instances are evaluated one by one. For global classifiers,
we measure the test time of one instance as in practice one model is trained and applied for all
test instances. However, for the localised models (i.e. KNN, KNN-SVM and KNN-LS-SVM),
the measured time includes both training and testing time. For PSVM, local models are trained
offline by the training data points of each profile that result from partitioning the training set.
Hence, the measured time for PSVM is test time only. The elapsed test times for each classifier
applied to each dataset are depicted in Table 2.5.

Table 2.5: The time performance of the classifiers KNN-LS-SVM, LS-SVM, KNN, KNN-SVM,
PSVM, and Stack-AE applied toWISDM v1.1, Daphnet FoG, WISDM v2.0 and Skoda Datasets.
The depicted results represent the consumed time in seconds to classify a single test point.

WISDM v1.1 Daphnet FoG WISDM v2.0 Skoda
KNN-LS-SVM 0.0126 0.0014 0.0089 0.0035
LS-SVM 0.0321 0.0062 0.0887 0.2283
KNN 25.32 34.00 19.77 16.822
KNN-SVM 19.78 14.017 20.10 12.88
PSVM 0.0290 0.0032 0.0111 0.0036
Stack-AE 0.0166 0.0171 0.0205 0.0248

2.6 Discussion

Applying the various classifiers on WISDM v1.1, we obtain the results shown in Table 2.1 and
Figure 2.6. Notice that class-imbalance is not dominant in this dataset, except for Sitting and
Standing activities (5.5 and 4.4% respectively). The best performance is that of the KNN classifier
for all activities except for Standing. The main drawback of the KNN classifier is the temporal
complexity to get the optimum hyperparameters (i.e. K-number and distance metric). To obtain
such good results, as shown in Table 2.5, it takes approximately 25 seconds for one test point
which is 2500 times the required time by KNN-LS-SVM. Moreover, KNN-LS-SVM provides
the best performance for the minority classes of Sitting and Standing. We can notice here that
KNN-LS-SVM is providing a performance that compromises between the superior performance
of KNNwith an expensive temporal complexity and LS-SVMwith an acceptable error and time
performance. The algorithm of KNN-LS-SVM is relying on KNN, but both the numberK and
the distance metric are globally optimised independently of the test set. For this dataset, we can



50CHAPTER 2. A LOCALISEDLEARNINGAPPROACHFORHUMANACTIVITYRECOGNITION

claim that the error performance of KNN-LS-SVM is comparable in case of balanced activities
and better for unbalanced activities. Moreover, KNN is not applicable to the online application
as 25 seconds to classify a single point is more than the window size of 10 seconds that is used in
this dataset.

For Daphnet FoG dataset, the class-imbalance is the dominant characteristic with a class-
imbalance ratio of 1 to 9. As shown in Figure 2.7 and both Table 2.1 and Table 2.5, KNN provides
the best error performance andworst time performance due to hyperparameter optimisation. The
second best error performance is the one of KNN-LS-SVM with best time performance which
is 4 ∗ 10−4 times that of KNN. The average run-time of KNN to classify one test point is 34
seconds which is not applicable for online classification as the window size for this dataset is only
4 seconds.

For WISDM v2.0, KNN-LS-SVM approximately provides the best error and time per-
formance over all activities especially the extremely minor activity of Stairs (1.9%). The only
competitive classifier is the KNN-SVM. However, its temporal and computational complexity is
much higher than that of the KNN-LS-SVM. The superiority of the KNN-SVM and KNN-LS-
SVM which are both based on an RBF kernel can be due to the presence of strong nonlinearity
and overlapping classes in this dataset.

By applying the various classifiers to the Skoda dataset with 10 classes, KNN-LS-SVM pro-
vides the best performance for 6 classes. This dataset does not suffer class-imbalance such that
KNN-LS-SVM is competing with the other global and local classifiers in the error performance.
However, it outperforms the other classifiers in the time performance.

Ultimately, from Table 2.5, it is obvious that KNN-LS-SVM provides the best time perfor-
mance over all real-world datasets compared to the other classifiers which are implemented on
the same platform while at the same time providing robustness against class imbalance.

2.7 Conclusion

In this paper, we discussed the problems of class-imbalance and ambiguity that frequently arise in
data obtained from HAR systems. A novel hybrid localised learning approach of KNN-LS-SVM
is proposed to tackle these problems. Moreover, for the first time, these problems are analysed
with synthetic datasets in the context of localised learningwith a detailed illustration of the KNN-
LS-SVM algorithm. In contrast to the already existing literature on HAR that mainly focuses
on the use of global learning methods, we applied for the first time a hybrid localised learning
algorithm to the problem of HAR. Furthermore, we compared the performance of the KNN-
LS-SVM with other global and local learning techniques and the benchmark study of [18].

A localised method has the advantage to locally adjust the complexity of the decision bound-
ary to the properties of the data in each area of the input space. The choice of LS-SVM instead
of a standard SVM to be localised was motivated by the relatively computational simplicity of
the LS-SVM compared to SVM [43]. This choice was further supported by the increased time
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performance in an online mode such that the KNN-LS-SVM has much potential to be suitable
for online and streaming analytics problems in which the data size is continuously increasing.

Experiments using the synthetic data showed that the local classifier (i.e. KNN-LS-SVM) can
be more robust against class-imbalance and ambiguity compared to a global classifier (i.e. LS-
SVM). This was also confirmed by our experiments on the real-world data sets where the highest
difference in the performance was obtained when the class-distribution was highly skewed.

The proposed algorithm is applicable to HAR applications as human health monitoring, e.g.
fall detection, independent living of elderly, freezing of gait detection for Parkinson’s patients,
among others [45, 46, 31]. Experiments with real-world data illustrated the potential of the use of
the localized approach for online and streaming analytics problems inHAR applications especially
when applied to middle-sized data sets.

Moreover, the proposed localised approach has application potential to medical diagnostic
problems that can suffer from class-imbalance problems, e.g. abnormality detection via screen-
ing, cancerous cells detection and Hyperthyroid diagnosis [47, 48, 49].

Finally, the proposed localised algorithm outperformed the benchmark global models under
the following data-based conditions:

• The data sets contained up to 15, 000 data points.

• The imbalance percentages p+ where the KNN-LS-SVM outperformed the LS-SVM
ranged from 1.25% to 12.5%.

• Comparable performances were found for percentages p+ given by 25% and 50%.

• The Fisher discriminant ratio that describes the overlap between classes could take values
up to 4.08.

The Fisher discriminant ratio is defined as:

f =
(m+ −m−)

2

(σ2
+ + σ2

−)
,

where m+,m− are the means of the positive and negative classes respectively. And σ+, σ− are
the standard deviations of the positive and negative classes respectively.

In future research, we plan to apply and validate the method further in the context of real-
time activity tracking of hospitalised patients.
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Chapter 3

Towards Online Personalised-Monitoring of
Human Thermal Sensation Using Machine
Learning Approach1

Abstract

Thermal comfort and sensation are important aspects of building design and indoor climate con-
trol, as modern man spends most of the day indoors. Conventional indoor climate design and
control approaches are based on static thermal comfort/sensation models that view the building
occupants as passive recipients of their thermal environment. To overcome the disadvantages
of static models, adaptive thermal comfort models aim to provide opportunity for personalised
climate control and thermal comfort enhancement. Recent advances in wearable technologies
contributed to new possibilities in controlling andmonitoring health conditions and humanwell-
being in daily life. The generated streaming data generated fromwearable sensors are providing a
unique opportunity to develop a real-timemonitor of an individuals thermal state. Themain goal
of this work is to introduce a personalised adaptive model to predict individuals thermal sensa-
tion based on non-intrusive and easily measured variables, which could be obtained from already
available wearable sensors. In this paper, a personalised classification model for individual ther-
mal sensation with a reduced-dimension input-space, including 12 features extracted from easily
measured variables, which are obtained fromwearable sensors, was developed using least-squares
support vector machine algorithm. The developed classification model predicted the individuals
thermal sensation with an overall average accuracy of 86%. Additionally, we introduced the main
framework of streaming algorithm for personalised classification model to predict an individuals
thermal sensation based on streaming data obtained from wearable sensors.

1https://doi.org/10.3390/app9163303
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3.1 Introduction

Thermal comfort (TC) is an ergonomic aspect determining satisfaction with the surrounding
environment and is defined as that condition of mind which expresses satisfaction with the ther-
mal environment and is assessed by subjective evaluation [1]. The effect of thermal environments
on occupants might also be assessed in terms of thermal sensation (TS), which can be defined
as a conscious feeling commonly graded into the categories cold, cool, slightly cool, neutral,
slightly warm, warm, and hot [1]. Thermal sensation and thermal comfort are both subjective
judgements, however, thermal sensation is related to the perception of ones thermal state, and
thermal comfort is related to the evaluation of this perception [2]. In other words, TS expresses
the perception of the occupants, while TC assesses this perception, taking into account physio-
logical and psychological factors [3]. The assessment of thermal sensation has been regarded as
more reliable and as such is often used to estimate thermal comfort [4]. Thermal sensation is the
result of the body psycho-physical reaction to certain thermal stimuli related to indoor condi-
tions [5]. Human thermal sensation mainly depends on the human body temperature (core body
temperature), which is a function of sets of comfort factors [5, 6]. These comfort factors include
indoor environmental factors, such as mean air temperature around the body, relative air veloc-
ity around the body, humidity, and mean radiant temperature of the environment to the body
[6]. Additionally, some personal (individual-related) factors, namely metabolic rate or internal
heat production in the body, which vary with the activity level and clothing thermo-physical
properties (such as clothing insulation and vapor clothing resistance), are included. It should be
mentioned that the individual thermal perception is deepening, as well, on psychological factors,
expectations and short/long-term experience, which directly affect individuals perceptions, time
of exposure, perceived control, and environmental stimulation [7]. The most considered way to
have an accurate assessment of TS is to ask the individuals directly about their thermal sensation
perception [5, 6]. The thermal-sensation-vote (TSV) is one of the most used concepts to address
the opinion of individuals concerning TS. That is, individuals express their vote to rate their TS
when they are exposed to given thermal conditions, by using a scale from cold to hot, with a
predefined number of points. Thermal sensation mathematical models are developed in order to
overcome the difficulties of direct enquiry of subjects. The development of such models is mostly
dependent on statistical approaches by correlating experimental conditions (i.e. environmental
and personal variables) data to thermal sensation votes obtained from human subjects [4, 6]. The
recent intensive review work of Enescu (2019), explored the most important contributions to
model and predict thermal sensation (TS) under both steady-state and transient conditions. It is
shown that the most used models to assess TS of the human body with respect to the environ-
ment have been developed starting from Fangers predicted-mean-vote (PMV) empirical model
[5] for steady-state conditions and from the Gagge model [8] for transient conditions. Since then,
numurus models are developed to assess and predict TS (e.g., [9, 10, 11, 12, 13, 14, 15, 16]). Most of
the aforementioned models (e.g., PMV) are static in the sense that they predict the average vote
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of a large group of people based on the seven-point thermal sensation scale, instead of individ-
ual thermal comfort, they only describe the overall thermal sensation of multiple occupants in a
shared thermal environment. To overcome the disadvantages of static models, adaptive thermal
comfort models aim to provide insights in increasing opportunities for personal and responsive
control, thermal comfort enhancement, energy consumption reduction and climatically respon-
sive and environmentally responsible building design [17, 18]. The idea behind adaptive models
is that occupants and individuals are no longer regarded as passive recipients of the thermal en-
vironment but rather, play an active role in creating their own thermal preferences [18]. Many
adaptive thermal comfort models are developed based on regression analysis (e.g., [18, 19, 20]).
Besides regression analysis, thermal sensation prediction can also be seen as a classification prob-
lem where various classification algorithms can be implemented [17]. In their work [21], Lee
et al., proposed a method for learning personalised thermal preference profiles by formulating
a combined classification and inference problem with 5-cluster models. Moreover, the thermal
preference of a new user is inferred by a mixture of sub-models for each cluster, where clusters
are used to group occupants with similar thermal preferences. Recently, a number of research
works (e.g., [22, 23, 24, 25, 26] have demonstrated the possibility of using machine learning tech-
niques, such as support vector machine (SVM), to assess and predict human thermal sensation.
It can be concluded, based on the published work (see the recent literature review [17] by Lu
et al.), that classification-based models have performed as well as regression models. Different
related works investigated the problem of thermal sensation and comfort prediction via machine
learning algorithms. Ghahramani et al. [22] applied the hidden Markov model (HMM) tech-
nique to the thermal comfort prediction problem with three levels of thermal comfort. There is
a main issue in the used dataset in this study is the class imbalance, which is not tackled by the
proposed methodology. In their study, Ghahramani et al. did not discuss the problem of stream-
ing analytics and model personalisation. In order to develop personalised models, Jiang et al.
[28] applied support vector machines classifiers to the personal data of each subject to predict the
thermal sensation level for the same subject. The obtained results are promising, however, their
approach requires a suffcient number of data-points to obtain an acceptable performance, which
is not applicable to our dataset (9 data-points per subject). The very recent study of Lu et al. [17]
proposed a personalised model, however, the study strictly investigated two subjects and devel-
oped a dedicated model for each subject. In comparison with many relevant studies, our study is
tackling several challenges at the same time. These issues are feature reduction, streaming, and
online modeling compatibility and model personalisation. The latter issue is tackled in a novel
way by considering both personal and nonpersonal data relying on the similarity either inter or
intra-subjects. In general, it can be stated that it is a real modeling challenge to correlate the phys-
iological variables with information concerning global and local sensation [5]. Recent advances
in mobile technologies in healthcare, in particular, wearable technologies (m-health) and smart
clothing, have positively contributed to new possibilities in controlling and monitoring health
conditions and human well-being in daily life applications. The wearable sensing technologies
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and their generated streaming data are providing a unique opportunity to understand the users
behaviour and to predict future needs [29]. The generated streaming data is unique due to the
personal nature of the wearable devices. However, the generated streaming data forms a chal-
lenge related to the need for personalised adaptive models that can handle newly arrived personal
data. The main goal of this work is to introduce a personalised adaptive modeling algorithm to
predict an individuals thermal sensation based on non-intrusive and easily measured variables,
which could be obtained from already available wearable sensors.

3.2 Methods

3.2.1 Data Processing and Classification

Thermal sensation prediction based on wearable sensors can be considered as a classification ma-
chine learning problem, the input of which is the set of extracted features from themeasured vari-
ables and the output is the subjects feedback with the standard thermal sensation labels. Several
machine learning techniques can be used for such a problem. Support vector machines (SVMs) is
one of the efficient classification techniques used in different relevant studies [21, 22, 23, 25, 26].
In this study, the least squares support vector machine (LS-SVM) is proposed to be used for gen-
eral models as it is as powerful as standard SVMs, but, it has less computational cost [30]. Most,
if not all, relevant studies of thermal sensation prediction rely on global general models. Global
models are models that are trained using the whole available training dataset with a uniform
weight (i.e. all training points are equally contributing to the training process). However, global
models are not that efficient for online classification and streaming analytics applications in which
a stream of new data is collected from subjects via wearable technology, especially when aim-
ing at personalised models. Hence, for this purpose, we suggest a localized version of LS-SVM,
namely K-Nearest Neighbours (KNN)-LS-SVM [31] to be compatible with the wearable sensors
for online and streaming analytics. The classification problem of thermal sensation is a multiclass
classification problem, the input variables of this problem from which features are extracted are:
aural temperature Ter , average skin temperature T̄sk = 1

3
[Tscap + Tch + Tarm], ambient tem-

perature Ta, chest skin temperature Tch, heart rate HR, average heat flux from the skin q̄sk,
temperature gradient between core and skin ∆Tsk = Ter − T̄sk, age, gender, body mass index
BMI , metabolic rate Mr . As some variables are time measurements of the different parame-
ters, the process of feature extraction is applied to a specified time window from the recordings,
namely the last five minutes preceding the sensation labeling by the test subjects. The extracted
features from time-variant variables are: minimum (min), maximum (max), variance (var), en-
ergy, time-derivative ( d

dt
), root mean square (rms). Target labels are the seven classes of the

standard thermal comfort sensation scores: Cold (−3), Cool (−2), Slightly Cool (−1), Neutral
(0), Slightly Warm (1), Warm (2), and Hot (3).
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3.2.1.1 Support Vector Machines (SVMs)

SVMs are originally presented as binary classifiers, that assign each data instance x ∈ Rd to one of
two classes described by a class label y ∈ {−1, 1} based on the decision boundary that maximises
the margin 2/||w||2 between the two classes as shown in Figure 1 [30]. Generally, a feature map
ϕ : Rd 7→ Rp is used to transform the geometric boundary between the two classes to a linear
boundary L : wTϕ(x) + b = 0 in feature space, for some weight vector w ∈ Rp×1 and b ∈ R.
The class of each instance can then be found by y = sgn (w⊤ϕ(x) + b), where sgn refers to the
sign function. The estimation of the boundary L is performed based on a set of training examples
xi (1 ≤ i ≤ N ) with corresponding class labels yi ∈ {−1, 1}. An optimal boundary is found by
maximising the margin that is defined as the smallest distances between L and any of the training
instances. In particular, one is interested in constants w and b that minimise a loss-function:

min
w, b; ξ

1

2
w⊤w+ C

N∑
i=1

ξi, (3.0)

and are subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N.

The constant C in (3.0) denotes the penalty term that is used to penalise missclassification through
the slack variables ξi in the opimisation process.

The so-called kernel-trick avoids the explicit introduction of a feature map ϕ and implicitly
allows to use feature spaces of infinite dimensionality. A commonly used kernel is given by the
Gaussian kernel:

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2
0

)
,

where σ0 denotes the kernel bandwidth. Both σ0 and C can be optimised as hyper-parameters in
a cross-validation experiment.

3.2.1.2 Least Squares Support Vector Machine (LS-SVM)

LS-SVMs are obtained by using a least-squares error loss function [30]:

min
w, b; e

1

2
w⊤w+

1

2
γ

N∑
i=1

ei
2, (3.1)

such that

yi(w
⊤ϕ(xi) + b) = 1− ei, i = 1, 2, ..., N.

This optimisation procedure introduces errors ei such that 1 − ei is proportional to the signed
distance of xi from the decision boundary. In fact, the non-negative slack variable constraint is
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removed and the solution of the optimisation problem can be obtained by a set of linear equations,
reducing computational effort [30].

3.2.1.3 kNN-LS-SVM

While global SVMs consider the same weight for all training instances in the optimization pro-
cess, local learning approaches allow for training samples near a test point to be more influential
than others. Localized approaches of SVMs [31] are based on weighting functions λ(xs,xi) that
express the similarity between the features vectors of the ith data point xi and the test instance
xs. For an LS-SVM, this leads to the following cost function:

min
w, b; e

1

2
w⊤w +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i , (3.2)

such that

yi(w
⊤ϕ(xi) + b) = 1− ei, i = 1, 2, ..., N.

For KNN-LS-SVM a binary valued similarity criterion:

λ(xs,xi) =

 1 if ||ϕ(xs)− ϕ(xi)||2 ≤ rs

0 otherwise,

where rs is theK-th smallest distance among {||ϕ(xs)−ϕ(xj)||; 1 ≤ j ≤ N}. This formulation
leads to the hybrid KNN-LS-SVM method [31]. In practice, implementing the hybrid classifier
of KNN-LS-SVM, as shown in Figure 3.1, starts with receiving an unlabelled new test point xs

and finding the nearest K points from the training set in the feature space. Based on the nearest
K points, an LS-SVM model is trained only with the new subset, hence, for each test point
a dedicated model is trained. The advantage of this localised approach is that it can enhance
the classification performance in case of class imbalance, in addition to the computational and
temporal efficiency especially for online modelling and streaming analytics. For more detail
concerning localised learning, reference [30] includes a detailed explanation of the algorithms.
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Figure 3.1: A flow chart illustrating the algorithm of K-Nearest Neighbours Least Squares Sup-
port vector Machines (KNN-LS-SVM) classifier

3.2.2 Experiments and Experimental Setup

3.2.2.1 Test Subjects

In total 25 healthy participants (6 females and 19 males), between the age of 25 and 35 (average
age 26± 4.2) years, with average weight and height of 70.90± 12.70 kg and 1.74± 0.10 m, re-
spectively, volunteered to perform the aforementioned experimental protocol. Detailed physical
information about the test subjects is shown in Table 3.1.
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Table 3.1: General physical information of the participants (test subjects).

Subject Gender Height (m) Weight (kg) Age (year)
P1 M 1.69 59 23
P2 M 1.77 75 20
P3 M 1.82 73 29
P4 F 1.61 53 31
P5 M 1.86 88 21
P6 F 1.57 50 22
P7 M 1.73 86 33
P8 M 1.81 67 21
P9 M 1.86 92 36
P10 M 1.65 62 31
P11 F 1.7 61 23
P12 M 1.86 80 23
P13 M 1.82 86 27
P14 F 1.6 51 22
P15 M 1.7 58 29
P16 M 1.75 74 26
P17 F 1.68 76 26
P18 M 1.8 74 29
P19 M 1.78 79 29
P20 M 1.83 81 22
P21 M 1.78 78 28
P22 M 1.81 69 22
P23 F 1.57 49 26
P24 M 1.75 68 24
P25 M 1.78 83 28

3.2.2.2 Climate Champers

During the course of this study, three (Rooms A, B and C) climate-controlled chambers designed
and built to investigate the dynamic mental and physiological responses of humans to specific
indoor climate conditions were used. Figure 2 shows a photographic picture of the three climate
rooms, namely, A, B and C. The Body and Mind Rooms are experimental facilities at the M3-
BIORES laboratory (Division of Animal and Human Health Engineering, KU Leuven). The
three rooms are dimensionally identical; however, each room is designed to provide different
ranges of climate conditions as shown in Table 3.2.
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Table 3.2: Different temperature and relative humidity ranges that can be provided by the dif-
ferent Body and Mind (A, B, and C).

Room Air temperature range (◦C) Relative humidity range (%)
A +23 - +37 50 - 80
B +10 - +25 50 - 80
C -5 - +10 40 - 60

The three rooms are equipped with axial fans to simulate wind velocities between 2.5 and 50
km h−1.

Figure 3.2: Photographic picture of the three climate-controlled rooms (from right to left, AC).

3.2.2.3 Measurements and Gold Standards

During the course of the experiments, participants heart rate HR, metabolic rate Mr , average
skin temperature Tsk, heat flux qsk between the skin and the ambient air, core body tempera-
ture Tc represented by the aural temperature Ter were measured continuously. The heart rate
of each participants was monitored using the Polar H7 ECG strap that is placed under the chest.
For Polar H7 ECG strap, the ECG sampling rate is 128 Hz. The metabolic rate as metabolic
equivalent tasks (METs) of each participant was calculated based on indirect calorimetry using
MetaMAX 3B spiroergometer sensor. The average skin temperature was calculated based on
measurements from three body-places, namely, scapula Tscap, chest Tch and arm Tarm (Figure
3). The skin temperature measurements were performed using one Shimmer temperature sen-
sor and two gSKIN bodyTEMP patches. Two heat flux gSKIN patches were placed on both
the chest and the left arm (Figure 3.3). The skin temperatures and heat flux measurements were
acquired at sampling frequency of 1 Hz. Core body temperature was estimated based on au-
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ral temperature measure measurements, which was performed using in-ear wireless (Bluetooth)
temperature sensors (Cosinuss One) with a sampling rate if 1 Hz. At the end of each applied tem-
perature level during the course of both experimental phases, a thermal sensation questionnaire,
based on ASHRAE 7-points thermal scale, was performed for each test subject.

Figure 3.3: Sensor placement. (A) Ear channel for aural temperature measurement via the Cos-
inuss One, (B) upper arm where skin temperature and heat flux are measured with the gSKIN
patch, (C)middle upper chest where skin temperature and heat flux aremeasuredwith the gSKIN
patch, (D) lower chest where heart rate is measured with the Polar H7, (E) Scapula where skin
temperature is measured with the shimmer, (F) mouth and nose where metabolic rate is measured
via the MetaMAX-3B spiroergometer sensor.

3.2.2.4 Experimental Protocol

The experimental protocol used in the present study was designed in such way to investigate
the subjects thermal and physiological responses to three different temperature (low, normal and
high) under two levels of physical activities (low and high). The three predefined temperatures
(low = 5 ◦C, normal = 24 ◦C and high = 37 ◦C) were chosen based on the thermal-comfort-chart
of the ASHRAE-55 [32] and the effects on health according to the Wind Chill Chart for cold
exposure (National Weather Service of the US) and for hot temperatures exposure according to
[33]. The conducted experiments were consisted of two phases (Figure 3.4, upper graph), namely,
low activity and high activity phases. During the first experimental phase, low activity phase,
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the test subjects (while being seated = low activity) were exposed, during 55 minutes, to three
levels of temperatures in the following order: normal, low, high and normal again (Figure 3.4).
During the high activity phase, the test subjects was exposed to a 15 minutes of light physical
stress (80W of cycling on a fastened racing bicycle). During the course (75 minutes) of the
active phase, each test subject was exposed to the predefined three temperature levels (Figure
4, lower graph). During each temperature level, starting from the normal level (24 ◦C), the
test subjects are performed 15 minutes of cycling (with 80 W power) and followed 4 minutes
of resting (seated). During the course of conducted experiments, the clothing insulation factor
(Col) was kept constant atCol = 0.34, which accounted for a cotton short and t-shirt as a standard
clothing for all test subjects. The experimental protocol was approved by the SMEC (Sociaal-
Maatschappelijke Ethische Comissie), on the 16 January 2019 with number G-2018 12 1464.

Figure 3.4: Plots showing the climate chambers set-point temperatures programmed during the
55 min low activity phase (upper graph) and the 75 min high activity phase (lower graph).

3.3 Results and Discussion

3.3.1 General Classification Models

In this section, classification models are developed globally, in other words the classification mod-
els are trained using all available training dataset with the sameweight (i.e. all training data-points
are contributing equally to the training process). The whole dataset (N-subjects) are divided,
based on leave-one-subject-out approach (LOSO), into N-1 subjects for training and 1 subject
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for testing.

3.3.1.1 Developing generalmodel using all extracted features for 7-classes problem (Model
I)

Initially, in this stage of developing a general classification model to predict thermal sensation,
in total 54 features are used to form the input space of the classification model for the 7-classes
classification problem. The extracted features aremeant to be simple and basic features that are not
computationally expensive and represent the basic characteristics of segmented time windows. A
feature space including the mean value of the measured input variables, namely, Ter , HR, q̄sk,
∆T̄ and Mr . Additionally, other features are extracted by computing the variance, min, max,
root mean squares (RMS), energy (E = 1

N

∑N
n=1 xn

2, where N is the number of samples of
variable xn) and first derivative ( dxdt ) of the aforementioned measured variables as shown in Table
3.3. The age, gender, body-mass-index (BMI) and ambient temperature (T∞) are also included
in the feature spaces. The output confusion matrix is computed for each subject based on LOSO
testing approach. The averaged normalised confusion matrix over all test subjects is shown in
Table 3.4 where the value of each cell (i, j) represents the number of times (as percentage %)
that class j is classified as class i. Given that the optimal situation is 100% for i = j. From the
resulted confusion matrix (Table 3.4) the overall accuracy of the developed classifier (Model I) is
calculated to be 51%. In Table 3.4, there is the prediction result noted as Else, which represents
the case that the classifier could not assign the test point to any of the presented classes. The error
performance of the developed general model is depicted in Figure 3.5.

Table 3.3: Overview of the 54 extracted features (Œ = selected).

Variance Mean Min Max RMS E d
dt

Ter x x x x x - x
Hr x x x x x - x
q̄sk x x x x x x x
T̄sk x x x x x - x
∆T̄ x x x x x - x
Mr x x x x x x x
Tarm x x x x x - x
Tscap x x x x x - x
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Table 3.4: The normalized confusion matrix of Model I
Pr
ed
ic
te
d
La
be
l(
i)

Actual Label (j)

Cold % Cool %
Slightly
Cool %

Neutral %
Slightly
Warm %

Warm % Hot %

Else 0 0 3.30 2.80 4.20 8.00 6.70
Cold 0 0 0 0 0 0 0
Cool 33.3 52.3 23.4 1.40 0 0 0

Slightly Cool 66.7 42.9 40.0 12.7 2.10 0 0
Neutral 0 4.80 33.3 60.6 27.1 0 0

Slightly Warm 0 0 0 19.7 56.3 32.0 13.3
Warm 0 0 0 1.40 10.4 44.0 40.0
Hot 0 0 0 1.40 0 16.0 40.0

Figure 3.5: Error performance of the developed general classificationmodel with 54 input features
for 7-classes classification problem.

3.3.1.2 Developing a General Model for 7-Classes Classification Problem with Dimen-
sion Reduction (Model II)

As shown in Table 3.3, the input space of Model I included all extracted features (54 features)
that were obtained from the measured variables. However, for the sake of the main objective of
the present work, the computational cost of the developed algorithm should be low enough to
be compatible with wearable technology and online modeling. Hence, a feature selection pro-
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cedure was employed to obtain the most reduced-dimension input space for the classification
model yet with the best error performance. Feature selection here is based on evaluating all pos-
sible feature combinations and selecting the combination with best error performance. The used
feature selection procedure resulted in a reduced input space of only 12 features with optimal
feature combination. The selected features comprise: gender, age, HR , Ter , Tsk , ∆T̄ , q̄sk,
RMS(HR, Tc, Tsk, q̇), and dq̄sk

dt
(time-derivative of average heat flux). The feature selection step

reduced the input space from 54 features to only 12, which effectively reduced the computational
costs of the classification algorithm during online implementation. The reduced dimension input
space, including the selected 12 features, was used to develop a general classification model for the
7-classes classification problem to predict the thermal sensation of all test subjects. The resulted
classification confusion matrix for the developed general model using the reduced-dimension
input space is shown in Table 3.5. The results showed an overall accuracy of the developed clas-
sification model of 57% with an improvement of 6% compared to the results of model I. The
overall error performance (sensitively, precision and F1-score) results are shown in Figure 3.6.

Figure 3.6: Error performance of the developed general classification model with the selected 12
input features (reduced dimension input space) for 7-classes classification problem.
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Table 3.5: The normalized confusion matrix of Model II.
Pr
ed
ic
te
d
La
be
l(
i)

Actual Label (j)

Cold % Cool %
Slightly
Cool %

Neutral %
Slightly
Warm %

Warm % Hot %

Else 0 4.79 6.65 0 10.40 16.03 0
Cold 0 0 0 0 0 0 0
Cool 33.20 33.33 0 0 0 0 0

Slightly Cool 66.80 57.08 66.69 8.45 2.10 0 0
Neutral 0 4.79 26.66 71.81 22.90 4.03 0

Slightly Warm 0 0 0 18.32 56.25 31.96 6.71
Warm 0 0 0 1.42 8.35 35.99 46.65
Hot 0 0 0 0 0 12.00 46.65

3.3.2 Class Reduction

From the confusion matrix in Table 3.5, it can be seen that the confusion is mostly observed
between the adjacent classes. The main reason of such interclass confusion is that the features
are not able to discriminate completely between these adjacent classes. For instance, the actual
neutral class (0) is confused with 8.45% and 18.32% with slightly cool (-1) and slightly warm (1)
classes, respectively. Hence, it is more convenient to reduce the seven thermal sensation classes
into three classes representing thermal comfort (comfortable, uncomfortably cool, and uncom-
fortably warm). The class reduction is done based on three criteria, namely, maximum confu-
sion, acceptable class imbalance, and avoiding overlap between classes. As mentioned earlier, the
maximum confusion is observed between the adjacent classes (see Table 3.5). However, it is not
possible to merge all adjacent confused classes due to the overlap. For example, the Slightly-
Warm class is confused with the Neutral class by 22.9%, on the other hand, the Warm class is
confused with the Slightly-warm by 31.96%. Hence, in order to merge the Slightly-warm class
with the Neutral it should not be merged with Warm and vice versa. Therefore, merging must
avoid any overlap between different classes. Another criterion is the class imbalance, as shown
in Figure 7a and Table 3.5, where Cold is not recognised by the classifier due to the relatively
very low number of instances labeled as Cold compared to the other classes. For an acceptable
class imbalance, it is meant to consider the already existing class imbalance between the whole
states that the frequency of a state occurrence is reducing by moving far from the Neutral state,
as shown in Figure 7a.

Finally, it is necessary to avoid any overlap between the reduced classes by assigning each state
to only one class. As there are different possibilities to obtain the new three classes, it is found
that three configurations are the closest to the thermal comfort levels, considering the earlier
mentioned criteria. Based on these criteria the seven classes were reduced into three classes with
three different configurations as follows:

• Configuration 1Merging the states of Cold (-3) and Cool (-2) into Class 1 (27 instances),
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merging Slightly cool (-1), Neutral (0), and Slightly warm (1) into Class 2 (149 instances),
and merging Warm (2) and Hot (3) into Class 3 (40 instances) (Figure 7b).

• Configuration 2 Merging the states of Cold, Cool and Slightly-cool into Class 1 (57
instances), Neutral as Class 2 (71), and merging Slightly-warm, warm and Hot into Class
3 (88 instances) (Figure 7c).

• Configuration 3 Merging the states of Cold, Cool and Slightly-cool into Class 1 (57 in-
stances), merging Neutral, and Slightly-warm into Class 2 (119 instances), and merging
warm and Hot into Class 3 (40 instances) (Figure 7d).

As shown in Figure 3.7, each configuration has a different class distribution (i.e. number of
instances per class).

Figure 3.7: (a) A histogram of 7-class thermal sensation scale of ASHRAE system. (b) A histogram
of 3-class thermal sensation of Configuration 1. (c) A histogram of 3-class thermal sensation of
Configuration 2. (d) A histogram of 3-class of Configuration 3.

3.3.2.1 Developing General Models with the Selected Features for 3-Classes Problem
with Different Class Configurations (Model III)

Class Configurations (Model III) The error performance results of the developed classification
model (Model III), based on the 12 selected features, for the three labelling configurations (Conf.
1, Conf. 2 and Conf. 3) are shown in Table 3.6. Comparing the three configurations is not
consistent, as for each configuration, the number of datapoints change, which influences the
performance especially for such small size dataset.
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Table 3.6: The error performance (precision, sensitivity, F1-score, and accuracy) of general LS-
SVM model for the three different 3-class configurations.

Configurations Classes Precision Sensitivity F1-score Accuracy

Conf. 1
Class 1 0.53 0.37 0.44

0.81Class 2 0.83 0.89 0.86
Class 3 0.79 0.75 0.77

Conf. 2
Class 1 0.88 0.88 0.88

0.81Class 2 0.75 0.66 0.70
Class 3 0.82 0.89 0.86

Conf. 3
Class 1 0.88 0.88 0.88

0.85Class 2 0.88 0.91 0.89
Class 3 0.88 0.78 0.83

3.3.3 Personalised Classification Models

In order to develop online-personalised models, it is necessary to consider two main challenges,
first the developed model should be able to handle the new, personal, data in the training set.
Additionally, the developed model should be adapted to the new personal data without any bias
to the majority of the old (non-personal) data. Different approaches are used to handle these
challenges such as incremental learning methods [34], which work on adapting and retuning
the parameters of the general model based on the newly collected data. Another approach is the
localised learning, which is based on developing a local model for each test point or subset of the
test set [35]. In the present paper, the KNN-LS-SVM localised learning approach is used because
of its simplicity and efficiency. Two techniques were used to test the localised models, the first
based on LOSO testing approach, and the second approach was based on leave-one-out (LOO)
testing approach.

3.3.3.1 Developing Personalised Models Using the Selected 12 Features and Different
Class-Configurations Based on LOSO Testing Approach

As explained earlier, to develop a personalised classification model the new personal data were
not considered in the training set to compare the performance with the global model. In other
words, the new subject (the subject data that left out of the training set) is completely unknown
to the model, which simulates the case when the model is dealing with an unknown test subject.
The used localised learning approach of KNN-LS-SVM searches for the most similar (based
on the similarity criterion, see (3)) training points to the new test point (from the new subject)
in the input space by which a local model is developed to classify this test point. The resulted
error performance (precision, sensitivity, F1-score, and accuracy) of the KNN-LS-SVMclassifier
based on LOSO testing approach and K = 5 is presented in Table 3.7.
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Table 3.7: The error performance (precision, sensitivity, F1-score, and accuracy) of the local-
ized model KNN-LS-SVM model for the three different 3-class configurations based on LOSO
testing approach.

Configurations Classes Precision Sensitivity F1-score Accuracy

Conf. 1
Class 1 0.47 0.36 0.41

0.83Class 2 0.84 0.90 0.87
Class 3 0.83 0.71 0.77

Conf. 2
Class 1 0.84 0.95 0.89

0.81Class 2 0.74 0.68 0.70
Class 3 0.84 0.83 0.83

Conf. 3
Class 1 0.87 0.94 0.90

0.85Class 2 0.88 0.89 0.88
Class 3 0.86 0.74 0.79

3.3.3.2 Developing Personalised Models Using the Selected 12 Features and Different
Class-Configurations Based on Leave-One-Out (LOO) Approach

In contrast with the first approach, for each subject one data-point is tested and the rest of the same
subject datapoints are integrated with the training data. This approach mimics online person-
alised streaming modelling, since the new streaming personal data is considered in the training
dataset and a dedicated classifier is developed online for each new test data-point. The obtained
error performance of the KNN-LS-SVM classifier based on LOO testing approach and K = 5

is depicted in Table 3.8.

Table 3.8: The error performance (precision, sensitivity, F1-score, and accuracy) of the local-
ized model KNN-LS-SVM model for the three different 3-class configurations based on LOO
testing approach. (*) indicates the highest error performance value for each class in the different
configurations.

Configurations Classes Precision Sensitivity F1-score Accuracy

Conf. 1
Class 1 0.75 0.56 0.64

0.86Class 2 0.87 0.93* 0.90*
Class 3 0.86 0.78 0.82

Conf. 2
Class 1 0.84* 0.95* 0.89*

0.79Class 2 0.71 0.62 0.66
Class 3 0.81 0.83* 0.82

Conf. 3
Class 1 0.84* 0.91 0.87

0.87*Class 2 0.89* 0.88 0.88
Class 3 0.89* 0.80 0.84*
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For the proposed personalised models, the first approach of LOSO is mimicking the case that
the model is applied to an unknown subject to predict individuals thermal sensation level based on
the measured variables. The localised model is searching for the most similar (nearest) training
points to each test point, of this subject, that to train the classification model for each test point.
This approach could be useful in case of having a large amount of data with a diversity of subjects
especially in the absence of streaming data from new subjects. The second approach of LOO
mimics the case of having a prior knowledge about the test subject through personally labelled
data. The localised model in this approach is also searching for the most similar training points,
which may include this subject personal data. This approach can be efficient in the presence of
streaming personal data that is labeled by the test subject.

3.3.4 StreamingAlgorithmApproach for PersonalisedThermal SensationMon-
itoring

In this paper, we introduce the main framework of streaming algorithm for personalised clas-
sification model to predict individuals thermal sensation based on streaming data obtained from
wearable sensors. Themain framework of the proposed streaming algorithm approach is depicted
in Figure 3.8.

Figure 3.8: Schematic representation of the proposed streaming algorithm for online personalised
thermal sensation monitoring.

The main components of the proposed algorithm (Figure 3.8) are explained in the following:
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• Streaming Data

The availability of the real-time sensors data, from thewearable technologies, has given the
possibility of streaming data, which processed via the proposed online streaming algorithm
to adapt and personalise the classifier model. The streaming data includes:

I Wearable sensor data, which consists of the continuouslymeasured variables, namely,
individuals heart rate, skin heat flux, skin temperature, ambient temperature and au-
ral temperature.

II Data obtained from the interactive mobile App., which consists of personal data,
namely, age and gender. Additionally, the individuals thermal sensation vote is to be
obtained via mobile application-based questioner.

The workflow procedures of streaming data acquisition and labelling are depicted by the
flowchart shown in Figure 3.8.

• Feature Extraction

As shown earlier, the selected 12 features are extracted from the continuously measured
variables, namely, HR , Ter , Tsk , ∆T̄ , q̄sk, RMS(HR, Tc, Tsk, q̇), and dq̄sk

dt
. Other

personal futures, namely, age and gender are to be obtained via the interactive mobile
application from individual users.

• Labeled Data

All training data must be labelled, either the old training data or the new personal data.
Personal data is labelled manually via the questionnaire provided by the mobile application.

• Unlabeled Data

Unlabelled data is the new data points to be labelled by the classifier, these unlabelled data
points include the extracted features from the measured variables.

• Localised Learning Algorithm

The localised learning algorithm (i.e. KNN-LS-SVM) is the classifier that receives the
unlabelled data points and train a dedicated model with the K nearest training points in
order to label the unlabelled ones. The output of this process is a predicted label of personal
thermal sensation (T̂s).
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Figure 3.9: Flowchart represents the main workflow of the streaming data acquisition and label-
ing process.

3.4 Discussion

The main advantage of the proposed classification model in the present work, in comparison
with other proposed models in recent studies (e.g., [17, 22, 25, 28]), is its capability to handle
the requirements for adaptive personalisation and online streaming modelling. Moreover, the
proposed model is reduced-dimension, with the minimum possible number of features, which
makes it computationally suitable for smart wearable technologies. The main results and find-
ings of the present study is compared with recent studies that treat the prediction of the thermal
sensation/comfort as a classification problem using machine-learning techniques. In their study
[22], Ghahramani et al. used HMM classification technique, in which three classes of thermal
comfort, namely, comfortable, uncomfortably cool and uncomfortably warm are used. An im-
portant point to be considered in the work of Ghahramani et al. [22] is the class imbalance in
their used experimental data between the positive class (comfortable), which represents 81% of the
data and the negative class (uncomfortable), which represents only 19% of the data. Therefore,
using the classification accuracy (reported 82.8%) is considered misleading in this case. Hence,



80CHAPTER 3. TOWARDSONLINEPERSONALISED-MONITORINGOFTHERMAL SENSATION

it is muchmore suitable in their case to compare the precision and sensitivity of this model and
our general model (Model III Conf. 3). The reported results [22] of Ghahramani et al. showed
a precision of 93.3% and sensitivity of 56.22% without clarifying the precision and sensitivity of
the uncomfortable states of warm and cool. On the other hand, our results of (Model III Conf.
3), which is the closest to the compared approach, show a precision of 88% for all classes and
sensitivity of 88%, 91%, and 78% for Class 1, Class 2, and Class 3, respectively. These results
show more balance between precision and sensitivity for each class. Moreover, personalisation
and streaming algorithm compatibility is missing in their study. Another relevant study [28], by
Jiang et al., attempted to develop a personalised classification model, as for each subject, a clas-
sification model is trained with 50% of that subject data and tested with the rest. The reported
result of this study [28] showed an average accuracy over all subjects of 89.82%. However, there
is no clarification of the class distribution; hence, it is not clear whether the accuracy is efficient
enough for evaluation. Moreover, it is not consistent to compare our final personalised model
with that model as the latter is learned with seven classes; however, the former is learned with
three classes. In another comparable study [25] to our present work, Farhan et al., predicted
individual thermal comfort using machine learning classifier. In their study Farhan et al., used
publicly available dataset from which a balanced number of each class is chosen to train and test
the classification model. Their developed classification model is trained with three classes that
represent the three thermal comfort states of uncomfortably cool, neutral and uncomfortably
warm divided based on predefined comfort thresholds. In contrast to our proposed classification
model, the proposed classifiers in [25] do not consider model personalisation or streaming online
modelling. The best-obtained results amongst their developed models are of the SVM classifier
as follows: precision of (76.92, 62.8, and 94.2%) and sensitivities of (67.5, 89.8, and 75.7%) for
classes -1, 0, and 1 respectively. On the other hand, our obtained results of (Model III conf. 3)
are precision of (88, 88, and 88%) and sensitivities of (88, 91, and 78%) of classes 1, 2, and 3 respec-
tively. It is observed that the precision of our developed classification model are more consistent
for all classes, and the sensitivities are higher in total. Ultimately, their approach [25] does not
consider personalising the model or streaming online modelling. In another recent study [17],
a personal model is discussed; however, it is strictly applied to two subjects (male and female),
unlike the case in the present study where we test the model on 25 test subjects. After comparing
our methodology and results with number of relevant and comparable studies, it is obvious that
the presented study tackled number of classification and modeling challenges unlike many of
the aforementioned relevant works. These challenges included the feature selection and dimen-
sion reduction, considering new streaming personal data into the training set with keeping the
model complexity, rigidness against the problem of class imbalance, and ultimately personalising
the classification model using easily measured variable obtained from wearable sensors.
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3.5 Conclusions

In this present paper, 25 participants are subjected to three different environmental temperatures,
namely 5 ◦C (cold), 20 ◦C (moderate) and 37 ◦C (hot) at two different activity levels, namely, at
low level (rest) and high level (cycling at 80W power). Metabolic rate, heart rate, average skin
temperature (from three different body locations), heat flux and aural temperature are measured
continuously during the course of the experiments. The thermal sensation votes are collected
from each test subject based on ASHRAE 7-points questioner. A general classification model
based on LS-SVM technique is developed to predict the individuals thermal sensation. A lo-
calised learning algorithm based on KNN-LS-SVM approach is used to develop a personalised
classification model to predict the individuals thermal sensation for 3-classes classification model.
The developed classification model has the advantage of using a reduced-dimension input-space,
which is suitable for wearable applications and online streaming algorithm. The developed per-
sonalised model showed an overall accuracy result of 86%. Additionally, we introduced the main
framework of streaming algorithm based on the developed personalised classification model to
predict individuals thermal sensation based on streaming data obtained from wearable sensors. In
the present work, we believe that it is the first time to utilise the localised learning approach in
the thermal state classification problem. One of the main advantages of the proposed approach,
in this paper, that it is suitable for streaming algorithm and online modelling as the compu-
tational cost is not influenced by increasing the number of data-points. However, the newly
obtained data-points is to be considered to develop the online model, which is the main advan-
tage of the KNN-LSSVM. Furthermore, the localised learning approach enables personalisation
of the classification model by considering either the personally labelled data-points or the most
similar data-points of other persons. On the other hand, number of limitations, concerning the
developed model, should be acknowledged here. One important limitation to the developed
classification model is regarding to the data size, as the number of data-points per person and
in total are generally limited. Moreover, the 7-classes labeling is unbalanced, which made the
class reduction is necessary to enhance the overall prediction performance during the course of
this study. Otherwise, this study would be extended to be applied to a 7-classes classification
problem. The data balance and data size can be enhanced by asking for more frequent votes dur-
ing the experiment and considering more than three environment temperature levels. Finally,
another limitation regards the proposed KNN-LSSVM modeling approach, in which an extra
hyperparameter (i.e. k) is to be optimised, which adds an extra computational cost to the overall
streaming algorithm.
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Chapter 4

Vital Signs Prediction Based on Continuous
Monitoring of Hospitalised Patients Using
Wearable Technology

Abstract

In this prospective, interventional, international study, we investigate continuous monitoring of
hospitalised patients vital signs using wearable technology as a basis for real-time early warn-
ing scores (EWS) estimation and vital signs time-series prediction. The collected continuous
monitored vital signs are heart rate, blood pressure, respiration rate, and oxygen saturation of
a heterogeneous patient population hospitalised in cardiology, post-surgical and dialysis wards.
Two aspects are elaborated in this study. The first is the high-rate (every minute) estimation of
the statistical values (e.g., minimum andmean) of the vital signs components of the EWS for one-
minute segments in contrast with the conventional routine of 2 to 3 times per day. The second
aspect explores the use of a hybrid machine learning algorithm of kNN-LS-SVM for predicting
future values of monitored vital signs. It is demonstrated that a real-time implementation of EWS
in clinical practice is possible. Furthermore, we showed a promising prediction performance of
vital signs compared to the most recent state of the art of a boosted approach of LSTM. The
reported mean absolute percentage errors of predicting one-hour averaged heart rate are 4.1, 4.5,
and 5 % for the upcoming one, two and three hours respectively for cardiology patients. The
obtained results in this study show the potential of using wearable technology to continuously
monitor the vital signs of hospitalised patients as the real-time estimation of EWS in addition
to a reliable prediction of the future values of these vital signs is presented. Ultimately, both
approaches of high-rate EWS computation and vital signs time-series prediction is promising
to provide efficient cost-utility, ease of mobility and portability, streaming analytics, and early
warning for vital signs deterioration.
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4.1 Introduction

Monitoring of vital signs of hospitalised patients is of paramount importance to deliver timely
and adequate care. Numerous studies that focus on analysing vital signs, hypothesise that many
adverse events are preceded with a disruption in the vital signs [1, 2, 3, 4, 5, 6]. Monitoring is
conventionally achieved via expensive and cumbersome devices [7]. In addition, these conven-
tional monitoring devices have limited mobility and portability. In hospitals, early warning score
(EWS) systems are used to indicate deterioration of the vital signs heart rate, respiration rate, sys-
tolic blood pressure, oxygen saturation, and temperature [9]. One limitation of this EWS is that
it evaluates the current instantaneous measurement of the vital sign, but provides no past trends
or future predictions of vital signs. Another limitation is the low frequency of observations in
clinical practice which is typically between two to three times a day [10]. This relatively low
frequency results from monitoring vital signs with cumbersome devices in combination with
manual recording of the EWS by the nurses (e.g., respiration rate).

Therefore, continuous monitoring of the vital signs of hospitalised patients using wearable
technology is expected to overcome the limitation of the conventional low-rate measurement of
EWS at the hospital. Furthermore, continuous monitoring of vital signs provides the medical
staff a more complete picture and clinical insight into the patients’ health status and progression
[8].Motivated by these challenges, we aim in this paper to develop a model for predicting future
values of vital signs in addition to continuously monitoring of EWS using wearable technology.
For critical care patients, predicting any adverse events based on vital signs analysis is investigated
exhaustively in several studies such as sepsis prediction [11] and mortality prediction [12]. How-
ever, for general wards, we hypothesise that predicting the future value of vital signs can provide
early detection of any deterioration of the patients’ health state. Moreover, due to the difficulty
to obtain a real-time annotation/labelling of the monitored vital signs, we have to predict values
instead of labels or scores. An important aspect in this regard is the recording frequency since
it influences the magnitude of the prediction horizon. Recently Shiyu Liu et al. [13] proposed a
generative boosting approach of long-short term memory (LSTM) deep neural networks to pre-
dict the vital signs values for specific prediction horizons (up to three hours ahead). Their dataset
included demographic data and vital signs of 177 medical patients (non-specific ward) at regular
intervals of 5 minutes over 24 hours. Moreover, they used a mutual information-based clustering
algorithm to select a more representative dataset to train the generative model. To the authors
knowledge this study describes one of the most performant algorithms in the state of the art for
predicting vital signs. More specifically, they predicted heart rate and systolic blood pressure 20
minutes in advance, with a mean absolute percentage error of 7.41 and 6.17 %, respectively.

In our study, we aim at investigating two aspects of monitoring vital signs and EWS using
wearable technology. Firstly, we aim at computing and monitoring the vital signs components
of the EWS at a high-rate (i.e. every minute). Secondly, we aim at predicting at least one-hour
ahead statistical attributes of the different vital signs (i.e. minimum, maximum, mean). The latter
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approach is achieved by using the localised learning approach of KNN-LS-SVM. The KNN-LS-
SVM approach is chosen to provide an online prediction with more personalised characteristics
of the model [14]. To the authors knowledge, it is the first time to apply a localised learning
algorithm (i.e. kNN-LS-SVM) to predict vital-signs time series. It is worth mentioning that
kNN-LS-SVM for regression is proposed before in the studies of [15, 16, 17] as a continuation of
the fundamental study of local learning algorithms [18].

This article is arranged as follows; after the introduction section, an overview of the EAGLE
study is introduced in section 2. Then, the third section is about the methods that are going to
be applied to analyse the vital signs for the two proposed approaches. In section 4, the results of
the two proposed approaches are illustrated. Next we discuss our findings in section 5. Finally,
the conclusion of this study is presented in section 6.

4.2 Data Generation

The EWS is a scoring system implemented in many care centers worldwide, which helps to
prevent clinical deterioration of the patients at general wards, via early recognition of disease
worsening (i.e. change in one or more vital parameters) [9, 19, 20, 21, 22]. In detail, essential
vital parameters (heart rate, respiration rate, blood pressure, temperature, oxygen saturation, and
neurological responsiveness) are recorded multiple times a day. However, the classic EWS system
has its limitations as mentioned earlier in the introduction.

The EWS scoring system has already been proven to be an effective tool in reducing clinical
deterioration, reducing the admission to intensive care units and thus overall reducing mortality
[19, 23, 25]. However, as mentioned above the EWS is measured in clinical practice at a rather
low frequency. Therefore, estimation of the EWS score via continuously monitored parameters
is expected to further increase patient survival.

The data in this work were generated in the framework of the The new gold standard: the
EarlyWarning Score algorithm (i.e. EAGLE) study, which was part of the Interreg EMR project
WearIT4health on the development of wearables for hospitalised patients. The objectives of the
EAGLE study are: (1) to collect continuously monitored vital parameter data using wearable
sensors of patients admitted at the general ward. (2) To develop an algorithm that can early
identify clinical deterioration and can optimise the application of the conventional EWS system,
and (3) to explore the possibility to predict the measures of the vital signs and EWS for specific
prediction horizons.

4.2.1 Study Design

The EAGLE study is an international, multicentre, prospective, and interventional study that in-
cludes the following study sites: Centre Hospitalier Universitaire de Liège (CHU) at Liège, Bel-
gium. Ziekenhuis Oost-Limburg (ZOL) at Genk, Belgium and Academisch Ziekenhuis Maas-
tricht (aZM) at Maastricht, The Netherlands. The data collection is done according to the study
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protocol in accordance with GCP and ICH guidelines. The study was approved by the ethical
commission of CHU (B707201836800) and aZM.

4.2.2 Study Population

Patients of the participating hospitals were selected taking into account the following exclusion
criteria: i) eligible patients should not be younger than 18 years old, ii) eligible patients should not
be recruited from high-intensity units (i.e. intensive care units, coronary care units and emer-
gency rooms), iii) eligible patients should not participate in other studies that might influence the
study results (e.g. experimental medication that could affect the heart rate), iv) eligible patients
should not be hospitalised for a 1 day clinic stay, v) eligible patients should not have infectious
diseases.

This resulted in the following target populations: 52 cardiology patients at ZOL and 21 at
CHU (on average 23 hours x 2 days), 10 post-surgical patients at aZM (on average 23 hours x 1
day) and 7 dialysis patients at CHU (on average 4 hours x 2 sessions).

The used measuring device in this study is SOMNOtouch-NIBP (Figure 4.1) http://www.
somnomedics.eu of theCE and ISO certified company of SOMNOmedics GmbH.The SOMNOtouch-
NIBP device is capable of measuring several physiological parameters needed for the estimation
of the EWS score in a continuous, non-invasive manner.

4.2.3 Measuring Device

The SOMNOtouch-NIBP device consists of the following sensors:

1. Accelerometer (x, y and z-axis) (m/s2) capable of detecting motion and the position of
the body

2. Pulse oximeter to measure the oxygen saturation (%)

3. Photoplethysmograph (PPG) which is used in combination with the ECG to derive cuff-
less, non-invasive blood pressure using pulse transit time (PTT) technique.

4. 3-channel ECG from which the heart rate and respiration rate can be derived.

5. Intercostal electromyography (EMG) electrodes to estimate the respiration based on mus-
cle Movement.

4.3 Methods

4.3.1 High-Rate EWS Computation

Based on the continuous measurement of the vital signs (heart rate, blood pressure, oxygen sat-
uration SpO2 and respiration rate) the EWS component of each vital sign is computed every

http://www.somnomedics.eu
http://www.somnomedics.eu
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Figure 4.1: A scheme illustrating the allocation spots of SOMNOtouch-NIBP device and elec-
trodes (adapted from http://www.somnomedics.eu).

minute using a wearable device. However, the used device does not measure body temperature,
hence, the EWS component of temperature is excluded from this study. In order to avoid the
instantaneous calculation of EWS components of each vital sign, the statistics of the vital signs
are calculated within each minute (i.e. mean, median, minimum and maximum) and based on
them the EWS component of each vital sign is computed. The EWS component of each vital
sign is computed based on the standard ranges of the EWS used by the hospital of ZOL as listed
in Table 4.1.

Table 4.1: Early Warning Scores system based on ZOL Hospital

SCORE 3 2 1 0 1 2 3
Temperature (◦C) <35.1 35.1-36.5 36.6-37.5 >37.5
Heart Rate (BPM) <40 40-50 51-100 101-110 111-130 >130

Respiration Rate (BPM) <9 9-14 15-20 21-30 >30
Oxygen Saturation (%) <91 91-93 94-95 >95

Systolic Blood Pressure (mmHg) <70 70-80 81-100 101-180 180-200 >200

Due to motion artefacts and estimation noise (i.e. HR estimation from ECG), the recorded
signals have to be denoised. The denoising filter that is used for this approach is a fourth order
Butterworth low pass zero-phase filter with cut-off frequency 0.03125 HZ. The signal is denoised
for every minute (60 samples) and the early warning score component of the clean signal’s statis-
tics is computed.

http://www.somnomedics.eu
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4.3.2 Vital Signs Time-series Prediction

In this approach, we aim at providing early detection of vital signs’ behaviour based on time series
prediction. In contrast with conventional EWS monitoring, the early detection in our approach
is based on predicting the future measures of each vital sign for specific prediction horizons,
based on the historical measurements of these vital signs. Moreover, we aim to develop a predic-
tive approach that is suitable for online prediction and model personalisation. The online model
is required to adapt the prediction given new recorded measurements, and the personalisation is
required to consider the individuality of each subject. In order to develop a model with these
characteristics, we suggest using a localised learning approach that can handle continuously in-
creasing recorded measurements in addition to online predictions. The chosen localised learning
approach is k-nearest neighbours least-squares support vector machines (kNN-LS-SVM) [15, 14]
that has shown an acceptable performance in different studies tackling the problems of streaming
analytics, online prediction and model personalisation [14, 24].

4.3.3 Local learning of SVMs

In this section, we start by reviewing the main concepts behind SVMs and localised learning
approaches for SVMs. Many localised learning algorithms are developed; these algorithms can
be divided into two categories. The first category is multiple prototype method which mainly
relies on partitioning the input space prior to training the models by either clustering (e.g., k-
means) or Voronoi partitioning. Therefore, these algorithms provide offline models which do not
consider the new streams of data points [15, 27, 28, 29]. A well-known algorithm of that cate-
gory is Profile SVM (PSVM) [27]. For the second category, some localised learning algorithms
rely on weighing functions that train models online. These algorithms are called instance-based
learning algorithms (IBL) as locality refers to the training instances in the vicinity of the new
test instance. The weighting function can be a square kernel that provides uniform weight to
specific neighbouring instances and excluding all other instances such as k-nearest neighbours.
Moreover, the weighting function can be a smooth kernel which gives decaying weights to all
instance with the distance from the test instance. The disadvantage of the smooth kernel func-
tion (e.g., Gaussian and Cosine similarity measure) [18, 30, 31] is that all training instances or
an indefinite number of them are included in the training process but with different weights.
On the other hand, the square kernel function (i.e. kNN) provides a controlled computational
complexity regardless of the incremental data size in contrast with the other weighing functions.
However, the disadvantage of it is the crucial influence of the k number. Therefore, kNN-LS-
SVM [15, 14, 32] is chosen for its advantages of handling streaming data and providing online
modelling given the fixed computational complexity. Hence, We will proceed by introducing
the hybrid KNN-LS-SVM algorithm for regression.
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4.3.3.1 Support vector machines

SVMs are originally presented as binary classifiers, that assign each data instance x ∈ Rd to
one of two classes described by a class label y ∈ {−1, 1} based on the decision boundary that
maximises the margin 2/||w||2 between the two classes. Generally, a feature map ϕ : Rd 7→ Rp

is used to transform the geometric boundary between the two classes to a linear boundary L :

wTϕ(x)+b = 0 in feature space, for some weight vectorw ∈ Rp×1 and b ∈ R. The class of each
instance can then be found by y = sgn (w⊤ϕ(x) + b), where sgn refers to the sign function.

Similar to the classification problems, regressionmodels are obtained via estimating the bound-
ary L based on a set of training examples xi (1 ≤ i ≤ N ) with corresponding output values
yi ∈ R. In particular, one is interested in parameters w and b that minimise a loss-function:

min
w, b; ξ

1

2
w⊤w+ C

N∑
i=1

(ξi + ξi
∗), (4.0)

and are subject to:

yi −w⊤ϕ(xi)− b ≤ ϵ+ ξi, i = 1, 2, ..., N ,

w⊤ϕ(xi)− yi + b ≤ ϵ+ ξi
∗, i = 1, 2, ..., N ,

ξi, ξi
∗ ≥ 0, i = 1, 2, ..., N.

The constant C in (4.0) denotes the penalty term that is used to penalise estimation error through
the slack variables ξi and ξi

∗ outside Vapnik ϵ-sensitivity loss function in the opimisation process.

The so-called kernel-trick avoids the explicit introduction of a feature map ϕ and implicitly
allows to use feature spaces of infinite dimensionality. A commonly used kernel is given by the
Gaussian kernel:

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2
0

)
,

where σ0 denotes the kernel bandwidth. Both σ0 and C can be optimised as hyper-parameters in
a cross-validation experiment.

LS-SVM’s are obtained by using a least-squares error loss function [33]:

min
w, b; e

1

2
w⊤w+

1

2
γ

N∑
i=1

ei
2, (4.1)

such that

yi = w⊤ϕ(xi) + b+ ei, i = 1, 2, ..., N.

Where γ is the regularisation constant for LS-SVM. The optimisation procedure introduces
errors ei such that 1− ei is proportional to the signed distance of xi from the decision boundary.
In fact, the non-negative slack variable constraint is removed and the solution of the optimisation



94CHAPTER 4. VITAL SIGNS PREDICTIONBASEDONCONTINUOUSMONITORING

problem can be obtained by a set of linear equations, reducing computational effort [33].

4.3.3.2 KNN-LS-SVM Regressor

Local learning approaches build models that fit the data in the local neighbourhood around a test
example and by locally adjusting the model parameters to the properties of the data [18].

While global SVMs consider the same weight for all training instances in the optimisation
process (4.1), local learning approaches allow that the training samples near a test point are more
influential than others. Localised learning approaches of SVMs [14] are based on weighting
functions λ(xs,xi) that express the similarity between the features vectors of the i-th data point
xi and a test instance xs. For an LS-SVM, this leads to the following cost function:

min
w, b; e

1

2
w⊤w +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i , (4.2)

such that

yi = w⊤ϕ(xi) + b+ ei, i = 1, 2, ..., N.

Weighted least-squares support vector machines [34] use a similar approach, but here a different
weighting function can be used for any given test point xs. In this work we will study a binary
valued similarity criterion:

λ(xs,xi) =

 1 if ||xs − xi||2 ≤ rs

0 otherwise,

where rs is the K-th smallest distance among {||xs − xi||; 1 ≤ i ≤ N}. This formulation leads
to the hybrid KNN-LS-SVMmethod that we will apply on the time-series prediction approach.
In particular a regression model is built for each test example using only the training examples
located in the vicinity of the test example [15].

KNN-LS-SVM has the additional advantage of sparseness. Indeed, for an LS-SVM or the
localised version that uses a continuous similarity function all input data is required to construct
the separating hyperplane [34]. This can be seen by solving the optimisation problem (4.1). Using
the method of the Lagrangian multipliers, we find:

L(w, b, e;α) =
1

2
‖w‖22 +

1

2
γ

N∑
i=1

λ(xs,xi)e
2
i−

N∑
i=1

αi(w
⊤ϕ(xi) + b+ ei − yi),

where αi are the Lagrangianmultipliers. Thus, for a KNN-LS-SVM the sparseness characteristic
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is returned to the LS-SVM. In an online learning mode, this sparseness will result in a computa-
tional advantage compared to LS-SVM.
As shown in Figure 4.2, the algorithm of KNN-LS-SVM is implemented as follows:

1. Given a test example xs, compute distances to all training examples and pick the nearest
K neighbours;

2. Train the LS-SVM model with the K nearest neighbours.

3. Use the resulting regressor to estimate the output of xs.

The parameter K and the distance metric (e.g. Euclidean, Mahalanobis or Chebyshev) are ad-
ditional hyperparameters next to the kernel width σ0 and the penalty term γ that are optimised
in a cross-validation approach [14]. One challenge does face finding the nearest neighbour in
continuously increasing data pool is the search complexity. However, several advanced search
algorithms are developed to reduce this complexity [35].

Figure 4.2: A flow chart illustrating the localised learning algorithm of KNN-LS-SVM for Re-
gression.

4.3.3.3 Prediction-approach Design

In order to develop a predictive model several considerations are taken into account that can pre-
dict statistics of the vital signs for a specific prediction horizon. Firstly, the time-series prediction
problem is formulated as a regression problem whose input comprised of the extracted features
from timewindows of themeasurements of the vital signs (1-hour windows). After signal prepro-
cessing, the unified sampling rate for all signals is set to 1 HZ. Hence, it would be more useful to
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predict the statistics of a time window of a specific size instead of exact samples. After discussions
with medical experts, we concluded that predicting the statistics of the vital signs measurements
for a prediction horizon of 1 hour is of high clinical relevance for the different profiles of patients
that we are targeting in this study (i.e. cardiology, dialysis, and post-surgical). Hence, the output
of the regression problem is represented by the statistical values (i.e. minimum, maximum, and
mean) of the time windows representing the upcoming three consecutive hours (+1, +2, and +3
hours) from the end of the feature-extraction period to test the prediction power of our model.
For dialysis patients, the prediction will be restricted to the upcoming hour (+1 hour) as they
are only hospitalised during the dialysis sessions (3-4 hours for each session). Furthermore, the
next step to define the regression problem is to set the window size, the number of windows,
and the overlap percentage between windows from which the features are extracted to be used
as input. After testing different window sizes and different overlapping percentages, we found
that two overlapping windows of window-size one hour (3600 samples) with an overlap of 50
minutes (3000 Observations) can provide the best possible prediction for the upcoming hour. For
practical reasons, this approach is designed to provide a prediction every 10 minutes based on the
previous 70 minutes recordings as shown in Figure 4.3. Ultimately, for the train/test division, the
leave-one-instance-out approach is used as the training set includes the data instances of all pa-
tients except for one data instance from one patient. Hence, by using kNN-LS-SVM, the nearest
points can be from the same subject or similar subjects.

Figure 4.3: The time-windows for feature extraction (red) comprised of two overlapped windows
of 60 minutes each with an overlap of 50 minutes resulting in 70 minutes to predict the statistics
of the target window (green) after N hours (e.g., 0,1 or 2 hours).

As we have three profiles of patients, namely cardiology, post-surgical, and dialysis patients,
it is found to be efficient to test the predictive models on the different profiles individually. How-
ever, the main characteristics of the predictive models for each profile will be the same except
for the profile of dialysis as the number of observations is relatively low compared to the other
wards. Moreover, the extracted features for all profiles are the same, namely minimum, mean,
median, maximum, standard deviation, variance and energy from the denoised signal and its first
derivative forming 11 features in total excluding energy of the first derivative. The main differ-
ence that is imposed on the predictive model characteristics for dialysis patients is the number
of nearest neighbours to train the models locally with. For both cardiology and post-surgical
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patients, the number of nearest neighbours is 25 data instances, on the other hand, the number
of nearest neighbours is 15 for dialysis patients.

Features are extracted from the vital-signs of heart and respiration rate, systolic, diastolic,
mean arterial blood pressure, oxygen saturation and pulse pressure (7 variables). These features
are extracted from the time-windows of 1-hour (3600 observations), resulting in 77 (11x7) di-
mensions. As shown in Figure 4.3, the input of the prediction model of kNN-LS-SVM is of two
windows, 1-hour each, resulting in 144 (2x77) input dimensions.

4.4 Results

In this section, the results of implementing and testing the proposed approaches of high-rate
EWS computation and vital signs time-series prediction are presented. For the high-rate EWS
computation approach, the outcome of each implementation stage is illustrated. On the other
hand, the vital-signs prediction approach is tested on the different profiles of patients using the
leave-one-instance-out test procedure. Both approaches are applied to 52 cardiology patients at
ZOL and 21 at CHU (on average 23 hours x 2 days), 7 post-surgical patients at aZM (on avaerage
23 hours x 1 day) and 5 dialysis patients at CHU (on average 4 hours x 2 sessions). For post-surgical
and Dialysis patients, 3 and 2 patients are excluded respectively due to low quality measurements.

4.4.1 High-Rate EWS Computation

For the first approach, the different statistical values of the monitored vital signs (i.e. maximum,
minimum, mean, and median) are computed and then the vital sign score is calculated based on
these statistical values. Hence, based on the method elaborated in Section 3.1, the original sig-
nal is segmented into non-overlapping 1-minute segments. Each segment is denoised and then
the statistical values are computed for the denoised signals (i.e. maximum, minimum, mean, and
median). From these statistical values, the vital signs scores are estimated based on the depicted
ranges in Table 4.1. As shown in Figure 4.4, the results of the different stages of the aforemen-
tioned method applied to the heart rate (HR) of a post-surgical patient for approximately 6.5
hours of monitoring are depicted.

As mentioned earlier, the recordings of HR in Figure 4.4 are from a post-surgical patient
for the afternoon period. Based on specialists, patients during this period rest after a physiother-
apy session in the morning except for the periods of going to the toilet or eating on the table.
Therefore, we expect that for those patients, the noise can be due to poor conductivity or local
muscular motions.

4.4.2 Vital Signs Time-series Prediction

For vital signs prediction, the results will be illustrated for the three profiles of patients of car-
diology, post-surgical, and dialysis ward. The targeted vital signs are heart rate (HR), systolic
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Figure 4.4: From the HR of a post-surgical patient: (a) The raw signal (BPM), (b) the denoised
signal (BPM), (c) the maximum, (d) the mean, (e) the median, (f ) the median based on moving
median filter, and (g) the minimum values of the EWS component of HR for each one-minute
segment.

blood pressure (SBP), oxygen saturation (SpO2), respiration rate (RR), and pulse pressure (PP)
that is derived from the systolic (SBP) and diastolic blood pressure (DBP). The predicted values
are the statistical values (minimum, maximum and mean) of these vital signs for specified future
time windows. The upcoming results are based on the leave-one-instance-out test approach.

4.4.2.1 Cardiology and post-surgical Patients

For Cardiology and post-surgical patients, the same regression models of kNN-LS-SVM are
applied with the same number of k-nearest points (25 data instances). The choice of the number
k is optimised based on a cross-validation procedure based on the error performance as explained
in [14]. To evaluate the influence of the proposed algorithm, a naive predictor is proposed to
be compared with. The naive predictor is assigning the previously observed mean value to the
predicted one. The prediction performance of a naive predictor (NaiveMean) in addition to the
prediction results for 1-hour, 2-hours and 3-hours ahead are evaluated using the absolute error
as shown in Figure 4.5. These results are for the vital signs HR (5.a), SBP (5.b), SpO2 (5.c), RR
(5.d), and PP (5.e). Furthermore, the mean absolute percentage error (MAPE) of the prediction
results are shown in Figure 4.6 for cardiology patients. Regarding SpO2, its values are normally
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skewed to be within a range of 20% between 80-100%. Therefore, the worst expected value of
MAPE is 20%.

Figure 4.5: Box-plots of the absolute errors of the Naive predictor at the upcoming hour of the
mean value and the proposed algorithm of kNN-LS-SVMof themean, minimum, andmaximum
values at the upcoming three hours (+1,+2,+3 hours) for the vital signs (a) HR (BPM), (b) SBP
(mmHg), (c) SpO2 (%), (d) RR (BPM), and (e) PP (mmHg) for cardiology patients.

Figure 4.6: The mean absolute percentage error (MAPE) of the predicted statistical values (i.e.
minimum, maximum, and mean) for the vital signs of HR, SBP, SpO2, RR, and PP for the
upcoming one, two, and three hours (+1, +2, +3 hours) for cardiology patients.
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The next stage is to calculate the EWS for both predicted and actual measures of the vital
signs (i.e. HR, SBP, SpO2, and RR). In Figure 4.7(a, c, e and g) , the normalised histograms of
absolute error between the predicted components of EWS and the actual components of EWS
for the four vital signs are depicted. Similarly, normalised histograms of EWS error for naive
predictor are shown in Figure 4.7 (b, d, f, and h).

Figure 4.7: The normalised histogram of EWS components absolute Error for both kNN-LS-
SVM and Nieve predictors respectively of (a,b) HR, (c,d) SBP, (e,f ) SpO2, and (g,h) RR for
cardiology patients.

Similar to cardiology patients, both absolute error and MAPE results of the vital signs HR
(8.a), SBP (8.b), SpO2 (8.c), RR (8.d), and PP (8.e) for post-surgical patients are depicted in Figures
4.8 and 4.9. Moreover, the normalised histograms of the EWS components absolute error of HR,
SBP, SPO2, and RR respectively are shown in Figure 4.10 (a, c, e, and g). Moreover, normalised
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histograms of EWS error for naive predictor are shown in Figure 4.10 (b, d, f, and h).

Figure 4.8: Box-plots of the absolute errors of the Naive predictor at the upcoming hour of the
mean value and the proposed algorithm of kNN-LS-SVMof themean, minimum, andmaximum
values at the upcoming three hours (+1,+2,+3 hours) for the vital signs (a) HR (BPM), (b) SBP
(mmHg), (c) SpO2 (%), (d) RR (BPM), and (e) PP (mmHg) for post-surgical patients.

Figure 4.9: The mean absolute percentage error (MAPE) of the predicted statistical values (i.e.
minimum, maximum, and mean) for the vital signs of HR, SBP, SpO2, RR, and PP for the
upcoming three hours (+1, +2, +3 hours) for post-surgical patients.
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Figure 4.10: The normalised histogram of EWS components absolute Error for both kNN-LS-
SVM and Nieve predictors respectively of (a,b) HR, (c,d) SBP, (e,f ) SpO2, and (g,h) RR for
post-surgical patients.

4.4.2.2 Dialysis Patients

For dialysis patients, the predictive models are slightly different from the previous models due
to the disease characteristics of these patients. As dialysis patients at haemodialysis are regularly
in-hospital (i.e. at least 3 days per week), whit a duration of four hours per session, the prediction
is only applied for the next hour instead of three hours. Furthermore, it is found that the optimal
k-number of the nearest neighbours is 15 data instances based on the cross-validation procedure.
The prediction error performance, absolute error and MAPE, for the statistical values of the vital
signs for the upcoming hour are depicted in Figures 4.11 and 4.12 respectively. Ultimately, the
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normalised histograms for the vital signs components of EWS absolute error are shown in Figure
4.13 (a, c, e, and g). Finally, normalised histograms of EWS error for naive predictor are shown
in Figure 4.13 (b, d, f, and h).

Figure 4.11: Box-plots of the absolute errors of the Naive predictor of the mean value and the
proposed algorithm of kNN-LS-SVM of the mean, minimum, and maximum values at the up-
coming hour for the vital signs (a) HR (BPM), (b) SBP (mmHg), (c) SpO2 (%), (d) RR (BPM),
and (e) PP (mmHg) for Dialysis patients.

Figure 4.12: The mean absolute percentage error (MAPE) of the predicted statistical values (i.e.
minimum, maximum, and mean) for the vital signs of HR, SBP, SpO2, RR, and PP for the
upcoming hour for dialysis patients.
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Figure 4.13: The normalised histogram of EWS components absolute Error for both kNN-LS-
SVM and Nieve predictors respectively of (a,b) HR, (c,d) SBP, (e,f ) SpO2, and (g,h) RR for
Dialysis patients.

After showing the results of the three profiles of patients it is noticed that for both Cardiol-
ogy and Post-surgical patients, the significance was achieved at α of 0.01 resulting in p-values
approximately zeros for all vital signs. The significance is achieved for dialysis patients at α of 0.05
with p-values 0.05, 0.06, 0.064, 0.042, and 0.033 for HR, SBP, SpO2, RR, and PP respectively.
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4.5 Discussion

Several studies investigated vital sign data collected from continuously monitored hospitalised
patients ,more in particular, intensive care unit (ICU) patients. For this purpose, publicly available
datasets such asMIMIC have been used of which different versions are available (MIMIC,MIMIC
II, and MIMIC III) [36, 37]. However, continuously monitoring vital signs requires expensive
cumbersome devices at the ICU [38, 1]. Many of these studies target the early detection of vital
signs deterioration based on novelty detection approaches [39, 40, 41, 42, 43]. In our study,
monitoring is performed with medically approved wearable technology. Such devices have the
advantage to be relatively cheaper and they allow a mobile and portable monitoring approach.
Moreover, this study assesses the vital signs by time-series prediction and real-time estimation
of EWS components from each vital sign. It is worthy to mention that the used EWS standard
thresholds are of the hospital of ZOL, however, our algorithms can be adapted to any EWS
standards of any hospital.

As shown in section 4, the first approach provides a high- rate real-time estimation of the
EWS components obtained from the vital signs’ data. (HR, SBP, SpO2, and RR). Real-time
EWS components are obtained by estimating vital signs’ scores every 60 seconds after signal
preprocessing. Such real-time vital signs assessments are already possible for critically ill patients
at ICUs that are monitored by expensive equipment and are restrained to their bed. For general-
ward patients however, such real-time EWS components estimation is not performed in clinical
practice due to the restrictions of, among others, manual and infrequent measurements by nurses.
Here, we demonstrate that frequent measurements using wearables for general-ward patients
allow real-time estimation of EWS as well. To illustrate the implementation of the first approach,
a representative example of a post-surgical patient is used. As shown in Figure 4.4, the raw
signal (4.a) of HR is noisy due to motion artefacts and possible conductivity issues. Hence, it is
important to denoise the raw signal on segments of one-minute each to discover the underlying
trend and deviations from it. For that purpose, a Butterworth low pass filter zero-phase (fourth
order) is used to denoise the signals with cut-off frequencies between 0.03 and 0.04 Hz for the
different signals. The signal shown in (4.b) is a sequence of denoised non-overlapping segments
(one-minute each). After obtaining a clean signal, the EWS can be easily calculated given the
hospital standard thresholds for each vital sign as shown in Table 4.1. For practical reasons, we
find that instead of providing sample-by-sample EWS we can provide the EWS components
of the statistical values of the vital sign within each segment. Therefore, within each segment
we provide the maximum, mean, median, and minimum observed vital sign score as shown in
Figure 4.4. We notice from these observed vital signs scores that the variance within the same
segment is reasonable as the difference between the minimum and maximum scores for the same
segment is mostly unity, taking into account that the EWS ranges are continuous without guard-
intervals. Moreover, both the mean and the median are very similar which indicates the absence
of outliers and consistency within each segment. Furthermore, in Figure (4.f ), we show the
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median EWS component of HR based on moving median filter. This filter is implemented by
extracting the median value within a moving window of one minute width and shifting with one
sample. Compared to Figure (4.e), the moving median filter is missing several details especially
those that lead to unity EWS component of HR.

For the time-series prediction approach, the results in section 5 show that the prediction of
vital signs based on historical values of these vital signs is feasible considering the balance between
the feature-extraction horizon (70minutes) and the prediction horizon (1-3 hours). As mentioned
earlier, there are three profiles of patients that are monitored and analysed.

Firstly, Figure 4.5 shows significant difference between a naive predictor, that just predicts
the next hour value similar to the most previous measure, and the kNN-LS-SVM predictor. This
significance is approved by the paired t-test for all vital signs for different profiles. For the two
profiles cardiology and post-surgical patients, the parameters of the kNN-LS-SVM are set to
the same values. In particular the number of nearest neighbours is set to k = 25. In Figure 4.5
and 4.6, the absolute error and MAPE for cardiology patients are illustrated respectively. It is
observed that the extreme values (minimum and maximum), especially maximum, have higher
errors than the mean. This is due to the high variability of the extreme values from one window
to another especially when the window size is one hour. Moreover, the parameters with high
average amplitude (e.g., 124 mmHg for SBP) have higher absolute error than that of RR which
has low average amplitude (approximately 14 BPM), in contrast with results of MAPE since the
opposite is observed. Furthermore, it is observed that the maximum value of HR has the largest
absolute error (mean, median, and standard deviation) which may indicate the high fluctuation
of the extreme values of HR. On the other hand, the highest MAPE is observed by the minimum
value of RR as the minimum values can be approximately 5 BPM, hence having an absolute error
of 2 leads to 40%MAPE. Another important observation is that the error performance evolution
from one prediction horizon to another is at maximum 1.8, 2.5% for absolute error (mean) and
MAPE respectively. In Figure 4.7, the normalised histograms of EWS components absolute error
of the vital signs HR, SBP, SpO2, and RR are depicted. These histograms show the dominance
of zero error with minimum 80% (HR and SpO2) and maximum 88% (RR), but the unity error
of maximum 14% (HR) and minimum 7% (RR). The rest of the possible absolute error values (2
and 3) are minority with maximum 5% (SpO2).

For post-surgical patients, as shown in Figures 4.8 and 4.9, we notice that the fluctuation of
absolute error of blood pressure parameters (SBP and PP) in addition to HR is low compared
to cardiology patients. Moreover, the MAPE for all vital signs is less than that of cardiology
patients. In Figure 4.10, the normalised histograms of EWS components absolute error show a
higher dominance of zero error with minimum 87% (HR) and maximum 90% (SBP). However,
the unity error of maximum 14% (HR) andminimum 10% (RR). The rest of the possible absolute
error values (2) are minority with maximum 2% (SpO2) and now error of 3 is observed.

For dialysis patients, some features about the model and the approach are modified to meet
the characteristics of this profile of patients. As mentioned earlier, this profile of patients is nor-
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mally hospitalised and monitored during the dialysis sessions (3-4 hours/session for haemodial-
ysis). Hence, it is found that one-hour prediction is sufficient for that profile, also the optimal
number of nearest points is 15 data-points for the kNN-LS-SVM regression model. As shown
in Figures 4.11 and 4.12, the overall error performance for +1 hour prediction is comparable to
that of the other profiles of patients either for absolute error or MAPE. One remark is that, in
contrast with the other profiles, the prediction error for the minimum value for HR and SBP is
higher than that of the maximum. That may indicate that extremely low values of these vital
signs for those patients are less predictable than the other values. One general observation for the
different profiles of patients is that the error performance is not systematically degrading with
increasing the prediction horizon. A possible interpretation is regarding the temporal resolution
provided by the window size. Hence, increasing the window-size can eliminate this observation,
but this will lead to decrease our data-size which affects the performance. Therefore, we keep
the window-size of one hour which provides the best error performance together with keeping
a proper data size. In Figure 4.13, the normalised histograms of EWS components absolute error
show a maximum zero error of 94% (SpO2) and minimum 83% (RR). The unity error is ob-
served, in contrast with the other profiles, less than that of 2 (HR, SBP and SpO2) and 3 (SpO2).
This can be due to the relatively smaller size of data compared to the other profiles, hence, the
distribution became not skewed normal as expected. Moreover, the errors of 2 and 3 are mainly
observed in the vital signs of SpO2 and RR. This can be interpreted as a result of the narrow
EWS ranges for both vital signs as shown in Table 4.1.

From the obtained histograms, we have noticed that the observed EWS error has in few cases
the value of 3 especially for the vital signs of SBP and SpO2. By investigating the instances that
have an EWS error of 3 for SBP, we found that this error of 3 is due to noise. This conclusion is
drawn from observing abrupt changes in the EWS from 0 to 3 or vise versa. Moreover, there are
only 10 minutes between two consecutive observations representing windows of one hour each,
with 50 minutes overlap. Therefore, we conclude that these extreme EWS errors are more due
to artefacts and their associated noise than physiological behaviour. On the other hand, the EWS
error of 3 for SpO2 is either due to the small range of SpO2 between scores 0 and 3 (90-96%) as
shown in Table 4.1 or due to noise.

A general observation regarding histograms (Figures 4.7, 4.10, 4.13) of the Naive predictor
EWS error is that the performance for both cardiology and post-surgical patients is worse than
our proposed model but not radically worse. This is due to the high percentage (> 80%) of
the observed 0 EWS for all vital signs along the period of recording. On the other hand, the
histogram of the Naive predictor for dialysis patients is much worse than that of our proposed
model. This can be because of the more dynamic behaviour of the vital signs during the dialysis
sessions. Hence, the variability from one observation to another can mislead the Naive predictor.

Ultimately, it is noticed that the locally selected instances for the three profiles of patients
are not all from the same patient. Moreover, more than 50% of the nearest neighbours are from
different subjects. Which shows the advantage of using our localised learning approach that
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can provide an accurate online performance using same-subject data and together with the most
similar instances of other subjects. Therefore, the concept of model personalisation is extended
to include similar subjects in addition to same-subject data.

After showing the results for each of the considered profile of the patients, we discuss our
predictive model’s error performance in the light of the study of Shiyu et al. [13] which is the
most relevant one according to the authors. However, the differences between the two studies
have to be considered regarding the prediction horizon and the nature of the predicted values
(i.e. exact or statistical).In their study, Shiyu et al. show that their best results of the boosting
generative LSTM approach for vital signs prediction are 7.41% for HR and 6.17% for SBP of
MAPE. These prediction results are for 20 minutes prediction horizon only. On the other hand,
our prediction results are not for exact values but for statistical values of time windows. However,
for comparison purposes, the mean values of the future time windows are used considering the
average prediction errors of the three prediction horizons (i.e. +1, +2, +3 hours). For HR, the
MAPE’s are 4.5, 3.1, and 6.3% for cardiology, post-surgical, and dialysis patients respectively. For
SBP, the MAPE’s on average are 4.4, 1.8, and 4.6% for cardiology, post-surgical, and dialysis
patients respectively. Based on these results, we claim that our approach is promising given the
prediction horizons and the error performance. Moreover, a more recent study [44] is presenting
an LSTM based predictive model to predict the vital signs of hospitalised patients. However, the
used time windows are relatively small since the best results obtained with 1-minute windows and
the number of admissions needed fro the best performance is 2500 admissions. The developed
deep network requires 22 hours for training and the best error performance obtained is 81%.
Ultimately, as mentioned earlier, the vital sign of body temperature, one of the five main EWS
components, is missing in this study as the usedwearable device does not provide it. However, our
resulting outcome of continuous monitoring and time-series prediction of EWS components of
the other vital signs is still informative. These components can be provided to the medical staff in
an aggregated form to give the complete EWS once the body temperature is available. Moreover,
the body temperature of general wards patients is not as dynamic as the other vital signs (e.g.,
HR). Hence, we do not expect any difficulty to predict it once its values are provided.

4.6 Conclusions

In this study, we proposed two approaches for high-rate EWS computation and time-series pre-
diction based on vital signs measured on hospitalised patients using a wearable device in a car-
diology, post-surgical, and dialysis ward. The first approach is the estimation of the high-rate
(every minute) scores of the statistical values of the measured vital signs of HR, SBP, RR, and
SpO2, for each one-minute segment, based on the depicted thresholds in Table 4.1. On the other
hand, the second approach comprises predictive models by which the future values of monitored
vital signs in addition to the pulse pressure (PP) are predicted. This approach is designed to pro-
vide a prediction result every ten minutes. The used technique is the hybrid machine learning
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algorithm of kNN-LS-SVM. The predicted values are the statistical values (i.e. minimum, max-
imum, and mean) of the future time-windows within specified prediction horizons. The used
prediction horizons for both cardiology and post-surgical patients are 1-, 2-, 3-hours ahead (+1,
+2, +3 hours). For dialysis patients, the prediction horizon is only the upcoming hour due to the
relatively short stay. The prediction performance is evaluated based on the error metrics of the
absolute error and mean absolute percentage error (MAPE), and the followed test procedure is
that of leave-one-out. The prediction error performance shows outperforming results compared
to a naive predictor as well as to the best performing and most recent state-of-art [13]. Hence, we
conclude that our prediction approach can provide an acceptable prediction performance that can
add a predictive insight to themedical staffmonitoring the health status of themonitored patients.
Furthermore, the prediction approach can handle both online prediction and streaming analytics
as a main feature of the used method of kNN-LS-SVM in addition to model personalisation.
For the high-rate estimation of EWS, the proposed approach shows the possibility to provide an
online estimation of the EWS based on the real-time signal preprocessing and vital sign score
computation. Ultimately, continuous vital signs monitoring using wearable technologies can
provide a real-time estimation of the EWS and time-series prediction using a localised learning
algorithm. In this way, the combination of wearables and machine learning can contribute to a
more accurate monitoring of patients in hospital settings.

For future work, we would suggest investigating the patients taking into consideration their
status during their hospitalisation stay. For instance, we would expect clinicians to give a label to
the analysed patients regarding their likelihood of deterioration. In this case, we would test our
models specifically on those critical cases to evaluate the efficiency of our models with such cases.
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Chapter 5

Feature Engineering for ICU Mortality
Prediction Based on Hourly to Bi-Hourly
Measurements1

Abstract

Mortality prediction for intensive care unit (ICU) patients is a challenging problem that requires
extracting discriminative and informative features. This study presents a proof of concept for ex-
ploring features that can provide clinical insight. Through a feature engineering approach, it is
attempted to improve ICUmortality prediction in field conditions with low frequently measured
data (i.e. hourly to bi-hourly). Features are explored by investigating the vital signs measure-
ments of ICU patients, labelled with mortality or survival at discharge. The vital signs of interest
in this study are heart and respiration rate, oxygen saturation and blood pressure. The latter
comprises systolic, diastolic and mean arterial pressure. In the feature exploration process, it is
aimed to extract simple and interpretable features that can provide clinical insight. For this pur-
pose, a classifier is required that maximises the margin between the two classes (i.e. survival and
mortality) with minimum tolerance to misclassification errors. Moreover, it preferably has to
provide a linear decision surface in the original feature space without mapping to an unlimited
dimensionality feature space. Therefore, a linear hard margin support vector machine (SVM)
classifier is suggested. The extracted features are grouped in three categories: statistical, dynamic
and physiological. Each category plays an important role in enhancing classification error perfor-
mance. After extracting several features within the three categories, a manual feature fine-tuning
is applied to consider only the most efficient features. The final classification, considering mor-
tality as the positive class, resulted in an accuracy of 91.56%, sensitivity of 90.59%, precision of
86.52% and F1-score of 88.50%. The obtained results show that the proposed feature engineer-
ing approach and the extracted features are valid to be considered and further enhanced for the

1https://doi.org/10.3390/app9173525
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mortality prediction purpose. Moreover, the proposed feature engineering approach moved the
modelling methodology from black-box modelling to grey-box modelling in combination with
the powerful classifier of SVMs.

5.1 Introduction

Intensive care unit (ICU) patients are admitted because of an acute critical illness or because of
the high need for intensive continuous monitoring. In addition, critical ICU patients are prone
to rapid deterioration, resulting in a possibly fatal outcome when not monitored closely. Hence,
the main challenge at the ICU is to reduce the morbidity of the admitted patients and prevent
mortality which has a high likelihood due to severe illness [1]. Mortality prevention requires an
intensive monitoring of vital signs, such as heart and respiration rate, oxygen saturation, non-
invasive or arterial blood pressure, and so forth, that can capture clinical deterioration earlier
and thus improve patient outcome. In the past, multiple scoring systems have been developed
(e.g., Acute Physiology, Age, Chronic Health Evaluation II, Simplified Acute Physiology Score,
Sequential Organ Failure Assessment) to provide insights and even predictions regarding ICU
patient mortality [2]. However, these scoring systems are population-based and often use sum-
marised nongranular data. This calls for the need for an in-depth investigation of vital signs and
associated indicators preceding any deterioration using granular continuous data. This investi-
gation can be handled by time-series analytics to understand the behaviour and interaction of
different signals.

Most of the ICU mortality prediction studies focus on developing powerful mortality pre-
diction models [3, 5, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] in which the higher priority is to provide
an accurate label or score about the admitted patients’ status. One drawback of such an objective
is paying less attention to features simplicity and interpretability, which is the case with deep
learning approaches [7, 8, 9, 10, 11, 12, 13]. The key approach in these studies is black-box mod-
elling focusing mainly on predictive model error performance, regardless the interpretability of
the features. Hence, the useful information that can be provided to the medical staff is strictly the
prediction output. Moreover, a considerable number of relevant studies focus on investigating the
continuously recorded vital signs of ICU patients in order to predict the mortalityrisk of those
patients [3, 5, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. A frequently used database in these studies is the
medical informationmart for intensive care (MIMIC) in its three releases (MIMIC,MIMIC II and
III) with different versions [17, 18]. These databases provide a diverse and very large population
of ICU patients and contain high temporal resolution data including lab results, electronic docu-
mentation and bedside monitor trends and waveforms. In contrast, another approach that is used
in investigating critically ill patients in the ICU is mechanistic modelling [19, 20]. Mechanistic
modelling is used to describe the system from mathematical and physical dynamics perspective.
The main focus of mechanistic modelling is on the system dynamics, the interaction between
the different variables and the way they interact from a system perspective taking into account



5.1. INTRODUCTION 117

biological and physiological laws [21]. A mechanistic modelling approach is used in investigating
biological systems by developing mathematical models [22, 23, 24].

The main focus in this presented study is to engineer features that can provide clinical insight
by which the medical staff is guided through the different parameters. However, prediction ac-
curacy is used in this study to assess the relevancy of the extracted features to the mortality events.
Moreover, the dataset in our study is a low frequently measured data (i.e. hourly to bi-hourly) as
it is a daily-life dataset that is not generated for research purpose. Moreover, the set of variables,
parameters and the investigated population here is limited compared to the ones provided by the
MIMIC databases. In the light of the given approaches (Black-box predictive models and mech-
anistic models) and reviewed studies, our study stands between the two approaches (i.e. pure
black-box modelling and mechanistic modelling), as the main focus of the study is to achieve
an efficient and informative set of physiologically meaningful features (mechanistic aspect) by
means of enhancing the predictive model error performance (black-box aspect) that could be
representable for European ICU departments.

From an analytical perspective, the series of recordings for each vital sign is considered a time-
series that is sampled by a specific sampling rate. During ICUmonitoring, different vital signs are
measured and recorded simultaneously, in which the simultaneity facilitates studying correlation,
interaction and behaviour between and within the different vital signs. Moreover, the time-series
of recorded vital signs enable extraction of different features (typically statistical and dynamic)
within segmented time windows, showing the dynamic behaviour of the recorded sign.

Many features can be extracted within consecutive or overlapping time windows for differ-
ent vital signs, either individually or in combination. This option provides a large number of
dimensions that have to be evaluated and adjusted to inform the decision making of the algo-
rithm, which requires an exhaustive investigation. However, such an investigation including a
large number of numerical features is not an easy task for medical experts. Due to the high di-
mensionality issue, it is required to conduct such an investigation via a computational algorithm.
In order to cope with these challenges, a simple and powerful classifier is used to explore the
features. Ideally, this classifier should handle the problem of classification intuitively with the
optimal margin hypothesis [25] which maximises the separability between the different classes.
Moreover, the classifier should be capable of dealing with high dimensional data efficiently.

The proposed classifier for this purpose is the linear hard margin support vector machine
(SVM) classifier which represents the simplest version of the powerful SVMs. The reason for
using SVMs that it is relying on the maximum margin hypothesis. For linear hard margin SVM,
it restrictively works efficiently once the input features provide linearly separable data points.
With this property, it is feasible to extract features that may have a medical interpretation or
physiological ground as the classifier would deal with the features as they are presented in the
input space. In otherwords, it is required to have an acceptable performance only if the data points
in the presented feature space are linearly separable withminimummisclassification error [25, 26].
This error intolerance (orminimum tolerance) ensures that the introduced features provide a clear
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separation between the different classes (i.e. mortality and survival). Moreover, utilising such a
linear classifier controls the dimensionality of the solution as it would only find a solution in the
introduced dimensions. In other words, using a more sophisticated classifier (e.g., Radial Basis
Function (RBF) SVM)would find a solution in an uncontrolled dimensionality, for instance, RBF
SVM reaches infinite dimensionality due to the characteristics of the Gaussian kernel [26].

In this study, the problem is presented as integration between time-series prediction and clas-
sification. This integration is obtained by extracting features from the time-series and considering
the dynamic behaviour of the time-series to construct the input space of the model. On the other
hand, the output of the model is represented by the labels mortality/survival. The prediction is
obtained by predicting the state (label) after the final record (last moment at ICU) on average
1.5 days ahead. The final record is the record preceding the patients death (mortality label) or
transfer to a lower care ward (survival label).

The objective of this study is to present a proof of concept for exploring features that can
provide clinical insight through a feature engineering approach in order to improve the ICU
mortality prediction in field conditions with low frequently measured data. The feature engi-
neering approach is based on the hypothesis that utilising the linear hard margin SVM would
provide a controllable and interpretable feature extraction approach.

This paper is arranged as follows: After the introduction, the second section of materials and
methods comprises data description and an introduction to linear hard margin support vector
machines. The third section includes the feature engineering process and results. The fourth
section includes the discussion and the final section gives the conclusion.

5.2 Materials and Methods

5.2.1 Data

Data used for testing and evaluating the features were collected at the hospital Ziekenhuis Oost-
Limburg (Genk, Belgium) during the period of 2015–2017. In detail, data were collected from
patients hospitalised at the ICU and coronary care unit who were at these wards for at least ten
days. Data consisted of vital parameters which were recorded continuously by Philips Intellivue
monitors (Philips Electronics Nederland B.V., Amsterdam, TheNetherlands), that recorded con-
tinuously and was annotated on average hourly to bi-hourly by the nursing staff. The recorded
data was extracted from the electronic medical record for a total of 447 different patients, three of
them readmitted to the unit again, hence, in total 450 recorded admissions annotated with either
mortality or survival by discharge. The age of the patients was 65 (±16) years old, 305 of patients
were males and 142 were females. The average duration of stay at the ICU is 20.96 days with a
minimum of 10 days, maximum of 97 days, median of 30 days and IQR of 20–53 days of ICU
stay. The vital parameter data consisted of the heart rate, the respiration rate, oxygen saturation,
arterial blood pressure (ABP), non-invasive blood pressure (if ABP was not measured) and body
temperature (not frequently). The patient population of the study has different reasons for ICU
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admission as shown in Figure 5.1. The local Ethical Committee was notified and approval was
obtained (19/0023R).

Figure 5.1: Distribution of the patient population and their reason for admission. The population
was divided into age categories of 13–44, 45–64, 65–79 and >80 years of age.

5.2.2 Hard-Margin SVM

SVMs are originally presented as binary classifiers, that assign each data instance x ∈ Rd to
one of two classes described by a class label y ∈ {−1, 1} based on the decision boundary that
maximises the margin 2/||w||2 between the two classes as shown in Figure 5.2. The margin is
determined by the distance between the decision boundary and the closest data point from each
class [27, 28, 25, 26].
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Figure 5.2: Schematic representation of a two-dimensional dataset consisting of two linearly
separable classes. The dotted lines indicate the boundaries where themargin ismaximisedwithout
tolerating any misclassifications (adapted from Reference [28]).

Generally, a feature map ϕ : Rd 7→ Rp, where d is the number of input space dimensions and
p is the number of feature space dimensions, is used to transform the geometric boundary between
the two classes to a linear boundary L : w⊤ϕ(x)+b = 0 in feature space, for some weight vector
w ∈ Rp×1 and b ∈ R. The class of each instance can then be found by y = sgn (w⊤ϕ(x) + b),
where sgn refers to the sign function.

The estimation of the boundary L is performed based on a set of training examples xi (1 ≤
i ≤ N ) with corresponding class labels yi ∈ {−1, 1}, where N is the number of data points.
An optimal boundary is found by maximising the margin that is defined as the smallest distances
between L and any of the training instances. In particular, one is interested in constants w and
b that minimise a loss-function [28]:

min
w, b

1

2
w⊤w,

and are subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1, i = 1, 2, ..., N.

By applying the lagrangian to the problem we get

L(w, b, α) =
1

2
‖w‖22 − (

N∑
i=1

αi(yi[w
⊤ϕ(xi) + b]− 1),

where αi ≥ 0 are the Lagrangian multipliers for ith data point. By solving the optimisation
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problem

max
α

min
w,b

L(w, b, α),

the following optimisation conditions are obtained:

∂L

∂w
= 0 −→ w =

N∑
i=1

αiyiϕ(xi),

∂L

∂b
= 0 −→

N∑
i=1

αiyi = 0,

∂L

∂α
= 0 −→ yi(w

⊤ϕ(xi)− b) = 1,

The resulting classifier in both primal space and dual space are

f(x) = sgn (w⊤ϕ(x) + b),

f(x) = sgn(

N∑
i=1

αiyiϕ(xi)
⊤ϕ(x) + b).

The dot product ϕ(xi)
⊤ϕ(x) is computationally expensive, hence, it is replaced with the

kernel function k(xi,x), this replacement is known as the kernel trick. With the kernel trick,
there is no need to execute the step of feature map as it is implicitly done by the kernel function.
Hence, the dual space classifier with the kernel trick is

f(x) = sgn(

N∑
i=1

αiyik(xi,x) + b).

For practical reasons, we suggest to obtain the linear hard margin SVM from the standard
SVM formula that tolerate misclassifcation errors [29]

min
w, b, ξ

1

2
w⊤w+ C

N∑
i=1

ξi,

subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N.

where the constant C denotes the penalty term that is used to penalise misclassification through
the slack variables ξi in the optimisation process. The linear hard margin SVM can be obtained
via penalising the error extremely by giving C a very high value (e.g., 1010). With this trick, we
can get a solution with misclassified instances to be investigated through the feature engineering
phase.
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5.3 Feature-Engineering

The process of feature engineering is implemented in an interactive way between extracting new
features and the classifier error performance as shown in Figure 5.3. This process is executed in
three phases: feature-extraction, evaluation and feature fine-tuning. This process has a closed-
loop nature as shown in Figure 5.3, since the three phases influence each other. The proposed
three categories of features are statistical features, dynamic features, physiological features. The
following sections describe the different feature engineering phases and the extracted features
per category.

Figure 5.3: A flow chart illustrating the feature engineering methodology.

5.3.1 Evaluation

The engineered features are evaluated by feeding them into a linear hard-margin SVM classifier
to predict mortality or survival of a subject. For this purpose, a leave-one-out procedure is used
to produce a confusion matrix showing the true positives (TP), the true negatives (TN), the false
positives (FP) and the false negatives (FN). The positive class is themortality state and the negative
class is the survival one. Using these numbers, different error performance metrics are calculated
(i.e. sensitivity, precision, accuracy and F1-score). Furthermore, we evaluate the features by
looking at the effect on the number of true positives and true negatives when they are added to
the model.

5.3.2 Feature Extraction

Firstly, the period of analysis is within the last 84 observations which represent on average five
days before the patients discharge. The first 60 observations (3.5 days on average) out of 84 are
considered for feature extraction to predict mortality/survival 24 observations ahead (1.5 days on
average) at discharge (i.e. after observation 84). This period is determined after different test trials
with different periods and is found to be the most efficient and informative period based on the
classification performance. Moreover, this average period of 3.5 days agrees with the experience
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of clinical experts in the field. This agreement is based on the fact that there is no standard at
the moment that refers to a minimum or maximum of observations to use, in order to provide
the best of the care. As it is a human/medical judgement which made based on a combination of
patient-specific prognosis and trends, clinical expertise and experience and often corresponds to
3–4 days. The scheme of the feature extraction process is shown in Figure 5.4. Three categories
of features are extracted, as described below.

Figure 5.4: A flow chart illustrating the feature extraction process including the three feature
categories (i.e. statistical, dynamic and physiological) and the sequence of the process marked
by the evaluation steps. Also, in the process, the investigation is applied to the false negative
patients only.

5.3.2.1 Statistical Features

The first category of features to be extracted is the set of statistical features which represent
the basic characteristics of each time-series within segmented, non-overlapping time windows:
minimum, maximum, mean, median, standard deviation, variance, and energy.

Statistical features are extracted within windows whose sizes are defined by the number of
observations and not by a specific time period due to the nonuniform sampling rate (hourly to
bi-hourly) as mentioned before. Extraction is based on the raw measurements of the vital signs
and their first derivatives as well as the calculated standard early warning scores (EWS) of these
measurements based on ZOL hospital standards. A weak point about statistical features is the
static nature of these features as they do not reveal the dynamic behaviour of the time-series.
Therefore, another category of features is required to be explored, namely dynamic features.
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5.3.2.2 Dynamic Features

The extracted dynamic features are Pearson correlation coefficients, crossing-the-mean count, outlier-
occurrence count, and outlier indicator. Correlation coefficient is computed between each pair of vital
signs within each window. For this feature, it is necessary to be applied to the z-score of the
vital signs. Crossing-the-mean count of a vital sign is determined by counting the number of times
that the recorded vital sign crosses its mean value within each window. This feature indicates
the abrupt changes in the vital sign from one observation to another. Outlier-occurrence count
is computed by counting the number of outliers detected within each window. An outlier is
detected by the statistical definition: any point outside the range µ±3σ for a normally distributed
variable is an outlier. For this feature, it is not expected to work with the vital sign of oxygen
saturation (SpO2) as it is negatively skewed, however, it will be tested as a feature to prove the
concept. Finally, the outlier indicator is determined by the difference between the mean and the
median of the records within each window.

5.3.2.3 Physiological Features

In order to enhance the classification performance, a manual investigation of the misclassified
instances (based on the statistical and dynamic features) is required. The investigation is focusing
on the false negative patients (i.e. deceased patients classified as survived) as the main objective
is relevant to a reliable mortality prediction which is inversely proportional to the false nega-
tive count. This manual investigation is based on the measured physiological vital signs and uses
physiological process knowledge resulting in physiological features. The different physiological
features are described hereafter. By investigating the time-series of false negative patients, a con-
sistent behaviour is noticed within the period of interest, in which the systolic blood pressure
(SBP) approaches the diastolic blood pressure (DBP) as shown in Figure 5.5a.
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(a)

(b)

Figure 5.5: (a) Systolic blood pressure (BP), diastolic BP and pulse pressure (PP) of the last 150
observations (approximately the last nine days) of one false negative patient. The dashed window
refers to the region where the systolic BP and diastolic BP measurements approach closely. (b)
Systolic BP, diastolic BP and PP of the last 150 observations of another false negative patient.
The mean value of the pulse pressure is 87.4 mmHg and median 88 mmHg.

It is found that the difference (SBP-DBP) within certain measurement periods is smaller than
20 mmHg. A relevant observation that is noticed with other false negative patients is that this
difference is relatively high (i.e. greater than 60 mmHg) during certain measurement periods as
shown in Figure 5.5b. This difference between SBP and DBP is also known as the pulse pressure
(PP ) and varies normally in a range between 40–60 mmHg [30, 31]. As the PP is a linear
combination between two vital signs, it can be considered as a new variable from which both
statistical and dynamic features can be extracted. By reviewing medical literature focusing on
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PP and its effect on the mortality prediction (e.g., References [32, 33]), our finding is partially
consistent with their conclusion.

By further investigating the data, another behaviour is noticed with false negative patients,
namely a frequent drop in respiration rate (RR) as shown in Figure 5.6a. Due to this behaviour,
a new feature is proposed to represent this drop and the count of its occurrence. This feature is
defined as the number of times the RR drops below a specific threshold within each window and
is further referred as low-RR count. For this feature, two parameters are selected: the threshold
and the window size. Both of them are searched exhaustively by maximising the classification
performance by considering the new feature. The best-found combination is a threshold of 5
bpm and a window size of 60 observations.

Another observation in some false negative patients’ vital signs is a physiological feature re-
lated to a frequent drop of oxygen saturation SpO2 as shown in Figure 5.6b. Similar to low-RR

count, this feature is defined as the number of times the SpO2 drops below a specific threshold
within each window. Moreover, the threshold and window size combination affects the influ-
ence of the feature on the performance. The best-found combination is a threshold of 77% and
a window size of 60. This feature is further referred to low-SpO2 count.

Both, low-SpO2 count and low-RR count created only an added value to the classification
performance after the fine-tuning step.

Finally, a physiological feature that is imported directly from the patients’ medical record
is their positive and negative diagnosis with cardiovascular diseases (CVD). By considering this
feature exclusively in the input space, no single positive class is recognised. However, by adding
this feature to the optimal combination of features, a remarkable enhancement is achieved as will
be discussed later.

5.3.3 Feature Fine-Tuning

After defining three different categories of features, it is necessary to fine-tune the proposed
features in order to obtain the most efficient combination and representation of them. As will
be shown in Section 5.4, the error performance can drop after combining features from different
categories. One interpretation of this drop is that some features are strictly efficient for a group
of patients and confusing for the rest. In order to limit this effect a fine-tuning step is performed.

The feature fine-tuning phase is based on the selection of vital signs instead of the selection
of dimensions which is in contrast with existing automatic and conventional feature-selection
techniques. Indeed, the rows of the inputmatrix of our data correspondwith the different subjects
in the study and contain the different features calculated on multiple windows (e.g., the statistical
feature of mean is extracted fromm vital signs within n time-windows resulting inmn columns
for each subject). Conventional feature-selection techniques [14] select the columns of the matrix
that are most representative for the study. However, in this way feature values within a specific
time-window can be excluded leading to features that are hard to interpret. For this reason,
we propose a backward selection approach where a feature (corresponding to multiple columns
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(a)

(b)

Figure 5.6: (a) Respiration rate of a deceased patient with an obvious drop at specific observations
below the normal range (12–20 BPM) (b) Oxygen saturation (SpO2) of another deceased patient
that drops frequently (minimum 78% during the stay).

in the input matrix) can be excluded from the set of features. Moreover, prior knowledge is
used in order to reduce the randomness in the selection process of the features. For instance, we
will exclude the statistical and dynamic features of the HR guided by the prior knowledge that
the heart is a main actuator in the control system of a human body that responds to different
excitations (e.g., medication), not only critical events [34]. The effect on the performance score
of this selection will be discussed in Section 5.4.

The procedure of feature fine-tuning that we propose in this work starts with exploring
whether statistical and dynamic features are providing high performance when extracted from
all vital signs or strictly from a subset of these vital signs. Moreover, we assess the effect on the
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classification performance of using aggregate features which are calculated on a group of vital
signs together rather than on individual vital signs. Furthermore, feature values can be presented
as either real or absolute. This procedure is applied exhaustively to the statistical and dynamic
features and is assessed by the error performance. The resulting fine-tuning (FT) steps are as
follows:

1. FT1: For HR extracted features, it is found that excluding both statistical and dynamic
features enhances the error performance.

2. FT2: The correlation coefficients feature is found more efficient when presented in both real
and absolute values.

3. FT3:Outlier-occurrence count, is found most efficient when applied to SBP , MAP , RR

and PP excluding DBP and SpO2. Moreover, the outlier-occurrence count is found more
efficient when presented in an aggregate form instead of individually except for the vital
sign SBP .

4. FT4: The correlation coefficients feature is providing the best performance when computed
only betweenHR and SBP . Together with considering the features low-SpO2 count and
low-RR count the classification performance is improved.

5. FT5: crossing-the-mean count is found more efficient when applied only to SBP and RR

and represented in the aggregate form.

6. FT6: The dynamic feature of outlier indicator is more efficient when applied only to SBP

and DBP .

7. FT7: Ultimately, considering the physiological feature of CVD enhanced the perfor-
mance.

5.4 Results

The obtained results based on the previously mentioned evaluation metrics for each category and
for each fine-tuning step are explained below.

Starting with the statistical features, the resulting classification output is 83 TP’s, 148 TN’s,
87 FN’s and 132 FP’s. This result is fixed over the different test trials score-wise and patient-wise.
In other words, the correctly classified patients are fixed over the different test trials because of
using the linear hard margin SVM.

For dynamic features, the resulting classification output considering only the dynamic fea-
tures is 32 TP’s, 247 TN’s, 138 FN and 33 FP’s. Despite the remarkable reduction in the number
of TP’s, 18 new TP’s are recognised by the dynamic features that are not recognised by the
statistical features, in addition to 116 new TN’s. This result is again fixed over the different test
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Table 5.1: Feature Extraction results.

Results

Feature Combination TP TN FN FP Sensitivity (%) Precision (%) F1-Score Accuracy (%)

Statistical (Stat) 83 148 87 132 48.88 38.60 43.14 51.33
Dynamic (Dyn) 32 247 138 33 18.82 49.23 27.23 62.00

Stat+Dyn 85 159 85 121 50.00 41.26 45.21 54.22
Physiological (Phy) 45 222 125 58 26.47 43.69 32.97 59.33

Phy+Stat+Dyn 83 118 87 162 48.88 33.88 40.02 44.67

trials score-wise and patient-wise. With both statistical and dynamic features, the classifier per-
formance is improved slightly compared to only statistical features with 2.8% increment in the
accuracy. As the resulting classification output after combining both categories is 85 TP’s, 159
TN’s, 85 FN and 121 FP’s. Despite the weak performance at this stage, the correctly classified
instances are fixed with each test trial. This means that extracted features at this level are able to
discriminate clearly between the correctly classified patients.

For physiological features, namely the PP , the resulting classification output with exclusively
the extracted statistical and dynamic features of PP is 45 TP’s, 222 TN’s, 125 FN’s and 58 FP’s.
It is important to note that the investigated FN’s at the earlier stage are correctly classified by
the PP extracted features. However, adding the PP extracted features to both statistical and
dynamic features provided the following results: 83 TP’s, 118 TN’s, 87 FN’s and 162 FP’s. The
classification output of the different feature-categories combinations are shown in Figure 5.7a.
Moreover, feature extraction results are combined and depicted in Table 5.1.

Before showing the results of the fine-tuning phase, we present the results of using the fea-
ture selection and ranking technique of automatic relevance determination (ARD) [28] based on
backward selection method. The classification output of the ARD selected dimensions is 92 TP’s,
218 TN’s, 78 FN’s and 62 FP’s.

For the fine-tuning phase, the results are depicted in Table 5.2 and Figure 5.7b in a cumulative
way.

Table 5.2: Feature Fine-tuning results.

Results

Cumulative
Fine-Tuning Steps TP TN FN FP Sensitivity (%) Precision (%) F1-Score Accuracy (%)

ARD 92 218 78 62 54.12 59.74 56.80 68.89
FT1 99 164 71 116 58.23 46.04 51.42 58.44
+FT2 101 179 69 101 59.41 50.00 54.30 59.41
+FT3 106 185 64 95 62.35 52.74 57.14 64.67
+FT4 129 219 41 61 75.88 67.89 71.66 82.67
+FT5 143 243 27 37 84.11 79.44 81.70 85.78
+FT6 147 251 23 29 86.47 83.52 84.97 88.44
+FT7 154 256 16 24 90.59 86.52 88.50 91.56
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(a)

(b)

Figure 5.7: (a) F1-score, accuracy, sensitivity and precision of the classifier with all possible com-
binations of the three feature categories in addition to the fine-tuned combination. (b) The
cumulative effect of the different fine-tuning stages on the classification accuracy, F1-score, pre-
cision ,and sensitivity. WFT refers to ’without fine-tuning’, FTx refers to the xth stage of fine-
tuning as illustrated in the text.

5.5 Discussion

Many studies are using the area under receiver operating characteristics curve (AUC) as an eval-
uation metric. In this study, we prefer to use the confusion matrix for evaluation and direct
quantification of error metrics of concern (e.g., sensitivity, precision). However, the calculated
AUC for our optimised classifier is 0.91 for comparison purposes. This result, when compared



5.5. DISCUSSION 131

to several recent studies is satisfactory. For instance, a recent study focusing on a special profile
of ICU patients reported an AUC of 0.70 using a developed novel mortality prediction SOFA-
RV [35]. Another study [12] that evaluates the Super ICU Learner Algorithm (SICULA) and its
predictive power applied to MIMIC II database reported an AUC of 0.88 on average under spe-
cific conditions and 0.94 on average when applied to an external validation set with calibration.
The study of Luo Y. et al. [11] reported an AUC of 0.848. Luo Y. et al. proposed an unsuper-
vised feature learning algorithm that extracts features automatically from the clinical multivariate
time-series. Luo Y. et al. applied their algorithm to the MIMIC-II [17] dataset with a prediction
horizon extending to 30 days. The study in Reference [8] that developed a convolutional neural
network (CNN) as a deep learning approach to predict mortality risk at ICU reported, as the
highest performance, an AUC of 0.87, a precision of 0.7443 and a recall of 0.8188. The devel-
oped model used the variables of heart and respiration rate, systolic and diastolic blood pressure
obtained from the MIMIC-III dataset [18]. Landon et al. [8] referred to the difficulties and lim-
itations of using electronic medical report (EMR) data, similar to our dataset, for the purpose of
mortality prediction at ICU. Nemati et al. in their study [36] of sepsis early prediction, which is a
lead cause of morbidity and mortality of ICU patients, developed a machine learning model that
reported an AUC of 0.83–0.85 for a prediction horizon of 12 down to 4 h prior to clinical recogni-
tion. Nemati et al. used an EMR data with high-resolution vital signs time-series obtained from
theMIMIC-III dataset [18]. Twomedical studies [32, 33] reported an observed relevance between
the low pulse pressure and mortality risk. Which is consistent with our finding of considering
the pulse pressure as an independent variable from which both statistical and dynamic features
can be extracted to inform mortality prediction. Moreover, the medical study in Reference [37]
concludes the relevance between the widened (high) pulse pressure and the mortality risk for a
special profile of critically ill patients. This conclusion as well is consistent with our finding, as we
referred to the statistical and dynamic features of the pulse pressure which will indicate either ab-
normally high or low levels of pulse pressure. It is important to note that each study has different
conditions, different objectives, different datasets, parameters and variables and predictive models.

At the feature extraction phase, the variation of results with different categories shows that a
set of features can be efficient with a group of patients (i.e. correctly classified) but the same set
of features can be inefficient or confusing to another group of patients (i.e. misclassified). For in-
stance, statistical features classified correctly 83 TPs and 148 TNs, on the other hand, dynamic
features classified correctly 32 TPs and 247 TNs. Considering the patient identity, it is found that
dynamic features correctly classified 18 TPs and 116 TNs that the statistical features misclassified.
The same observation is noticed with PP extracted features (45 TPs and 222 TNs) and those
features extracted from both SBP and DBP together (72 TPs and 199 TNs). The difference in
this situation is that PP is a result of a linear combination between SBP and DBP , however,
PP extracted features correctly classified 14 TPs and 58 TNs that are misclassified by SBP /DBP

extracted features. Hence, the influence of features should be evaluated on a subject-basis in ad-
dition to error metrics. Another observation is that the physiological features of low-RR and
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low-SPO2 count do not correctly classify any true positive patient despite their physiological ba-
sis when presented as the only input features. However, their contribution is significant when
combined with the consistent set of features as shown at the feature fine-tuning phase. There-
fore, excluding a feature has to be done after that it has been tested in combination with different
groups of features especially if the extracted feature has a physiological basis.

At the fine-tuning phase, we have to note that this process is based on feature-vector-level
not dimension-level as a single extracted feature may include multiple dimensions (e.g., the mean
within each window for a specific vital sign). Which is in contrast with conventional feature
selection techniques that rely on selecting the most relevant dimensions regardless of the inter-
pretation of the selected dimensions. The initial modification is excluding both statistical and
dynamic features extracted from HR in order to enhance the performance. This modification
is required as many of the cardiovascular patients in this study have common cardiac diseased
behaviour, which confuses the classifier. Moreover, the heart acts as one of the main actuators in
the human control system responding to different types of excitations. Hence, HR disturbances
might not be sufficient to predict mortality, leading to a high false alarm rate. Ultimately, con-
sidering the cardiovascular patients specifically, HR statistical characteristics, as well as their HR
dynamic features are both technically confusing to mortality prediction. Moreover, the enhance-
ment of detecting more TP’s by presenting some dynamic features in an aggregate form can be
interpreted by the fact that the concurrence of vital signs deterioration is partially a sufficient
mortality indicator but not a necessary one. In other words, total deterioration implies mortality
but not vice versa. Introducing the correlation coefficients feature with absolute values in addition
to real values provides an improvement. Both absolute and real values help the linear classifier to
distinguish between the instances based on the correlation strength and correlation sign respec-
tively. Restricting the crossing-the-mean count to SBP and RR caused an improvement. Thus,
observation-to-observation variability of both vital signs even for a relatively low sampling rate
(i.e. 0.5–1 sample/hour) is more informative than the other vital signs for resting patients such as
ICU patients.

As the main objective of this study is to engineer feature that can provide clinical insight
about mortality prediction, it is important to refer to the decision tree classifiers. As one of the
decision trees advantages is model interpretability in terms of the input attributes. However,
some shortages are present in decision trees in contrast with SVMs that supported the choice of
the latter. These shortages are mainly the greedy nature of the algorithm, local optimisation,
prone to overfitting and expensive computational cost compared to linear hard margin SVM in
which there are no hyperparameters to optimise. Moreover, we based our study on the optimal
margin hypothesis which is not provided by decision trees in contrast with SVMs. For compar-
ison reasons, a decision tree analysis is applied to the final set of features. A CART algorithm
decision tree (MATLAB 2017) is used with the following settings: the splitting criterion of gdi,
minimum parent size of 368, minimum leaf size of 184, maximum splits of 450 and pruning based
on classification error criterion. The classification output of the optimised decision tree is as fol-
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lows: sensitivity of 41.2% precision of 42.42%, F1-score 41.80% and accuracy of 52.22%. It is
obvious that the results are poor compared to the results of linear hard margin SVM. The poor
performance is quite expected because of the conceptual differences between the two classifica-
tion techniques (i.e. Decision trees and SVMs). It is possible that if the whole feature engineering
process is designed based on the decision tree classifier properties, the results can be better. Model
development, feature extraction and fine-tuning are implemented on observation-basis instead of
time-basis (hourly/daily). We hypothesise that observation-basis are more realistic as the events
(observations) within a specific time period are more informative than time period regardless of
the number of observations. Ideally, the number of observations is fixed along a specific period
for all patients and uniformly distributed as well which is not the case with our dataset. However,
for a proof of concept, we evaluate the classification performance based on extracting the same
features on time-basis. Time-basis is implemented by considering the last 7 days before discharge,
considering the first 5 days for feature extraction to predict mortality 2 days ahead. These periods
are defined based on the observation-basis analysis. By extracting statistical, dynamic and physio-
logical features without fine-tuning, the output classification performance is 88 TPs, 163 TNs, 82
FNs and 117 FPs. In comparison with the classification performance on observation-basis (83 TPs,
118 TNs, 87 FNs and 162 FPs) the error performance is higher.However, by following the same
feature fine-tuning steps the final classification output (82 TPs, 160 TNs, 88 FNs and 120 FPs)
is dropped compared to that obtained by an observation-based approach (154 TPs, 256 TNs, 16
FNs and 24 FPs). This drop can be interpreted by the fact that the fine-tuning phase is a manual
crafting of the feature combination which is sensitive to the features setup (i.e. observation-basis
or time-basis).

5.6 Conclusions

In this study, we proposed a proof of concept for a feature engineering approach to explore fea-
tures that can provide clinical insight in order to enhance themortality prediction of ICU patients
using the machine learning algorithm of linear hard margin SVM. The optimal combination of
features that provided the best classification performance comprises the following features:

1. Statistical features of the raw physiological variables, their first derivative of SBP , DBP ,
MAP , RR, SpO2 and PP . Moreover, the statistical features extracted from the EWS of
SBP,RR and SpO2. A window size of 15 observations.

2. Real and absolute values of correlation coefficients between HR and SBP in a window size
of 30 observations.

3. Outlier-occurrence count of SBP , MAP , RR and PP . represented in an aggregate form
except for the SBP represented individually as well. A window size of 60 observations.

4. crossing-the-mean count of SBP and RR, it is presented in the aggregate form. A window
size of 60 observations.
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5. Outlier indicator of SBP and DBP . A window size of 60 observations.

6. Low-SpO2 count less than 77% and low-RR count less than 5 BPM . A window size of
60 observations.

The proposed approach allows moving from black-box to grey-box modelling, starting from
a powerful black-box technique such as SVMs. Moreover, in this case study, low frequently
measured vital signs (hourly to bi-hourly) enabled us to extract efficient features for the purpose
of relatively long term analysis.

From a feature engineering perspective, some features or variables are individually unable to
distinguish between the two classes (i.e. mortality and survival). However, by combining such
features in suitable feature combinations, their use becomes beneficial. Furthermore, combining
different efficient features might cause a drop in performance. Therefore, a feature fine-tuning
phase is essential in order to synthesise efficient feature-combination.

From the medical perspective, we can conclude that the heart rate as an individual variable
can be confusing to predict the mortality. This conclusion is supported by improving the error
performance by excluding the heart rate features. Moreover, we can recommend paying more
attention to the pulse pressure explicitly, either high or low level, since both levels are found asso-
ciated with the mortality of a group of patients. Watching the pulse pressure requires implicitly
to consider the diastolic blood pressure which is excluded from the EWS standards. Finally, we
conclude that different profiles of patients require a different set of features to handle themortality
prediction efficiently.

For future work, we propose to test the developed model with the extracted features along the
stay of the ICU patients. In other words, we can scan the complete period of stay with the moving
window of 60 observations for feature extraction to predict the mortality-risk 24 observations
ahead. Despite the fact that along the stay the patients will be labelled as survival, the medical
doctors may label any upcoming events with possible mortality-risk.
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Chapter 6

Mortality Prediction for COVID-Like
Patients at the ICU

Abstract

The recent hit of COVID-19 pandemic that shocked the healthcare systems around the globe
stresses the necessity to provide intelligent monitoring solutions. These intelligent monitoring
solutions are needed to optimise the available resources at hospitals, more specifically at intensive
care units (ICUs). During the first wave of the pandemic, ICUs in hospitals experienced under-
capacity due to high admission rates. In this study, we introduce mortality prediction models for
COVID-like patients admitted to ICU. COVID-like patients are pulmonary patients who are
diagnosed with a respiratory infection and/or pneumonia. The developedmodels in this study are
based on a linear hard margin approach to support vector machines. Moreover, the input features
of these models are a subset of engineered features for ICU patients who are admitted for different
reasons (e.g., cardiovascular, neurological diseases). The developed models are built considering a
one-day ahead prediction horizon to predictmortality or survival at discharge. Twomajor groups
of models are developed, these two groups are based on 5 and 2-day time-windows for feature
extraction, respectively. The best and balanced 5-day model has an error performance of 89.29%
sensitivity, 89.29% precision, and 0.8929 F1-score. On the other hand, the best performing 2-
daymodel has an error performance of 88.73% sensitivity, 90.84% precision, and 0.8959F1-score.
Based on the obtained results, the engineered features for the developed models in this study can
support mortality prediction at ICU for COVID-like patients.

6.1 Introduction

This study is introduced in light of the ongoing COVID-19 pandemic that hits the whole world
since December 2019. A significant challenge that the hospitals all over the world are facing is
the high rate of admission of coronavirus patients to intensive care units (ICU’s) [1]. This high
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rate may result in under-capacity of the ICU beds. Hence, continuous mortality risk assessment
of the ICU patients is valuable for supporting medical staff in making decisions regarding ICU
patients’ treatments and follow up.

In this study, we aim at developing mortality prediction models of intensive care unit patients
who are admitted because of pulmonary diseases together with infection and/or pneumonia. The
aforementioned profile of patients is hypothesised to be similar to COVID-19 patients. This
investigation is implemented prior to being applied to data obtained from COVID-19 patients
admitted to ICU.

Mortality prediction in this study is implemented based on a feature engineering approach
for ICU mortality prediction that was introduced in a previous study [2]. This approach resulted
in a set of features that are extracted from vital signs of heart and respiration rates, systolic, dias-
tolic, mean arterial blood pressure, and oxygen saturation. These extracted features provided an
acceptable performance (i.e. accuracy of 91.56%, sensitivity of 90.59%, precision of 86.52% and
F1-score of 88.50%) of mortality prediction for 1-2 days ahead [2]. One of the main conclusions
of that study was that each profile of patients requires a specific set of features for an efficient
prediction performance.

Due to the sudden hit of the pandemic, it was necessary to find a similar profile of patients to
that of coronavirus patients. The already existing data set that used in our previous study [2] and
its extended version have different profiles of patients (e.g., cardiovascular, neurology, pulmonary,
infection, sepsis, and abdominal diseases). We selected pulmonary and infection patients, either in
the presence or absence of pneumonia as COVID-like patients because of the presence of similar
symptoms.

The candidate profiles are suggested based on understanding the pathophysiology of COVID-
19 as it is a very recent disease. Therefore, the amount of available and conclusive research about
the virus is limited and little is known about the pathophysiology of COVID-19. The main con-
clusions of the relevant studies are summarised as follows. Firstly, a brief review paper reported
fever, cough and dyspnoea as main symptoms and acute respiratory distress syndrome (ARDS),
acute kidney injury (AKI) and myocardial injury as leading causes of mortality in COVID-19 pa-
tients [3, 4]. Another study specifically investigated patients with COVID-19 that were admitted
to the ICU. The 36 investigated patients had a mean age of 66 years, and 61% of them suffered
from ARDS. Other common complications among these patients were arrhythmia (44%), shock
(31%) and acute cardiac injury (22%) [5]. Furthermore, in their study [6], Klok et al. observed
a high incidence of thrombotic complications and acute pulmonary embolism, which influence
blood oxygen levels, respiration rate and blood pressure. On top of that, mechanical ventilation,
both invasive and non-invasive, was a standard treatment administered to patients with COVID-
19 as the infection of the lungs and the subsequent immune reaction impede airflow to the alveoli
[5, 7]. Finally, accurate overall mortality estimations for COVID-19 were not yet available at the
time because of the large number of non-reported cases [8]. Based on these studies, the common
pathophysiology between the different observed cases is acute respiratory problems resulting
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from a respiratory infection.

The main objective of this study is to develop mortality prediction models for COVID-like
ICU patients. These models are based on the engineered features from our previous study [2].
This article is arranged as follows: After the introduction, the second section of data in which
we describe the data. In the third section, we introduce the linear hard margin support vector
machines and feature engineering. The fourth section includes the results. The fifth section
consists of the discussion, and the final section gives the conclusion.

6.2 Data

The used data for this research was gathered frommonitoring 801 ICU patients from the Belgian
hospital ZOL (Ziekenhuis Oost-Limburg) as part of the PRINCESS (Prolonged Intensive Care
Stay Characterisation) study. This retrospective study aims to create a clinical profile of patients
hospitalised in the intensive care unit. The patients were distributed over 3 hospital units: ICU 1,
ICU 2, and the intensive heart care unit and they were all admitted between 2015 and 2019. For
privacy reasons, all data had been anonymised before the investigation and the data collection
was approved by the medical ethical committee of ZOL.

The analysed data comprises the vital parameters of the patients and general/patient-specific
information retrieved from the electronic medical record (EMR). The vital parameters were
recorded continuously by Philips Intellivue monitors (Philips Electronics Nederland B.V., Am-
sterdam, The Netherlands), and were annotated on average hourly to bi-hourly by the nursing
staff. The measured vital parameters are heart rate (HR) in beats per minute (bpm), respiration
rate (RR) in breaths per minute (bpm), oxygen saturation (SpO2) in percentages, systolic and
diastolic arterial blood pressure, (SBP and DBP) in mmHg, oxygen administered to the patient
(O2) in litres per minute (L/min), the temperature of body or bladder (T) in degrees Celsius
(◦C) and central venous pressure (CVP) in cmH2O. Arterial blood pressure can be measured
in two different ways: invasively and non-invasively. Upon check-up, these measurements are
read out by the medical staff and entered manually into the patients EMR. The time and date of
the measurement are saved as well. The general/patient-specific information retrieved from the
EMR includes the gender and age of the patient, smoking history, the reason for admission to
the ICU as well as comorbidities, like diabetes, hypoxia, hypertension, cardiovascular diseases,
etc. Finally, every patient has a label indicating his/her outcome at the end of the ICU stay: 0 for
survival and 1 for mortality. The age of the patients was 65 (±16) years old. The distribution of
patients based on their reasons of hospitalisation in this dataset is displayed in Figure 6.1.
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Figure 6.1: Patients distribution based on the reason of hospitalisation

6.3 Methods

As mentioned earlier, the followed methodology to develop the mortality prediction models is
similar to the one we developed in our previous study [2]. Subsequently, we shortly explain the
developed approach, starting with linear hard margin SVM and then the engineered features.

6.3.1 Hard Margin SVM

SVMs are originally presented as binary classifiers, that assign each data instance x ∈ Rd to
one of two classes described by a class label y ∈ {−1, 1} based on the decision boundary that
maximises the margin 2/||w||2 between the two classes as shown in Figure 6.2. The margin is
determined by the distance between the decision boundary and the closest data point from each
class [11, 12, 9, 10].
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Figure 6.2: Schematic representation of a two-dimensional dataset consisting of two linearly
separable classes. The dotted lines indicate the boundaries where themargin ismaximisedwithout
tolerating any misclassifications (adapted from Reference [12]).

Generally, a feature map ϕ : Rd 7→ Rp, where d is the number of input space dimensions and
p is the number of feature space dimensions, is used to transform the geometric boundary between
the two classes to a linear boundary L : w⊤ϕ(x)+b = 0 in feature space, for some weight vector
w ∈ Rp×1 and b ∈ R. The class of each instance can then be found by y = sgn (w⊤ϕ(x) + b),
where sgn refers to the sign function.

The estimation of the boundary L is performed based on a set of training examples xi (1 ≤
i ≤ N ) with corresponding class labels yi ∈ {−1, 1}, where N is the number of data points.
An optimal boundary is found by maximising the margin that is defined as the smallest distances
between L and any of the training instances. In particular, one is interested in constants w and
b that minimise a loss-function [12]:

min
w, b

1

2
w⊤w,

and are subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1, i = 1, 2, ..., N.

By applying the lagrangian to the problem we get

L(w, b;α) =
1

2
‖w‖22 − (

N∑
i=1

αi(yi[w
⊤ϕ(xi) + b]− 1),

where αi ≥ 0 are the Lagrangian multipliers for ith data point. The resulting classifier in both
primal space and dual space are
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f(x) = sgn (w⊤ϕ(x) + b),

f(x) = sgn(

N∑
i=1

αiyiϕ(xi)
⊤ϕ(x) + b).

The dot product ϕ(xi)
⊤ϕ(x) is computationally expensive, hence, it is replaced with the

kernel function k(xi,x), this replacement is known as the kernel trick. With the kernel trick,
there is no need to execute the step of feature map as it is implicitly done by the kernel function.
Hence, the dual space classifier with the kernel trick is

f(x) = sgn(

N∑
i=1

αiyik(xi,x) + b).

For practical reasons, we suggest to obtain the linear hard margin SVM from the standard
SVM formula that tolerate misclassifcation errors [13]

min
w, b; ξ

1

2
w⊤w+ C

N∑
i=1

ξi,

subject to:

yi(w
⊤ϕ(xi) + b) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N.

where the constant C denotes the penalty term that is used to penalise misclassification through
the slack variables ξi in the optimisation process. The linear hard margin SVM can be obtained
via penalising the error extremely by giving C a very high value (e.g., 1010). With this trick, we
can get a solution with misclassified instances to be investigated through the feature engineering
phase.

6.4 Feature Engineering

In our previous study [2], we introduced a feature engineering procedure for mortality predic-
tion. In the upcoming subsections, we illustrate both feature extraction and fine-tuning phases.

6.4.1 Feature Extraction

Prior to elaborating on feature extraction, it is important to define time windows of feature
extraction as well as the prediction horizons during the ICU stay of each patient. The only
true label regarding mortality risk is at the moment of discharge, being mortality or recovery
(survival). Hence, feature extraction time windows and prediction horizons are defined from the
end of the stay, as shown in Figure 6.3, and the discharge reason (mortality/survival) is added
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as a label. Moreover, the prediction horizon before that moment of discharge comprised 12
observations (approximately one day). The feature extraction period is defined as 60 observations
before the prediction horizon.

Figure 6.3: A scheme illustrates the last set of observations before discharge: time period for
feature extraction (red) to predict mortality/survival at discharge (blue) given a specific prediction
horizon (white).

The size of time-windows is determined based on a medical input and several analytical test
trials to find the optimal window-size. Moreover, this average period of 3.5 days (60 observations)
agrees with the experience of clinical experts in the field. This agreement is based on the fact
that there is no standard at the moment that refers to a minimum or maximum of observations
to use, in order to make the best decision.

The extracted features comprises three categories, namely , statistical, dynamic, and physio-
logical features.

6.4.1.1 Statistical Features

The first category of features to be extracted is the set of statistical features which represent
the basic characteristics of each time-series within segmented, non-overlapping time windows:
minimum, maximum, mean, median, standard deviation, variance, and energy.

Statistical features are extracted within windows whose sizes are defined by the number of
observations and not by a specific time period due to the nonuniform sampling rate (hourly
to bi-hourly) as mentioned before. Extraction is based on the raw measurements of the vital
signs and their first derivatives as well as the calculated standard early warning scores (EWS) of
these measurements based on ZOL hospital standards as shown in Table 6.1. A weak point about
statistical features is the static nature of these features as they do not reveal the dynamic behaviour
of the time-series. Therefore, an additional category of features is required to be explored, namely
dynamic features.
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Table 6.1: Early Warning Scores system used by ZOL Hospital based on vital signs’ values.

SCORE 3 2 1 0 1 2 3
Temperature (◦C) <35.1 35.1-36.5 36.6-37.5 >37.5
Heart Rate (BPM) <40 40-50 51-100 101-110 111-130 >130

Respiration Rate (BPM) <9 9-14 15-20 21-30 >30
Oxygen Saturation (%) <91 91-93 94-95 >95

Systolic Blood Pressure (mmHg) <70 70-80 81-100 101-180 180-200 >200

6.4.1.2 Dynamic Features

The extracted dynamic features are Pearson correlation coefficients, crossing-the-mean count, outlier-
occurrence count, and outlier indicator. Correlation coefficient is computed between each pair of vital
signs within each window. For this feature, it is necessary to be applied to the z-score of the
vital signs. Crossing-the-mean count of a vital sign is determined by counting the number of times
that the recorded vital sign crosses its mean value within each window. This feature indicates
the abrupt changes in the vital sign from one observation to another. Outlier-occurrence count
is computed by counting the number of outliers detected within each window. An outlier is
detected by the statistical definition: any point outside the range µ±3σ for a normally distributed
variable is an outlier. For this feature, it is not expected to work with the vital sign of oxygen
saturation (SpO2) as it is negatively skewed, however, it will be tested as a feature to prove the
concept. Finally, the outlier indicator is determined by the difference between the mean and the
median of the records within each window.

6.4.1.3 Physiological Features

Finally, the physiological features comprises the statistical and dynamic features of Pulse pressure
(PP) and its first derivative. Pulse pressure is defined by the difference between systolic and dias-
tolic blood pressure. Moreover, the considered physiological features also comprise the features
of SpO2 and RR values count below specific thresholds (77% and 5 BPM respectively). These
features are further referred to low-SpO2 count and low-RR count. Furthermore, another phys-
iological feature that is imported directly from the patients’ medical record is their positive and
negative diagnosis with cardiovascular diseases (CVD). The methods of extracting the aforemen-
tioned features are illustrated in the article [2] in more detail.

6.4.2 Feature Fine-Tuning

After defining three different categories of features, it is necessary to fine-tune the proposed
features in order to obtain the most efficient combination and representation of them. As was
shown in Section 5.4, the error performance can drop after combining features from different
categories. One interpretation of this drop is that some features are strictly efficient for a group
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of patients and confusing for the rest. In order to limit this effect a fine-tuning step is performed.
The feature fine-tuning phase is based on the selection of vital signs instead of the selection

of dimensions which is in contrast with existing automatic and conventional feature-selection
techniques. Indeed, the rows of the inputmatrix of our data correspondwith the different subjects
in the study and contain the different features calculated on multiple windows (e.g., the statistical
feature ofmean is extracted fromm vital signs withinn time-windows resulting inm×n columns
for each subject). Conventional feature-selection techniques select the columns of the matrix that
are most representative for the study [14]. However, in this way feature values within a specific
time-window can be excluded leading to features that are hard to interpret. For this reason,
we propose a backward selection approach where a feature (corresponding to multiple columns
in the input matrix) can be excluded from the set of features. Moreover, prior knowledge is
used in order to reduce the randomness in the selection process of the features. For instance, we
will exclude the statistical and dynamic features of the HR guided by the prior knowledge that
the heart is a main actuator in the control system of a human body that responds to different
excitations (e.g., medication), not only critical events [15]. The effect on the performance score
of this selection will be discussed in Section 5.4.

The followed steps of the feature fine-tuning (FT) procedure are imported from our previous
work [2] and shortly described below:

1. FT1: For HR extracted features, it is found that excluding both statistical and dynamic
features enhances the error performance.

2. FT2: The correlation coefficients feature is found more efficient when presented in both real
and absolute values.

3. FT3:Outlier-occurrence count, is found most efficient when applied to SBP , MAP , RR

and PP excluding DBP and SpO2. Moreover, the outlier-occurrence count is found more
efficient when presented in an aggregate form instead of individually except for the vital
sign SBP .

4. FT4: The correlation coefficients feature is providing the best performance when computed
only betweenHR and SBP . Together with considering the features low-SpO2 count and
low-RR count the classification performance is improved.

5. FT5: crossing-the-mean count is found more efficient when applied only to SBP and RR

and represented in the aggregate form.

6. FT6: The dynamic feature of outlier indicator is more efficient when applied only to SBP

and DBP .

7. FT7: Ultimately, considering the physiological feature of CVD enhanced the perfor-
mance.



148CHAPTER 6. MORTALITYPREDICTIONFORCOVID-LIKE PATIENTSATTHE ICU

6.5 Results

This section illustrates the results of mortality prediction for the candidate profiles simulating
COVID-19 patients (COVID-19-like). As mentioned earlier, the candidate profiles of ICU pa-
tients that simulate COVID-19 patients are those suffering from pulmonary disease, infection, and
Pneumonia. There are three subpopulations and the corresponding diseases, number of patients
and discharge labels are shown in Table 6.2

Table 6.2: Three subpopulations with different combinations of pulmonary disease, infection,
and pneumonia (M:mortality; S:survival).

Subpopulation Pulmonary Infection Pneumonia No of Patients M/S
I x x 58 28/30
II x x x 100 47/53
III x x 85 43/42

For each subpopulation, 2 models are developed. One to get the best possible sensitivity
while keeping an acceptable precision. The second is targeting the best precision with acceptable
sensitivity. The motivation behind developing those two models is inspired by the use of the
predictivemodel. The first model is important when themain target is to have an alarm regarding
the severity of the case. The second model can be useful to support the decision of discharge due
to losing the hope of the patient’s survival. In the situation of the COVID-19 pandemic, discharge
decisions are crucial, especially when the maximum capacity of the ICU is reached.

Applying a similar approach as described in our previous study [2], each profile of the ICU
patients requires a specific set of features to predict mortality. Therefore, a forward feature selec-
tion procedure is applied for each model of each subpopulation to select the most relevant features
that provide the best error performance. As depicted in Table 6.3, a set of features is selected for
each model/subpopulation combination. From Table 6.3 it can be seen that the extracted features
are mainly from three vital parameters, namely SpO2, blood pressure, and respiration rate.

Figure 6.4 and Table 6.4 show the results of both sensitivity and precision of models 1 and 2 for
subpopulations I, II, and III. These results are based on extracting features from 60 observations
(4 to 5 days).

Based on the first results, medical experts advised to apply these models for less number of
observations to approach 2 days for feature extraction as the length of stay at the ICU for COVID-
19 patients is varying from two days to more. Hence, another model for each subpopulation is
developed based on 30 observations for feature extraction. The developed models here are just
based on keeping the balance between sensitivity and precision without prioritising one over the
other. The resulting sensitivity, precision and F1 Score are depicted in Figure 6.5 and Table 6.5.
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Table 6.3: The set of extracted features for each model/subpopulation combination.

Sub. Model SpO2 Blood Pressure Respiration Rate Others

I

1

Max. EWS SpO2 Median PP Std. Diff. EWS RR
Min. Diff. EWS SpO2 Std. Diff. DBP Std. EWS RR
Var. Diff. SpO2 Var. MAP Max. EWS RR
Med. Diff. EWS SpO2

2

Max. EWS SpO2 Median PP Std. Diff. EWS RR
Min. Diff. EWS SpO2 Std. Diff. DBP Std. EWS RR
Var. Diff. SpO2 Var. MAP Max. EWS RR
Med. Diff. EWS SpO2 Median Diff. MAP

II

1

Std. SpO2 Median PP Var. EWS RR HR-SBP corr.
Min. SpO2 Energy PP Std. Diff. RR

Median EWS SBP
Mean Diff. EWS SBP
Median Diff. PP

2

Std. SpO2 Median PP Var. EWS RR HR-SBP corr.
Min. SpO2 Energy PP Std. Diff. RR

Median EWS SBP
Mean Diff. EWS SBP
Median Diff. PP
Max. PP

III

1
Max. Diff. SpO2 Max. PP Median Diff. RR
Var. SpO2 Mean Diff. EWS SBP Var. EWS RR

Median PP

2
Max. Diff. SpO2 Max. PP Median Diff. RR Outliers Aggregate
Med. Diff. EWS SpO2 Mean Diff. EWS SBP CVD

Outlier ind. SBP

Table 6.4: Precision, sensitivity and F1-score of models 1 and 2 for subpopulations I, II, and III
based on 60 observations for feature extraction.

Subpopulation Model Sensitivity % Precision % F1 Score

I 1 89.29 89.29 0.8929
2 85.71 96 0.9046

II 1 89.36 87.50 0.8842
2 87.23 89.13 0.8817

III 1 93.05 85.11 0.8890
2 88.37 88.37 0.8837

Table 6.5: Precision, sensitivity and F1-score of models for subpopulations I, II, and III based on
30 observations for feature extraction.

Subpopulation Sensitivity % Precision % F1 Score
I 85.71 85.71 0.8571
II 89.36 82.35 0.8570
III 88.37 90.84 0.8959
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Figure 6.4: Sensitivity and precision of models 1 and 2 for subpopulations I, II, and III based on
60 observations for feature extraction.

Figure 6.5: Sensitivity and precision of models 1 and 2 for subpopulations I, II, and III based on
30 observations for feature extraction.

6.6 Discussion

For COVID-like patients, it is noticed that the number of relevant and effective features is limited
(between 7 to 11 features) as depicted in Table 6.3. Moreover, these features are mainly extracted
from the vital signs oxygen saturation, blood pressure, and respiration rate. Intuitively, both
SpO2 and RR are directly relevant to the pathology of pulmonary diseases (e.g., COVID-19).
However, it is interesting to find the blood pressure, especially pulse pressure, to be relevant as
well. This finding is consistent with two clinical findings. The first is about the association be-
tween hypertension and thrombosis [16]. The second finding is a recent observation on deceased
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COVID-19 patients that they experienced thrombosis mostly caused by pulmonary embolism
[17]. Moreover, a recent study [18] observed that patients with hypertension have a two-fold
increased risk of mortality due to COVID-19 compared to patients without hypertension.

In their recent study [19], Yadaw et al. developed parsimonious machine learning models for
mortality prediction of COVID-19 patients. Although the investigated population in their study
was not defined as an ICU population, they observed findings relevant to our study. The main
findings in their study are regarding the impact of specific features on the mortality prediction.
These features are age, minimum oxygen saturation (SpO2) and type of patient encounter (i.e.
inpatient, outpatients and telehealth visits) [19]. Regarding age, we notice that the majority of
pulmonary patients ( 67%) are of age higher than 65 years old, as shown in Figure 6.6. Therefore,
most of the pulmonary population in our study is at old age. Moreover, age as a feature is not
significantly contributing to our developed models as old age (>65) is present in both mortality
and survival examples. The second significant feature in their study, minimum SpO2 is also
present as an important feature in our developed models for subpopulation II, which is considered
the closest to the COVID-19 profile. For the third significant feature, namely patient encounter
type, our entire studied population is of inpatient encounter type (i.e. hospitalised patients).
Which is consistent with their investigated population as over 78% of them in total are of inpatient
type, and over 98% of the deceased patients are also of inpatient encounter type.

Figure 6.6: Distribution of the patient population and their reason for admission. The population
was divided into age categories of 13–44, 45–64, 65–79 and >80 years of age.

In another study, Chansik et al. developed several machine learning model COVID-19 pa-
tients without specifying them as ICU patients [20]. Some of the observed significant features
are old age, hypertension, and infection route (cluster infection or infection from personal con-
tact). In our study, we observed the importance of blood pressure and its extracted features for
our developed models. For subpopulation II, both pulse pressure and systolic blood pressure were
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the primary sources of features, as shown in Table 6.3. Moreover, the feature of correlation be-
tween heart rate and systolic blood pressure was present. Therefore, our finding regarding the
importance of blood pressure is consistent with this study.

In their study [21], Vaid et al., investigatedmortality and critical events prediction forCOVID-
19 patients using machine learning. They found a set of potential predictors for mortality,
amongst which is tachypnea. This finding is consistent with our results regarding the impact
of respiration rate and its extracted features on the mortality prediction error performance.

Ultimately, it is worth mentioning that our study is based on time-series extracted features,
in contrast with the discussed studies [19, 20, 21]. Therefore, we expect that our model would
also be useful for real-time prediction, making it potentially useful for monitoring of COVID-19
patients.

6.7 Conclusions

Based on the mortality prediction results, we conclude that our developed models are reliable for
ICUmortality prediction for COVID-like patients. From amodelling perspective, the developed
models are considered simple, since they are based on linear hard margin approach of SVM and
a limited number of easily extracted features. Therefore, the parsimony principle is satisfied in
addition to partial model interpretability and explainability. From a clinical perspective, the input
features of these models are extracted from only three vital signs, namely, oxygen saturation,
respiration rate and blood pressure. For future research, we propose to evaluate our models in
online mode, which requires a clinical assessment. Furthermore, we suggest applying our models
for monitoring COVID-19 patients admitted to ICU.
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Chapter 7

General Discussion

As mentioned in the introduction, uncertainty in medicine and healthcare has a crucial impact
on the clinical decision-making process. Therefore, the main objective of this thesis is to develop
performant machine learning algorithms to handle the challenges that promote data-related un-
certainty (technical uncertainty) (Section 1.1.2). These challenges are data and model-related
challenges (Section 1.3.3) that are observed in the context of human health applications. More-
over, these challengeswere identified: class-imbalance, non-uniform data distribution, ambiguity
(confusion), continuously increasing data, model personalisation, black-box nature, online mod-
elling and streaming analytics as illustrated in Figure 1.2b. Furthermore, these challenges can be
linked to the elements of technical uncertainty [1]. To recapitulate:

• Starting with probability, which reflects the risk resulting from the indeterminacy of fu-
ture outcomes. Its essential challenge is concerned with time-based prediction accuracy.
This accuracy is directly related to the challenges of class-imbalance, non-uniform data
distribution and ambiguity.

• Ambiguity reflects the indecisiveness resulting from imprecise predictions, lack of evi-
dence and conflicting information. Ambiguity’s essential challenges are linked to relation-
based prediction accuracy, data sufficiency and engineered features’ efficiency. The relation-
based prediction (e.g. classification) is a time-independent prediction and its accuracy is
influenced by class-imbalance and non-uniform data distribution and ambiguity. Data
sufficiency which is required for strong evidence, and it is directly linked to the amount of
data and its challenges increasing data-size and online modelling and streaming analytics.
Moreover, sufficient data shall include several sources of data (e.g. multiple subjects for
human health applications) which imposes the challenge of model personalisation. En-
gineered features’ efficiency is needed to synthesise the different information pieces and
resolve the conflict between them, which is linked to model explainability (black-box
nature).
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• Complexity results from the multiplicity of influential factors and variables or the lack of
interpretability. Its essential challenges are related to the difficulty of considering many
influential factors and model interpretability. Therefore, we proposed machine learning
algorithms (e.g. SVM’s) to handle the computational problem as they can handle a large
number of input variables. On the other hand, model interpretability is linked to the
challenge of black-box nature.

Next we will discuss our sub-objectives in the light of the investigated human health appli-
cations. The discussion will be in terms of answering two main research questions:

1. To what extent the proposed localised learning algorithm of kNN-LS-SVM is capable of
handling both data and model-related challenges that affect the model performance?

2. To what extent can a feature engineering procedure integrated with a linear hard margin
approach of SVMprovide interpretability and explainability while providing an acceptable
error performance for prediction?

7.1 Question №1

In the following subsections, we will discuss to what extent the proposed method of localised
learning handled the data-related challenges and then the model related challenges. The discus-
sion will be organised according to the sub-objectives defined in section 1.4.1.

7.1.1 Data-related Challenges

The first sub-objective is aiming to investigate the challenges of class-imbalance, non-uniform
data distribution, ambiguity, and continuously increasing data-size. These challenges are ob-
served in many human health and medical applications, especially those relying on continuous
monitoring and wearable technology. In this thesis, we investigated three human health ap-
plications based on continuous monitoring and wearable technology, namely human activity
recognition (HAR), thermal comfort prediction, and vital signs prediction. Below, we discuss
how these challenges are handled in each of these applications and the experienced limitations.
In chapter 2, we investigated the aforementioned data-related challenges in the context of HAR.
For this purpose, we simulated the challenges of class-imbalance, non-uniform data distribution,
and ambiguity using synthetic data (Section 2.4). The datasets depicted in Figures 2.3a, 2.3b, 2.3c,
and 2.5a simulate these challenges in two dimensional space for binary classification problems.

7.1.1.1 Class-imbalance and Non-uniform Data Distribution

The class-imbalance is obtained in synthetic data by controlling the ratio between the two classes;
also, the non-uniform distribution is obtained by controlling the heterogeneity of the data points
within each class. The proposed localised learning algorithm of kNN-LS-SVM was applied to
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these synthetic datasets, and it outperformed both global (LS-SVM) and local (kNN) algorithms
especially when the challenges level increases (e.g., extreme class-imbalance of 1.25% of imbal-
ance percentage). After showing the relative efficiency of kNN-LS-SVMover both LS-SVM and
kNN algorithms, we applied kNN-LS-SVM to four real-world datasets (Section 2.5). In these
HAR datasets, the challenge of class-imbalance was present in three of them, namely WISDM
v1.1, Daphnet FoG, and WISDM v2.0. For the two versions of WISDM dataset, they are mul-
ticlass problems with extreme imbalance percentage of 4.4% (standing) and 1.9% (stairs) for v1.1
and v2.0 respectively. For the Daphnet FoG dataset, the binary classification problem has an
imbalance percentage of 10%. As shown in Tables 2.1, 2.2,2.3, and 2.4, the proposed algorithm
of kNN-LS-SVM showed a comparative to better performance over the other global and local
algorithms except for some cases when compared to kNN. For instance, kNN outperformed
kNN-LS-SVM and the other benchmark algorithms for the Daphnet FoG dataset. This is pos-
sible due to the fact that for each local model, both the number of neighbours k and the distance
metric were optimised which increased the computational and temporal complexities as shown
in Table 2.5. In contrast, kNN-LS-SVM local models have fixed k-number and distance metric
for the same dataset.

In chapter 3, we investigated the possibility to develop an online personalised thermal comfort
predictivemodel based on easy-to-measure variables applying kNN-LS-SVM algorithm. Similar
to HAR, thermal comfort prediction faces the challenges of class-imbalance and non-uniform
data distribution. The challenge of class-imbalance is present in the collected data, as shown
in Figure 3.7a. It is obvious that thermal comfort states Hot and Cold (i.e. 3 and -3) are with
extreme class-imbalance. In Table 3.5, the resulting confusion matrix of LS-SVM is depicted, and
it shows the poor performance of the classifier especially with the extremely minor state of Cold
as zero true positives were recognised. In contrast, as shown in Table 7.1, the resulting confusion
matrix of kNN-LS-SVM shows a higher performance than that of LS-SVM by either removing
the Else option (undefined class) or the higher true positive percentage of Cold state (23.81%).
Moreover, for the Hot state, the true positives increased from 40% to 78.57%. Therefore, the
localised learning approach proved to outperform the global one for this application as well. This
outperformance can be understood in the light of the observed superiority of localised learning
algorithms over global ones for imbalanced small-size datasets as shown in the investigation of
synthetic data (Section 2.4) in Chapter 2. However, for more reliable performance, classes were
reduced from seven to three by merging them in three different configurations as shown in
Figures 3.7 b, c, and d.
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Table 7.1: The normalized confusion matrix of Model II.

Pr
ed
ic
te
d
La
be
l(
i)

Actual Label (j)

Cold % Cool %
Slightly
Cool %

Neutral %
Slightly
Warm %

Warm % Hot %

Cold 23.81 5.88 0 0 0 0 0
Cool 23.81 70.59 12.90 0 0 0 0

Slightly Cool 38.10 17.65 48.39 7.69 3.70 0 0
Neutral 14.28 5.88 35.48 73.08 50.0 18.87 0

Slightly Warm 0 0 3.22 19.23 42.59 35.85 0
Warm 0 0 0 0 3.07 37.74 21.43
Hot 0 0 0 0 0 7.55 78.57

7.1.1.2 Ambiguity (Confusion)

Ambiguity was introduced in the synthetic data (Section 2.4) by either overlapping the distribu-
tions or the adjacent nonlinear patterns of the two classes. Ambiguity is imposed to the synthetic
data by changing the variance of the positive class to be higher and lower than that of the neg-
ative class as shown in Figures 2.3b and 2.3c. For the second synthetic dataset, the ambiguity
is present by the nonlinear patterns of the two adjacent classes, as shown in Figure 2.5a. For
both synthetic datasets, kNN-LS-SVM kept outperforming the global classifier LS-SVM after
imposing ambiguity as shown in Figures 2.4b, 2.4c, and 2.5b.

For HAR real-world datasets 2.5.1, the challenge of ambiguity is experienced as well. For
instance, in WISDM v1.1, the activities of walking up and downstairs are confusing especially
for global algorithms (e.g., LS-SVM). Moreover, ambiguity is observed between the activities
of sitting and lying down for WISDM v2.0 dataset. Therefore, all algorithms’ error performance
dropped for these two activities compared to the other activities as shown in Table 2.3. However,
kNN-LS-SVM outperformed the other algorithms as shown in Figure 2.8.

For thermal comfort prediction (Chapter 4), it is observable that due to the subjective nature
of thermal comfort annotation, confusion was present. As shown in Figure 7.1, there are overlaps
between the thermal comfort perceptions regarding the three levels of temperature (5, 24, and
37◦C) between subjects. This ambiguity is evident in the confusion matrix of LS-SVM (Table
3.5), since the global classifier was confused between the different levels of thermal comfort. For
instance, the neutral state which is at 24◦ C only recognised correctly by 60.6% and the rest
was confused with the adjacent states and further states as well. On the other hand, kNN-LS-
SVM enhanced this percentage to be 73%, and the rest were confused only with the adjacent
states (Slightly Cool and Slightly Warm) as shown in Table 7.1. Hence, the localised learning
approach could overcome the ambiguity problem as expected better than the global algorithm
as it could handle the local properties of the test instances such as the overlap between different
subjects’ votes. Moreover, this confusion will be discussed again later in this section under model
personalisation challenge.
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Figure 7.1: Distribution of the 25 participants’ votes over their thermal sensation at the three
environment temperatures of 24, 5, and 37◦ C. (from [4])

7.1.1.3 Continuously Increasing Data

This challenge is present in the first three applications (Chapters 2, 3, and 4) as variables were
monitored with a minimum rate of 1 Hz (e.g., acceleration, heart rate, heat flux). Two analytical
problems result from the continuous data-size increment: increasing computational complexity
and varying data distribution in the input space. These problems are correlated since the data-size
influences the computational complexity once retraining or updating the model is required to
handle the data distribution change. This change can result from collecting data from different
and new subjects (sources), promoting inter-subject variability. Moreover, it may result from
intra-subject variability as the subject’s status can be time-dependent (e.g. vital signs variation
due to health status). We proposed an approach (kNN-LS-SVM) to control the computational
complexity by training local models with a relatively small number of data points. Hence, the
computational complexity of the predictive model is (partially) isolated from the increasing data-
size. However, our approach depends on kNN which is influenced by the data-size, which will
be discussed in the limitations section. A reflection on the computational complexity for the three
applications is discussed below.

For HAR application (Chapter 2), a local model is trained, validated and tested for each test
sample (unseen sample). Moreover, the recorded elapsed time measurements in Table 2.5 are
those of online modelling. For kNN-LS-SVM, the recorded elapsed time is that of building the
local model in addition to applying the model to the test-point of interest. The recorded elapsed
times show that kNN-LS-SVM outperforms all other benchmark methods from a temporal per-
formance perspective. It is worth mentioning that for global models (i.e. LS-SVM and Stack-AE)
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and PSVM, the elapsed time is the test time only. On the other hand, for kNN-LS-SVM, kNN
and KNN-SVM, the elapsed time is the sum of training, validation, and test times.

For thermal comfort prediction (Chapter 3), as we have shown in the previous section of
HAR, the time performance of applying the kNN-LS-SVM to the HAR datasets was outper-
forming the other techniques. The elapsed time for kNN-LS-SVM online modelling was at
maximum (0.0126 seconds), which is less than the sampling period of one second for thermal
comfort prediction.

In chapter 4, we investigated vital signs prediction of hospitalised patients. The recording
rate of the monitored vital signs (i.e. heart rate, respiration rate, oxygen saturation, systolic,
diastolic, and mean arterial blood pressure) is 1 Hz. With this relatively high rate, the data-size is
continuously increasing. In this application, we applied kNN-LS-SVM for time-series prediction
with a prediction horizon up to 3 hours that is updated every 10 minutes. As mentioned in the
section of results (Section 4.4), the required number of training points for the different profiles of
patients is fixed (i.e. k=25 for cardiology and post-operative; k=15 for dialysis patients) regardless
the data-size.

Conclusively, by proposing kNN-LS-SVM,we aim to (partially) isolate the predictivemodel’s
computational complexity from the continuous increase of the data-size.

7.1.2 Model-related Challenges

In this section, we discuss the second and third sub-objectives regarding onlinemodelling, stream-
ing analytics, and model personalisation. These challenges were investigated in chapters 2, 3, and
4. In these chapters, kNN-LS-SVM algorithms for classification and regression are proposed to
tackle the challenges as will be discussed below.

7.1.2.1 Online Modelling and Streaming Analytics

The analysed data in the three applications of HAR, thermal comfort, and vital-signs prediction
are collected by wearable sensors. These sensors are used to measure the variables of interest con-
tinuously (i.e. movement acceleration, ECG, PPG, heat-flux, body and skin temperature). From
these variables, several vital-signs are estimated, such as physical activity, heart rate, respiration
rate, oxygen saturation, blood pressure, and metabolic rate.

For HAR (Chapter 2), the activities are recognised based on either 4-second or 10-second
sliding non-overlapping time windows. Therefore, a high rate (elapsed processing time < time-
window size) activity recognition algorithm is required, which can be obtained by either offline
or online learning algorithms, as shown in Table 2.5. However, in a practical approach of HAR
application, data will be acquired from multiple subjects to be stored and categorised in a cloud.
These different subjects may provide different behaviours for the same activities, which changes
the data distribution in the input-space. Therefore, updating HAR models that adapt to the
new data distribution may enhance the model’s error performance. Moreover, if the option to
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add new activities to the HAR system by personal annotation is valid, then the HAR model has
to be updated to recognise these new activities as new data points are add to the input space
with new labels. Therefore, we used the localised approach of kNN-LS-SVM to provide such
online adaption to any updates to the datasets. The main challenge that faces online modelling,
especially to provide real-time predictions is themodel’s time performance. As shown inTable 2.5,
kNN-LS-SVM provides the best time performance compared to the benchmarking algorithms
for simulated online modelling (leave-one-sample-out).

For thermal comfort prediction application 3, continuously collecting data frommultiple sub-
jects is present. Referring to the proposed framework (Figure 3.8), online modelling and stream-
ing analytics are required. More specifically, data is continuously streaming from wearable sen-
sors to the smartphone to be integrated into the mobile application. Furthermore, the frame-
work requires personal annotation, especially when a new subject uses the system. Therefore,
the model has to be updated, considering the new personal data. Hence, streaming analytics
is required to handle this in real-time. Using kNN-LS-SVM for this application provided the
option to update the model for each new test point; hence, it can support online modelling.
Moreover, this update allows considering new streaming data points to train the model which
supports streaming analytics. Therefore, the relatively low and limited computational complexity
and the acceptable error performance of kNN-LS-SVMmakes it a potential candidate to provide
both online modelling and streaming analytics for this application.

For vital-signs prediction (Chapter 4), online modelling and streaming analytics are benefi-
cial. Especially that, for time-series prediction of such a dynamic system, it is required to consider
the real-time dynamics of vital-signs. As shown in section 4.3.2, features are extracted from 70
minutes period to predict the statistical values of the different vital signs within specific prediction
horizons (i.e. +1, +2, and +3 hours). This prediction is designed to be updated every 10 minutes.
Moreover, data is acquired from different subjects which affects the data distribution in the input-
space similar to the previous applications. Therefore, online modelling and streaming analytics in
this application can be beneficial, given the dynamic nature of the biological system of humans in
addition to the diversity of data sources. Furthermore, for human health monitoring, it is needed
to provide the analytics on time for an efficient clinical decision-making process.

Conclusively, by proposing kNN-LS-SVM, we aim to keep a balance between updating the
model and controlling the computational complexity to develop the model given the streaming
data. From the obtained results in the first three applications, kNN-LS-SVM provided better
combined error and time performance compared to the benchmark local and global methods.

7.1.2.2 Model Personalisation

Model personalisation was experienced in both thermal comfort and vital-signs prediction ap-
plications (refchapter2, refchapter3). In both applications, the localised learning algorithm of
kNN-LS-SVM is proposed given the characteristics of the algorithm. The algorithm that is used
introduced another aspect to model personalisation. Hitherto, most of the studies that aim at
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developing a personal model rely only on personal data. However, our proposed method relies
on the most similar data regardless of whose data is used. This approach’s advantage is that a
new subject can be analysed efficiently, even if the obtained data from that subject is not enough
for training a model. Furthermore, the proposed method prioritises the similarity over personal
data. More specifically, data from a different person in the same condition (e.g. fever) can be
more informative than personal data in different condition (e.g. normal temperature). For ther-
mal comfort prediction, the obtained personal data of a specific subject can be in a particular
situation (healthy). However, the new test point can be in another situation (having a fever). For
this purpose, it will be more accurate to train the model with similar condition data from another
subject than training the model with personal data. For vital-signs prediction, the same concept
is valid as another person with the same condition can be more similar than the same person in
a different condition. However, this approach does not ignore the personal data as the nearest
data-points can be from the same person or different persons.

Overall, we can conclude that kNN-LS-SVM provided a similar or better performance than
the benchmark methods from either error or time performance perspective when the aforemen-
tioned challenges are present in the investigated datasets.

7.2 Question №2

To what extent can a feature engineering procedure integrated with a linear hard margin ap-
proach of SVM provide interpretability and explainability while providing an acceptable error
performance for prediction?

7.2.1 Model Interpretability and Explainability

In Chapters 5 and 6, the challenges are different and data characteristics as well. Observation rates
are relatively low (observation/1-2 hours), the events are crucial (mortality), and the patients are
bedridden (ICU patients). In these studies, we focused on features that can inform mortality
prediction for ICU patients.

In chapter 5, another analytical perspective is introduced regarding the application of ICU
mortality prediction. This study focused on keeping the balance between the computational
power of machine learning and the system interpretability for mortality prediction. As shown in
chapter 5, the problem of mortality prediction is studied, focusing either on the prediction power
(black-box) or the clinical interpretability (white-box). However, our study considers a grey-box
approach to tackle this problem as the main objective is to engineer simple explainable features
that can provide an acceptable prediction performance. The used machine learning algorithm
is a linear hard margin approach of SVM because of its specific characteristics, namely, linearly
separating classes and maximising the margin between them with minimal error tolerance.

In this study, we investigated themortality prediction problem in light of the parsimony prin-
ciple. This principle tends to choose the simplest solution among equally performant solutions.
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This simplicity can be observed in the small number of model parameters and linearity over non-
linearity of the model. In this study, we believe that a simple model (linear hard margin SVM)
with meaningful features can achieve a reliable error performance. In her article [5], Rudin C.
addresses a similar conceptual approach: "Stop explaining black-box machine learning models for high
stakes decisions and use interpretable models instead". In her article, she believes that the necessary
trade-off between accuracy and interpretability is a myth. In other words, investigating prob-
lems with structured data and meaningful features would provide an acceptable performance by
either simple or complex models [5]. In our study, we had the opportunity to engineer features
that can provide linear separation between the two classes that can inform mortality prediction.
Moreover, we aimed to prove a concept that by fitting a set of features to a wide diversity of
patients’ profiles, these features can be subdivided into subsets of features that perform well for a
corresponding profile.

Recalling the fourth sub-objective (Section 1.4.1), model interpretability and explainability
are met and partially tackled in this study. All extracted features are simple and can be explained
easily tomedical staff. Moreover, clinical insight is obtained from the extracted features, especially
those regarding the pulse pressure and its association to mortality. The analysed dataset includes
patients that were hospitalised for different reasons and admitted to the ICU for various reasons
(e.g., cardiology, neurology, abdominal) as shown in Figure 5.1. Hence, the engineered features
are expected to be suitable for several profiles of ICU patients. Moreover, we expected in the
conclusion of this study that each profile or combined profiles of the studied patients will require
a subset of the resulting features which is approved later in chapter six.

An essential phase in the process of feature engineering in this study is feature fine-tuning.
This phase mainly focuses on synthesising a set of the extracted features to enhance the mortality
prediction. This feature fine-tuning comprises a human-in-the-loop feature selection method
instead of an automatic one. Several advanced model-based and model-free feature selection
techniques are developed to tackle similar problems. However, we used the model-based human-
in-the-loop approach to integrate the physiological insight into the feature selection process.
This physiological insight was considered in the first step of feature fine-tuning by excluding
the HR-extracted statistical and dynamic features. This exclusion was motivated by the fact that
HR changes occur as a response to several physiological dynamics. Moreover, the physiological
insight appeared in including the pulse pressure features. Ultimately, this physiological insight
was approved by medical doctors.

Moreover, features are extracted from consecutive time windows of the measured time-series.
Therefore, the same feature extracted from the same variable may have multiple dimensions cor-
responding to the number of time-windows as illustrated in the discussion (Section 5.5). For
instance, extracting the feature of the mean value of HR from four time-windows provides a fea-
ture vector of 4 dimensions. Therefore, for clinical reasons, we based the selection on the feature
and the variable not on dimension basis, and this is the main reason to avoid automatic selection
techniques.
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7.2.2 Error Performance and Model Interpretation

In order to prove that a partially interpretable predictive model integrated with explainable and
meaningful features can provide a reliable error performance, we applied the proposed method
in chapter 5 to a specific profile of ICU patients, namely pulmonary patients with COVID-like
symptoms. By selecting a subset of features (Table 6.3) from the previously engineered features
in chapter 5, we obtained the mortality prediction performance as depicted in Tables 6.4 and 6.5.
These results are obtained from developed predictive models for the three subpopulations shown
in Table 6.2. It is worth mentioning that the engineered features in chapter 5 are defined from
a smaller dataset (447 patients) compared to the investigated dataset in chapter 6 (801 patients).
By focusing on the results of subpopulation II as it is the more inclusive COVID-like population
symptom-wise, the obtained results are promising with F1-scores of 0.88 and 0.85 for five-day
and two-day historical data, respectively. Moreover, the selected features (Table 6.3) for the
three subpopulations reflect the relevance of three vital-signs, namely, SpO2, respiration rate,
and blood pressure. Both SpO2 and respiration rate are trivially relative to a pulmonary problem.
However, adding blood pressure to these vital-signs was not evident till recent studies shown the
link between hypertension and mortality risk of COVID-19 patients [6].

As mentioned earlier, we focused on the precision and the recall of mortality prediction.
However, in the context of COVID-19 pandemic, it is worth investigating the recovery predic-
tion for the same models as well. Therefore, in Table 7.2, we depict sensitivity, precision, and
F1-score for the developed models in chapter 6 illustrated in Table 6.4. From Table 7.2, it is evi-
dent that the developed models provide acceptable performance for recovery prediction as well.
Therefore, based on such reliable models for both mortality and recovery predictions, they can
be considered as decision support tools. Such tools can support the decisions of urgent medical
intervention or discharge based on the outcome of the predictive models (i.e. mortality or re-
covery). Ultimately, once these models are validated on COVID-19 data and the whole stay at
ICU, they can be used for the pandemic of COVID-19 to predict the future status of mortality
or recovery. Such predictions are of paramount importance for ICU’s in hospitals where these
units experienced under-capacity during the first wave of the pandemic. Therefore, the precise
early decision of discharge can save beds to patients with a high need to be admitted.

Conclusively, we can answer the second research question positively. More specifically, the
approach of explainable feature engineering procedure integrated to linear hard margin SVM
helps to extract explainable and straightforward features. Moreover, the classifier provided a linear
hyperplane for linearly separable classes in the input space. Furthermore, the error performance
of the proposed classifier with the selected feature was acceptable.

7.3 Limitations

In this section, we discuss the experienced limitations in the investigated applications and the
proposed methods.
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Table 7.2: Sensitivity and precision and F1-score of recovery/survival for models 1 and 2
of subpopulations: Pulmonary+Infection (I), Pulmonary+Infection+Pneumonia (II), and Pul-
monary+Pneumonia (III) based on 60 observations for feature extraction.

Subpopulation Model Sensitivity % Precision % F1 Score

Pulmonary+Infection (I) 1 90 90 0.90
2 96.67 87.88 0.9201

Pulmonary+Infection+Pneumonia (II) 1 88.86 90.38 0.8961
2 90.57 88.89 0.8972

Pulmonary+Pneumonia (III) 1 92.1 83.34 0.8750
2 88.1 88.1 0.8810

7.3.1 Extra Hyperparameter

For the first three applications (i.e. HAR, thermal comfort and vital-signs prediction), the pro-
posed method was kNN-LS-SVM. One limitation with kNN-LS-SVM is that it introduces a
new hyperparameter (k) to be optimised. In our algorithm, we optimised k with other hyperpa-
rameters (γ and σ) during the validation phase. In their study, Karevan et al. [7] introduced the
cosine-based similarity method (Si(x) = x⊤xi

||x||×||xi||
+ 1) as a similarity measurement function

Si(x) to weight all training data points x based on their similarity to the test point xi. This ap-
proach does not require a new hyperparameter to be optimised. However, when data is nonuni-
formly distributed the number of similar data points can vary such that, when the number of
similar data points is high, the computational complexity of this approach increases. Moreover,
fixed or predictable temporal and computational complexities are crucial for online modelling
and streaming analytics to assure a reliable real-time processing. Therefore, our proposed ap-
proach can be more suitable for these applications compromising the added complexity of the
new hyperparameter (i.e. k). Future research has to decide how the number k can be inferred
from the distribution of the data points in the input space. This investigation is to determine
how many data points can inform the characteristics of different regions in the feature space.
However, we claim that using kNN-LS-SVM approach is still suitable for streaming and online
analytics recalling the time performance of kNN-LS-SVM, as shown in Table 2.5.

7.3.2 Data-size

Another limitation is regarding data-size, it is worth mentioning that data-sizes in all three chap-
ters (2, 3, and 4) are small to middle-sized datasets (100 to 15,000 data points). Data-size can
affect the computational complexity of the kNN search algorithm; however, several search algo-
rithms are developed to reduce the search computational complexity [8]. For instance, Wang X.
proposed in his study [9] an enhanced kNN search algorithm k-means for kNN (kmkNN)that
performed faster than the conventional kNN brute-force algorithm by 30-folds and 70-folds for
datasets with 106 and 5∗105 samples respectively. The computational complexity of the kmkNN
algorithm isO(d

√
n log dn)which is less than that of brute-force kNN algorithmwhose compu-
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tational complexity isO(dn)where n is the number of samples and d is the number of dimensions.
This issue is still an interesting future research direction.

For the thermal comfort application, data shall be extended quantitatively and qualitatively.
Data were collected only from 25 healthy young subjects (age: 21-36), which is supposed to be
increased in number and age spectrum to provide more diversity. The same limitation regarding
data-size was present in vital-signs prediction study, especially for the profiles of post-surgical
and dialysis patients with only 10 and 7 patients respectively.

7.3.3 Missing a Gold Standard

Regarding missing a gold standard, another limitation was experienced in both clinical studies
of vital-signs prediction and ICU mortality prediction. For vital-signs prediction, although the
used monitoring device (SomnotouchNIBP) is clinically approved, the estimated vital-signs (e.g.
HR) were noisy. Therefore, it would be more efficient to have a gold standard to validate the
denoised signals based on synchronous reference measurements. For mortality prediction study,
to test our predictive model for real-time mortality risk prediction we need a real-time indicator
to mortality risk. Especially that, along the stay, the label is always survival; therefore, another
outcome is needed to validate our model. This outcome can be a dynamic version of do-not-
resuscitate (DNR) [10] code to be updated during the stay at the ICU based on the physician’s
assessment of the patient’s status. A DNR code status would indicate that the patient would not
want cardiopulmonary resuscitation (CPR) performed andwould be allowed to die naturally only
if their heart stops beating and/or they stop breathing. Hence, the frequently updated version of
the DNR code can be considered an indirect indicator of the severity of the case during the stay
that reflects the mortality risk.

7.3.4 Lack of Data

Ultimately, the main experienced limitation in the study of COVID-like mortality prediction
is missing the real COVID-19 data to validate our mortality prediction models of COVID-like
patients.

7.4 Valorization

7.4.1 Human activity recognition

Recently, physical activity was considered a vital sign that reflects an informative health status as-
pect of subjects, especially those with chronic conditions [11]. Therefore, an integrated approach
ofHAR and vital-signmonitoring can result in amore complete picture of a subjects health status.
Physical activity (PA) assessment is important because of the observed influence of PA interven-
tion on reducing both cardiovascular diseases and cardiometabolic risk factors [12, 13, 14, 15, 16].
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Therefore, accurate PA assessment tools are needed to provide adequate feedback to subjects un-
der observation or to their care-givers. Physical activity vital sign tools are methods by which
clinicians assess the physical activity (PA) of subjects to obtain indicators of their general physical
condition. Moreover, Nelson et al. [17] foresee having future strategies to address or prevent
cardiometabolic disease, especially for pediatric patients given the correlation between PA and
other factors (e.g., age, sex, and blood pressure).

There are several versions of these tools that measure PA, (e.g., exercise vital sign (EVS),
physical activity vital sign (PAVS), and speedy nutrition and physical activity assessment (SNAP)).
EVS and PAVS are widely used in the USA health care systems to pay attention to patients with
low PA levels; besides these PA indicators are inserted into the patients’ electronic medical record
(EMR) section of vital signs. These tools are based on questionnaires that are carried out manually
by certified nurses while collecting traditional vital signs. These questions are mainly about the
physical activities that were performed, their intensity, and their rate within a specific period
(e.g., on average, how many minutes per day every week).

A foreseen valorization option is integrating novel wearable technologies (e.g., smartwatches
and patches) with an accurate HAR algorithm. Wearable technology is for continuously mon-
itoring physical activities, and the HAR system is a replacement of the manual questionnaires.
Therefore, integrating HAR into physical activity vital sign tools can provide autonomicity to
these tools.

Several requirements are needed to implement our proposed HAR algorithm for continuous
monitoring of PA and integrating its outcome into patients’ EMR at hospitals. First of these
requirements is the used wearable device(s) and their specifications from the clinical perspective.
Fortunately, many wearable devices for activity recognition in the market are suitable for this
purpose. The second requirement is the need to labelled data for daily-life activities and postures
of interest, which can be obtained from publically available datasets. We initiate the training pool
for our model by this labelled data till the new data is collected. The first phase of streaming data
from patients shall be labelled, contributing to the training pool. Therefore, a labelling procedure
has to be followed by the patient or the nursing staff using the device itself, which is an option to
be considered in the device specifications. Regarding the required infrastructure for this system,
a possible solution is to collect and process the streaming data by the hospital’s local server. A next
step if several regional hospitals are interested in the system is to store and process the streaming
data besides running the model on a cloud that links the different hospitals’ servers. The final step
is to integrate the model’s outcome into the patients’ EMR at the hospital.

7.4.2 For Thermal Comfort Prediction

Conceptually, the proposed method in 3 closes the loop of a control system that controls the
environmental temperature using an online personalised classification model. Moreover, this
application can be useful for hospitalised patients for automatic environment temperature control,
considering the physiological and psychological impact of heat on patients.
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For instance, in their study, Wagner et al. [18] investigated the effect of thermal comfort
on preoperative patients. It is found that thermal comfort and discomfort of patients before and
during the surgery has a proportional effect on patients’ well-being and their feeling of anxiety
[19, 20, 21]. It is worth mentioning that a higher level of anxiety is linked to tachycardia, hy-
pertension, arrhythmias, and increasing levels of pain [22, 23, 24]. Furthermore, the hormonal
response of stress is believed to affect the recovery process [24, 25]. Moreover, thermal comfort
affects the therapeutic intervention for thermal management during surgery [19, 26, 27]. Unfor-
tunately, the followed procedure to provide the required thermal comfort depends on the manual
assessment of the nursing staff and their manual intervention. In addition, this assessment is sub-
jective and patient dependent given the inter-patient variability of the thermal perception and
their physiological and psychological status.

A possible valorization option of our proposed method is to assess the patients’ thermal com-
fort automatically prior to and during their surgeries considering their personal perception of
temperature. Moreover, our developed thermal comfort prediction model only requires the tra-
ditionally monitored vital signs prior to or during the surgery (e.g., heart rate, temperature) in
addition to the heat flux which can be estimated efficiently. This autonomous assessment can
provide feedback to the nursing staff to intervene manually or to an active warming technology
depending on the available resources at the hospital.

Similar to HAR algorithm, the thermal comfort prediction algorithm can be integrated into
the hospital’s monitoring system for surgery patients. This integration needs some requirements
to be satisfied. Firstly is needed to determine the monitoring devices to collect the required
vital signs meeting the clinical standards. Furthermore, labelled data are required to initiate the
training set. For this application, it is essential to collect data in advance of this profile (i.e. surgery
patients) and label it based on personal perception. The collected data can be stored on the local
hospital server. The algorithm can run on the same server and provide its outcome to nursing staff
or directly to the controller of active warming technology. On a later stage, data from different
hospitals can be collected and stored on a cloud to enrich the training pool, but the algorithm
can still run locally on hospitals’ severs.

7.4.3 For Vital-Signs and Physical Activity

In all three applications (Chapters 2-4), we used one common algorithm, which is kNN-LS-
SVM. As discussed earlier in these chapters, this algorithm is a simple approach of localised learn-
ing that can provide fixed/predictable computational complexity regardless of the data-size incre-
ment. By fixed/predictable complexity, we refer to the fixed number (k) of the training datapoints
to build a new model for each test point.

As shown earlier, the first three applications are dealing with healthy subjects and hospi-
talised patients at general wards. One main feature that is in common between these applications
is the usage of wearable sensors which is shaping the future of healthcare. As using the wear-
able technology is affording the possibility to achieve continuous and real-time monitoring of
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many important human-health related parameters. This possibility to collect this critical data
automatically and with minimum human intervention can reduce the load on the medical staff,
especially in critical times such as COVID-19 pandemic. Moreover, using wearable technology
in the presence of efficient networking infrastructure, patients can be monitored at home, which
can limit the under-capacity of hospitals. Integrating wearable technologies with smart algo-
rithms similar to our developed ones can also assist the medical staff in assessing and foreseeing
the critical events on time. For at-home monitoring, this requires connectivity to the hospital
server through a cloud, which can be achieved by cellular networks or WiFi networks using
smartphone applications as an interface. Such an approach is already used with smartwatches
connectivity to smartphones and further to a cloud in which each subject’s data is stored and
processed. In case of lost network connectivity, this would require a local memory integrated
into the device to store data for some time.

Regarding the first three applications, namely human activity recognition, thermal comfort,
and vital signs prediction, we suggest them as the basis of a framework that merges three applica-
tions. This framework from a technology perspective is based on wearable sensors to measure all
variables of interest (i.e. physical activity, heart rate, blood pressure, oxygen saturation, respira-
tion rate, temperature, heat flux, and metabolic rate). Fortunately, all of these variables are either
measurable or can be estimated by already available wearable sensors. From a data perspective,
we expect that the collected data will be in a streaming form because of the high-rate measure-
ment and monitoring. This framework optimally can be designed based on cloud architecture
that can sort and store the collected data and make it accessible for analysis. From an analytical
perspective, this framework can rely on our proposed localised learning approach, given its ef-
ficiency to handle streaming and online analytics. By developing such a framework, it will be
possible to continuously and autonomously monitor the health status of patients at either hospi-
tals or homes. With this option of autonomous (tele)monitoring, we can lighten the workload
of clinical staff and the admission load to hospitals. Therefore, it will be an efficient approach
to integrate this framework with EMR systems at hospitals. For example, in a situation similar
to that of COVID-19 pandemic, such a framework can provide important logistic and medical
support to healthcare providers since all patients are monitored and assessed continuously with
minimal human intervention. The outcome of this framework is expected to be a real-time mon-
itoring and time-series predictions of the measured vital signs. Regarding personal annotation of
activities and thermal comfort levels, this can be achieved using the smartphone application. The
annotation does not need to be continuous as discrete annotation sessions are needed to adapt the
HAR and thermal comfort prediction models for personal use.

7.4.4 WearIT4health

Finally, the nearest valorisation option is linked toWearIT4health system. This system comprises
a wearable vital signs’ monitoring device that is integrated into hospitals’ EMR systems. The
wearable device is still under development and clinical approval, and it is intended to measure

http://www.wearit4health.com
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Figure 7.2: The wearable device ©WearIT4health to monitor hospitalised patients’ vital signs in
real time.

the vital signs of heart rate, blood pressure, oxygen saturation, temperature and respiration rate.
Based on the obtained results of the developed algorithms in Chapter 5, we expect to integrate
our algorithms into WearIT4health system. Especially that, the used wearable device in EAGLE
study measures the same vital signs. Moreover, the running project WearIT4COVID intends to
continue developing the WearIT4health system focusing on COVID-19 hospitalised patients. In
this project we are going to adapt our developed EWS computation and prediction models to
COVID-19 patients.

http://www.wearit4health.com/page/wearIT4COVID
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Chapter 8

Conclusions and Future Work

Throughout this thesis, we investigated the fundamental problem of data-related technical un-
certainty in medicine by addressing its different aspects. By understanding the various aspects,
our hypothesis is to restrain this problem by providing reliable decision support systems. In this
thesis, we developed analytical methods to comprise the analytical component of the decision
support system. These analytical methods include machine learning algorithms and feature engi-
neering methodology. The developed machine learning algorithms are mainly localised learning
approaches for either classification or time-series prediction. By evaluating these algorithms, we
conclude that the localised learning algorithm of kNN-LS-SVM provides high comparative per-
formance. This recognised performance is computationally, temporally and accurately proven.
Moreover, this approach can be suitable for streaming analytics and online modelling, which we
foresee as an efficient combination with wearable technologies. Furthermore, the algorithm of
kNN-LS-SVM is easily implemented, which is beneficial from practical perspective.

An important concept that is proven in this thesis, more specifically, in the mortality pre-
diction application is that a simple model and easily extracted features can predict a critical event
such as mortality with acceptable efficiency. Moreover, this simplicity can provide partially in-
terpretable and explainable predictive models which limits the black-box effect. Furthermore, the
followed methodology of feature engineering helped to obtain a clinical insight from the anal-
ysed data. Ultimately, fitting a set of features to a widely diverse dataset (e.g., multiple profiles)
can provide subsets of features that provide efficient performance for each profile.

For future work, we foresee possible applications and some research points to be investigated
by future research. Regarding possible applications, we propose two potential applications:

• The first is the integrative framework that merges the applications of HAR, thermal com-
fort and vital-sign prediction. By such a framework, it will be possible to monitor con-
tinuously activity and vital-signs of subjects using wearable sensors which can lighten the
workload on medical staff and admission load to hospitals. Moreover, this framework with
proper infrastructure can be extended to at-home monitoring which is helpful in such a
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situation like COVID-19 pandemic.

• The second application is a platform for mortality risk prediction at ICU’s based on the
monitored vital-signs of admitted patients. Such a platform shall be integrated into the
EMR system at hospitals to access the required data in addition to submitting and display-
ing the mortality risk in real-time.

Regarding the research points to be furtherly investigated, five of them are stated below:

• Firstly we propose concerning the algorithm of kNN-LS-SVM to develop a methodology
that reduces the complexity of optimising k-number. Such a method can be obtained by
having an insight into the data density in different regions in the input space in advance
by which the k-number can be determined to avoid a hyperparameter tuning phase for
k-number.

• A second research point is to consider all analysed vital-signs and variables (i.e. physical
activity, heart rate, respiration rate, oxygen saturation, blood pressure, heat flux, metabolic
rate, body and skin temperature) in one predictive model hypothesising that these variables
are influencing each other. For this purpose, it is required to monitor these variables
simultaneously by reliable sensors.

• The third research approach is to re-evaluate the standard early warning score using a con-
tinuous calculation of the EWS using wearable technology to be compared to the clinical
gold standard determined EWS score. The purpose of this research is to investigate the
temporal precision of the standard EWS. In other words, whether the standard rate of
EWS calculation (2-3 times per day) reflects a precise picture of the health status dynamics
or not. In case this rate is not sufficient, a high-rate of EWS using wearable technology
can be a proper replacement.

• The fourth research point is regarding the mortality prediction problem as we propose
to assess the mortality risk prediction during the stay by a clinical input or a reference
biomarker that informs mortality risk. Afterwards, we can evaluate the real-time perfor-
mance of the mortality prediction model. Furthermore, such a predictive model can be
used in combination with standard ICU scoring systems (e.g., APACHE II) to provide
real-time assessment of severity-of-disease at ICU.

• Furthermore, predictive models of vital-signs prediction will be adjusted and validated for
COVID-19 patients. Therefore, these predictive models would provide an early warning
system dedicated to COVID-19 patients. This research plan is to be carried out by our
research groups as a key activity in the Interreg project of WearIT4COVID.


