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Abstract

Healthcare services are being transformed by technological advancements
and the availability of health-related data, from wearable device
monitoring to treatment personalisation. Machine learning (ML) has
the potential to harness this data by identifying patterns and developing
prediction models to assist stakeholders and, ultimately, improve
healthcare. The applications of machine learning in healthcare have
grown exponentially, from drug discovery to preventative health. Given
enough data, machine learning models can accurately predict or classify
a disease. ML models can learn from longitudinal data collected over
time and make predictions early enough to allow for the implementation
of any necessary interventions.

Healthcare data, however, are susceptible to certain challenges that make
the ML modelling difficult. In this dissertation, we would like to address
some of the major challenges such as (i) the limited availability of data
due to a small data corpus or the necessity to predict events in advance,
(ii) personalisation of ML models that cater at an individual level as
opposed to a one-size-fits-all approach, (iii) preserving privacy of an
individual while maintaining a specific performance, and (iv) problems
arising from missing data and how to handle them.

To demonstrate the pervasiveness of these challenges, a variety of
healthcare applications are chosen. These applications encompass diverse
health monitoring scenarios at an individual or institutional level. The
modeling of weight gain in pregnant women during the course of their
pregnancy to ensure a healthy pregnancy and postpartum life is an
example of outside-hospital preventative health monitoring. Furthermore,
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iv ABSTRACT

an application from a hospital setting is explored with the goal of
predicting cognitive decline in Alzheimer’s patients using a longitudinal
dataset comprised of various data sources. Also, we investigate the
prediction of infant mortality in a developing country from the perspective
of population health management. Furthermore, we attempt to model
the pain experienced by individuals performing repetitive tasks at work
over time. The majority of these use cases require early prediction so
that essential intervention can be carried out on time. As a result, it is
imperative to develop machine learning models that can learn with only
a few measurements from an individual.

The research developed in this thesis aims to address four research
questions : (1) Can we predict a patient’s health state with limited
patient-specific time series data, (2) Can we detect infant mortality using
structured tabular data with a very high percentage of missing data,
(3) Can we create personalized machine learning models that can adapt
over time to generate accurate predictions using few data points, and
(4) Can we build machine learning models that can train in a secure
manner while dealing with sensitive raw data without losing prediction
performance? These broad research questions are further subdivided into
individual application-based sub-objectives. To address these research
questions and sub-objectives, we developed a number of techniques that
can handle both N-dimensional time-series data and tabular data.

First, we propose a straightforward method for overcoming the limited
availability of individual data where the underlying principle is to learn
a non-person specific ML model from all the available individuals and
then personalising it with the target user’s available data.

Second, we propose a more complex method that follows the similar
principle and combines a localised method for generating informative
priors before learning a regression model. The localised method selects
individuals from the training data, whose health history is similar to
that of the individual of interest. This is then followed by a powerful
Gaussian processes-based method of learning from the selected subset.

Thirdly, we offer a privacy-preserving learning paradigm based on the
aggregation of ML models learned from an individual’s data. This
strategy differs from the conventional centralised technique in which raw
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data is collected and shared to a central server. The findings of this study
demonstrated that a good privacy-performance trade-off is feasible.

Through a case study, we discuss the current flaws in handling missing
data with off-the-shelf techniques. We demonstrate the importance of
identifying the mechanisms through which the data can be missed, as well
as the inconsistencies that can creep into the model if these mechanisms
are not properly studied during the exploratory phase. The findings of
this case study suggest a technique for detecting biased features, which,
if not handled carefully, can give the ML model a false sense of predictive
power.

In conclusion, the concepts presented in this doctoral dissertation are
relevant to addressing difficulties in modelling healthcare-related tasks
using machine learning.





Beknopte samenvatting

Gezondheidszorgdiensten worden getransformeerd door technologische
vooruitgang en de beschikbaarheid van gezondheidsgerelateerde gegevens,
van monitoring van draagbare apparaten tot personalisatie van behan-
delingen. Machine learning (ML) heeft het potentieel om deze gegevens
te benutten door patronen te identificeren en voorspellingsmodellen
te ontwikkelen om belanghebbenden te helpen en uiteindelijk de
gezondheidszorg te verbeteren. De toepassingen van machine learning
in de gezondheidszorg zijn exponentieel gegroeid, van het ontdekken
van medicijnen tot preventieve gezondheid. Met voldoende gegevens
kunnen machine learning-modellen een ziekte nauwkeurig voorspellen of
classificeren. ML-modellen kunnen leren van longitudinale gegevens die
in de loop van de tijd zijn verzameld en voorspellingen vroeg genoeg doen
om de implementatie van eventuele noodzakelijke interventies mogelijk
te maken.

Gegevens in de gezondheidszorg zijn echter onderhevig aan bepaalde
uitdagingen die de ML-modellering moeilijk maken. In dit proefschrift
willen we enkele van de belangrijkste uitdagingen aanpakken, zoals (i) de
beperkte beschikbaarheid van gegevens vanwege een klein gegevenscorpus
of de noodzaak om gebeurtenissen van tevoren te voorspellen, (ii)
personalisatie van ML-modellen die inspelen op een individueel niveau
in tegenstelling tot een one-size-fits-all-benadering, (iii) het behoud van
de privacy van een individu met behoud van een specifieke prestatie, en
(iv) problemen die voortvloeien uit ontbrekende gegevens en hoe hiermee
om te gaan.

Om de alomtegenwoordigheid van deze uitdagingen aan te tonen, wordt
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gekozen voor een verscheidenheid aan toepassingen in de gezondheidszorg.
Deze toepassingen omvatten diverse scenario’s voor gezondheidsmo-
nitoring op individueel of institutioneel niveau. Het modelleren
van gewichtstoename bij zwangere vrouwen tijdens hun zwangerschap
om een gezonde zwangerschap en postpartum leven te garanderen,
is een voorbeeld van preventieve gezondheidsmonitoring buiten het
ziekenhuis. Verder wordt een toepassing uit een ziekenhuisomgeving
onderzocht met als doel cognitieve achteruitgang bij Alzheimerpatiënten
te voorspellen met behulp van een longitudinale dataset bestaande
uit verschillende databronnen. Ook onderzoeken we de voorspelling
van kindersterfte in een ontwikkelingsland vanuit het perspectief van
populatiegezondheidszorg. Bovendien proberen we de pijn te modelleren
die wordt ervaren door individuen die repetitieve taken op het werk in de
loop van de tijd uitvoeren. De meeste van deze use-cases vereisen vroege
voorspelling, zodat essentiële interventie op tijd kan worden uitgevoerd.
Als gevolg hiervan is het absoluut noodzakelijk om machine learning-
modellen te ontwikkelen die kunnen leren met slechts een paar metingen
van een persoon.

Het onderzoek dat in dit proefschrift is ontwikkeld, heeft tot doel vier
onderzoeksvragen te beantwoorden: (1) Kunnen we de gezondheids-
toestand van een patiënt voorspellen met beperkte patiëntspecifieke
tijdreeksgegevens, (2) Kunnen we kindersterfte detecteren met behulp
van gestructureerde tabelgegevens met een zeer hoog percentage
van ontbrekende gegevens, (3) kunnen we gepersonaliseerde machine
learning-modellen maken die zich in de loop van de tijd kunnen
aanpassen om nauwkeurige voorspellingen te genereren met weinig
datapunten, en (4) kunnen we machine learning-modellen bouwen die
op een veilige manier kunnen trainen terwijl ze omgaan met gevoelige
onbewerkte gegevens zonder de voorspellingsprestaties te verliezen?
Deze brede onderzoeksvragen zijn verder onderverdeeld in individuele
toepassingsgerichte deeldoelen. Om deze onderzoeksvragen en subdoelen
te beantwoorden, hebben we een aantal technieken ontwikkeld die zowel
N-dimensionale tijdreeksgegevens als tabelgegevens kunnen verwerken.

Ten eerste stellen we een eenvoudige methode voor om de beperkte
beschikbaarheid van individuele gegevens te overwinnen, waarbij het
onderliggende principe is om een niet-persoonsspecifiek ML-model te



BEKNOPTE SAMENVATTING ix

leren van alle beschikbare personen en dit vervolgens te personaliseren
met de beschikbare gegevens van de doelgebruiker.

Ten tweede stellen we een complexere methode voor die hetzelfde principe
volgt en een gelokaliseerde methode combineert voor het genereren
van informatieve priors voordat een regressiemodel wordt geleerd. De
gelokaliseerde methode selecteert personen uit de trainingsgegevens
waarvan de gezondheidsgeschiedenis vergelijkbaar is met die van de
persoon van belang. Dit wordt vervolgens gevolgd door een krachtige
op Gaussiaanse processen gebaseerde methode om te leren van de
geselecteerde subset.

Ten derde bieden we een privacy-behoudend leerparadigma op basis van
de aggregatie van ML-modellen die zijn geleerd van de gegevens van een
persoon. Deze strategie verschilt van de conventionele gecentraliseerde
techniek waarbij onbewerkte gegevens worden verzameld en gedeeld met
een centrale server. De bevindingen van dit onderzoek laten zien dat een
goede afweging tussen privacy en prestaties haalbaar is.

Aan de hand van een casestudy bespreken we de huidige tekortkomingen
in het omgaan met ontbrekende gegevens met kant-en-klare technieken.
We demonstreren het belang van het identificeren van de mechanismen
waardoor de gegevens kunnen worden gemist, evenals de inconsistenties
die in het model kunnen kruipen als deze mechanismen niet goed worden
bestudeerd tijdens de verkennende fase. De bevindingen van deze
casestudy suggereren een techniek voor het detecteren van vertekende
kenmerken, die, als ze niet zorgvuldig worden behandeld, het ML-model
een vals gevoel van voorspellende kracht kan geven.

Concluderend, de concepten die in dit proefschrift worden gepresenteerd,
zijn relevant voor het aanpakken van problemen bij het modelleren van
zorggerelateerde taken met behulp van machine learning.
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Chapter 1

Introduction

A high quality of life depends on one’s health. Healthcare professionals
evaluate individual health by gathering data (often clinical data) and
analysing it. In addition to individual data, they also leverage data
acquired from the general population to determine an individual’s current
state of health and recommend diagnoses to enhance it. Thus, data is
crucial for analysing human health. Machine learning (ML) is a field of
computer science that harnesses the power of data to automatically learn
patterns from it. Several industries, such as computer vision, natural
language processing and robotics, have been boosted by ML’s use of
data. Consequently, ML has enormous potential for automating the
extraction of insights from raw data to aid caregivers and ultimately
improve health. However, there are several challenges when applying
machine learning to healthcare. This section introduces these difficulties
inherent in the application of machine learning in healthcare, particularly
preventative healthcare. The section 1.1 introduces the healthcare-related
motivation followed by various challenges in applying machine learning
in such scenarios. In section 1.2, we present a variety of healthcare-
related applications that face these issues. Section 1.3 presents the key
research objectives addressed in this thesis together with sub-objectives.
Section 1.4 provides an outline of the subsequent chapters.

1



2 INTRODUCTION

1.1 Introduction and challenges in healthcare infor-
matics

Prognosis of a disease is central to the practice of medicine. The
estimation of a disease’s likelihood may assist health policymakers
and physicians make decisions about identification, screening based
on detected severity, and treatment in high-risk groups [1]. Evidence
based medicine is defined as “the conscientious, explicit, and judicious
use of current best evidence in making decisions about the care of
individual patients” [2]. The evidence-based approach integrates a
medical practitioner’s clinical expertise with the best available external
evidence from systematic research [2]. Without clinical expertise, there
are several risks that might occur in practice because strong evidence
alone might not be applicable for an individual patient [2]. Similarly, the
practice methods should be kept up to date by incorporating the most
recent best evidence for the sake of a patient. Clinical prediction models
(CPM) integrate patients’ characteristics to evaluate the probability of
health risk in certain individuals. For public health, targeted preventive
interventions can be devised for at-risk individuals. In a clinical setting,
CPMs can help the physicians in tracking the probability of a diagnosis
for a certain patient [1].

A clinical or non-clinical prediction model can assist in determining the
physical health of an individual in or out of a hospital setting. The
prediction models can aid medical practitioners in identifying early signs
of disease. They can then provide care at an individual level based
on the posed severity of a prediction outcome. Typically, prediction
models are built on population averages. Precision medicine is defined
by National Research Council (US) as “the tailoring of medical treatment
to the individual characteristics of each patient. It does not literally mean
the creation of drugs or medical devices that are unique to a patient,
but rather the ability to classify individuals into sub-populations that
differ in their susceptibility to a particular disease, in the biology or
prognosis of those diseases they may develop, or in their response to a
specific treatment. Preventive or therapeutic interventions can then be
concentrated on those who will benefit, sparing expense and side effects
for those who will not” [3]. Fields such as ‘precision medicine’ are driving
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huge research from a one-size-fits-all approach to a personalised approach
that accounts for individual variability within groups of individuals [4],
[5]. Predictive modelling is primarily done to estimate future values
based on the historical data from either an individual or a population.

Machine learning (ML) is a branch of artificial intelligence that enables
a computer to learn from data automatically by gradually improving
its performance via experience, similar to how people learn. In order to
gain insight into an individual, machine learning involves the collection
and examination of data to identify patterns and significant trends. This
pattern discovery and creation of prediction model by ML is enabled
by the availability of sufficient annotated data around a specific task.
With the digitisation of medical data and the advent of low-cost sensory
hardware, a huge amount of data is made available for analysis. Typically,
this information is stored throughout time to account for an individual’s
health history. This is termed longitudinal data since it has been collected
over time. This data can range from wearable data for daily health
monitoring, for example physical activity, heart rate to Electrocardiogram
(ECG) or yearly/monthly data such as electronic health records (EHRs)
in a hospital setting.

Machine learning (ML) applications in healthcare have seen a tremendous
growth, from drug discovery [6] to preventive health [7], [8]. Much of
this is made feasible by a massive shift from theoretical studies involving
small proof-of-concepts to large-scale real-world applications, particularly
in computer vision and natural language processing [9]. Combining
large-scale data from heterogeneous sources from an individual (e.g.
blood test report, X-ray, physician’s notes, etc.) can help build machine
learning models that are able to make individual predictions based on
subjects’ individual characteristics in a timely manner [10]. Despite these
advances, there are several bottlenecks associated with ML applications
in healthcare. Raw electronic health data, for example, are challenging
to analyse using machine learning as they may contain a huge number of
unrecorded values for one individual that would otherwise be present in
another. This could be because the doctor ordered the tests based on
past observations of an individual and might not be needed in another.
Thus, many of the difficulties stem from the fact that data collection
in healthcare is conducted largely to assist care, as opposed to allowing
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data analysis [10].

In this dissertation, we will explore the training of machine learning
algorithms while considering the issues that typical healthcare data may
have, such as limited data availability, personalisation, missing data, and
privacy concerns. These are discussed in detail in the following sections.

1.1.1 Limited data availability

Intervention in healthcare can be provided as soon as a condition is
diagnosed. Some disorders simply require a snapshot of data at a single
point in time to predict a health outcome, for example the association
of high body mass index with greater cardiovascular risk [11]. Lifestyle
based interventions are fruitful if the signs of a particular health-related
deterioration are detected early. Physicians assess the previous health
record of a person to identify a suitable trajectory of necessary lifestyle
changes. Consequently, they are able to intervene in a timely manner
by utilising the knowledge that they gained through time from treating
other patients. A longitudinal study, as opposed to snapshot-based
health prediction, consists of measurements where the health status
is tracked over time. A machine learning model that can capture the
differences in health status can be learned either through individual
data or combining individual data with data from other subjects. If
such a model can forecast a person’s health outcome as early as possible,
necessary interventions may be more successful. This is, however, difficult
for the following reasons,

1. Not enough subjects: The statistical learning from data depends
on the diversity in a dataset. If the study conducted has a small
group of participants and the data being collected are only a few
observations, they might not be a good representation of every
individual’s characteristics. This could result in less informative
models that perform poorly with fresh data from an unseen subject.
The capacity of ML models to perform well on unseen data is
known as their generalisation ability. Machine learning requires
that the collected dataset has enough observations that are a good
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representation of the complete population to make a generalised
model.
However, limited subjects alone might not always be an issue.
For example, in human activity detection accelerometer data is
collected that is sampled at very high-sampling rate (order of 100
measurements per second). This data is collected from a small
number of participants engaging in a variety of activities (actions)
with high intra-activity variability, enabling the development of
generalised, high-performing models [12]. Unless the measurements
are sampled at a high rate, limited subjects-based modelling is
further aggravated by limited measurements within those subjects.

2. Not enough measurements: To forecast a state as early as
possible, machine learning models must learn from a small number
of observations of an individual. In a clinical situation when a
patient makes several hospital visits, for instance, the ability to
predict an individual’s health state as early as the first or second
visit presents a limited measurements problem.

3. Not enough ground truth: Usually the classification of the
health condition requires training of a machine learning model
against given data and its labels. Typically, two to three domain
experts must annotate segments of lengthy recordings, such as an
ECG or X-ray image, where a health abnormality is present. This
combination of labels and data, known as labelled data, serves
as training data for a machine learning model. Obtaining ground
truth is a costly endeavour that needs the significant time and
effort of domain specialists.

1.1.2 Personalisation

Personalisation in healthcare is an active field of interest, primarily
because it is user-centric [13]. Precision medicine as described in
section 1.1 offers solutions that can change the course of diagnosis of
an individual from that of an average patient to a more individualistic
approach [14]. Machine learning models attempt to create a global
model based on the available labelled data, and based on these models,
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inferences are formed about unlabelled data from an individual. The
more diverse the data, the more variations can be captured for a specific
learning task. This diversity is often achieved by collecting more data in
different situations in a particular use-case which is then used to train
such algorithms. If the model performs as well on an unseen data as it
did on the training data, it is said to have generalised well. To produce
personalised predictions for a user, one may collect data from various
sources related to that user and develop models that are specific to each
user. This can generate a user-specific model, but it takes a substantial
amount of individual data. In addition, the model may suffer from bias
with respect to a given user and be incapable of learning from different
data. Consequently, models must be sufficiently generic to be applied to
a large population but also be capable of adapting to the peculiarities of
the individual.

But, the need for predicting early as stated below can limit the capabilities
of a machine learning model for creating personalised models as it is
required to predict with as little data as possible. For instance, it is
vital to be able to forecast cognitive decline in Alzheimer’s patients if
individual patterns can be modeled as soon as the patient is admitted.
This, however, severely limits the availability of historical data for that
person, as no past history is available. We will discuss such use-cases
in detail in chapters 2, 3 and 6. One way of tackling such a challenge
is by incorporating more information. This can be done in two ways as
follows,

Heterogeneous sources of data

Integrating data from multiple heterogeneous sources for a single patient
can help obtain information about the characteristics of individual
physiology. For example, instead of just modelling the historical data
of the cognitive decline in an Alzheimer’s patient over time, including
other measurements like imaging modality based magnetic resonance
imaging (MRI) or Positron emission tomography (PET) can improve the
predictive performance of future values of cognitive decline. This will be
covered in greater detail in the chapter 3.
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Intra-subject discovery

As we discussed earlier, a doctor in an evidence-based approach combines
external evidence with individual clinical expertise. Similarly, a machine
learning model can be learnt by discovering patterns in the population
and adapting these models with respect to limited personal information
available from the individual of interest. For example, sepsis is a
potentially life threatening hospital condition that occurs as a result of
infection. Early detection and treatment of sepsis are crucial with each
hour of delay associated with a 4-8% increase in mortality [15]. Although
not particularly designed to diagnose sepsis, the National Early Warning
Score (NEWS) is the standard score used to assess deterioration in a
hospital setting. It detects in advance cardiac arrest or death by using
certain thresholds and triggers for vital signs and other lab measures.
There are many false alarms in an in-hospital setting since NEWS is
not especially focused on sepsis. The authors in [16] trained a neural
network architecture on a massive corpus of electronic health records
(EHRs) data containing information about vitals (e.g. heart rate) and
lab measurements measured over time. A deep neural network was
trained on all the available subjects, as well as the test individual’s
information to learn the detection of sepsis prior to the event occurrence.
When tuned with individual data, the patterns learned over time for the
progression of vitals and lab measurements in other subjects achieved
a significant performance boost while reducing false alarms in sepsis
detection compared to the National Early Warning Score, which only
uses individual data and compares to several thresholds based on average
population risk scores.

1.1.3 Missing data

Healthcare data is evolving and becoming significantly more complex.
Before being fed to any out-of-the-box machine learning estimation or
classification model, population health datasets such as survey-based
data and individual electronic health records (EHR) must be properly
curated. Errors in recording entries or outliers may lead to considerable
amount of missing data. Also, physicians may order specific diagnostic
tests based on a patient’s medical history, resulting in dynamic selection
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of variables that are not present for every individual. Thus, there are
dependencies in the creation of variables that must be carefully accounted
for. If the dataset used to train machine-learning algorithms are biased,
the system may be prejudiced in practice. These biases can occur as a
result of collection of data or learning algorithms or both. For instance,
it is straightforward to have more data from a normal individual than
a specific diseased individual, hence generating an imbalance in the
collected data to classify a specific disease vs a normal individual. If this
imbalance in the dataset is not addressed effectively, machine learning
models may be biased toward the normal class rather than the ill class.
Similarly, ML algorithms may try to model the missingness, when data is
missing for only one class as compared to others. Therefore, it is essential
to handle the missing data with care.

Standard machine learning approaches can train models using either
incomplete casewise deletion or missing data imputation to handle missing
data. Incomplete casewise deletion refers to the elimination of instances
that are missing one or more variables [17]. However, casewise deletion
may result in the loss of statistical knowledge that could be informative.
Therefore, missing data imputation, i.e. filling in missing data, is the
most prevalent method for handling absent data. But it is important
to understand the assumptions in which data can be missing. Using
off-the-shelf imputation techniques without understanding the underlying
mechanisms of the missing data might lead to biased results that might
perform worse on an unseen dataset. When the underlying assumption
is missing not at random (MNAR), the missingness of a variable is
related to the unobserved data, for example, an illicit drug user would
be hesitant to answer a drug usage related question in a survey. In such
cases, modelling the missing data is the only way to obtain an unbiased
estimate of the parameters, but this requires domain expertise in the
missing variable, which is usually impractical. We will discuss this in
detail in the chapter 5.

1.1.4 Privacy

Learning from data requires access to sensitive data from users, especially
in a healthcare scenario. This is typically done, centrally where the data
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is pooled at a central server and models are learned at this centralised
server. There are several challenges associated with centralising the data,
ranging from data protection and privacy challenges such as regulatory,
ethical and legal challenges, to technical ones. For instance, regulatory
constraints limit dataset quality by deleting information to protect the
privacy of a specific user from a machine learning standpoint. Recital
26 [18] of the General Data Protection Regulation (GDPR), the European
data protection law defines anonymous data as “information which
does not relate to an identified or identifiable natural person or to
personal data rendered anonymous in such a manner that the data
subject is not or no longer identifiable” [19]. Complete anonymisation,
restricting access, and exchanging healthcare data securely is a difficult
and sometimes impossible task. In [20], the authors demonstrate that
patients can be re-identified from an anonymised dataset with only a few
demographical indicators, even when the dataset is highly incomplete,
thereby challenging the technical and legal adequacy of de-identification
release-and-forget models to meet the modern anonymisation standards
established by regularity authorities, for instance General Data Protection
Regulation (GDPR). As a result, these legal, ethical constraints, albeit
necessarily, present a number of data-related issues when it comes to
traditional centralised learning, further limiting the predictive ability of
a machine learning model.

There has been growing research on building machine learning models
where the learning paradigm is shifting from the traditionally centralised
approach to a more decentralised approach [21] where a user has more
control over their own data. Federated learning (FL) is described as
the collaborative learning of a machine learning task by a federation
of edge-devices by sharing updates of models learned locally on private
data that are aggregated at a central server. After that, the aggregated
updates are used to modify the local models. Federated learning (FL)
was introduced by Google [21] and has become a promising approach
because it addresses privacy and data governance issues by enabling
machine learning from distributed data. Taking the model to the data
and not the opposite has multiple advantages, for example reduction in
data-duplication of large scale institutional data for local training.

Similarly, data transfer over borders has its own privacy concerns because
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of different regulations in different countries. One way of utilising cross-
border data within the scope of legal constraints is by learning a model
in one geographical location such that it reveals close to zero personal
information. This model can then be fine tuned with the data from
another geographical location. This is known as transfer learning. We
demonstrate in chapter 2 where a model learnt on population in one
demographic is transferred to other demographic, much like fine-tuning
a model, while keeping personal data private.

1.2 Use-cases

We discussed the key challenges that can arise when attempting to model
a dataset. These challenges are not exclusive to the healthcare sector;
they also exist in other fields where machine learning models must be
learned when one or more of these challenges arise.For the purposes of this
dissertation, only healthcare-related use cases will be considered. Before
discussing the overarching research objective and the sub-objectives, we
would like to explain the healthcare applications that this dissertation
addresses and the related challenges.

1.2.1 Gestational weight gain management

Weight management is a crucial lifestyle-related issue that affects people
of all ages and races in increasingly obesogenic societies [22]. Pregnant
women are one of the most vulnerable population groups. The Institute
of Medicine (IOM) has updated the suggested set of guidelines for how
much weight women of various Body Mass Index (BMI) categories should
acquire during pregnancy in order to promote optimal health for both
the mother and her child [23]. Only about 30% of the pregnant women
end up having normal weight gain in association with the recommended
guidelines [24]. Several studies have found a link between gestational
weight gain and pregnancy outcomes [25], [26]. Associated risks involve
immediate and long-term dangers to mothers, including fetal macrosomia
and post-partum weight retention, which can lead to maternal obesity.
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Necessary lifestyle interventions can be devised if the weight gain trend
is detected early in the pregnancy.

To accomplish so, we collected weight measurements from expecting
women during their pregnancy and investigated the trajectory of weight
gain. These measurements were acquired in a home environment using
a mobile application linked to a Wi-Fi connected weighing scale. They
were urged but not obliged to record measures at least once a week in
order to continue their normal routine and be close to a realistic data
collection scenario. While following the said data collection principle,
the data collected had various challenges that are typically also present
in other applications of machine learning. For example, because the data
is self-reported, it is far more scarce than was thought to be. Even if
a participant records daily, for an average pregnancy lasting about 40
weeks, measurements would not exceed 280 points in time. Some women
were far more conscious than others, noting their weights on a regular
basis, resulting in readings that were evenly spaced in time. Others had
less incentive to do so, resulting in some cases with two nearest time
points as widely apart as 4 weeks. Fig. 1.1 shows two densely sampled
data (subject 9 and 65) vs sparsely sampled data (subject 16 and 53) for
modelling.

Eighty subjects in the Netherlands and 153 subjects in China participated
in this study. More details about the dataset are presented later in
section 2.3. As outlined in the section 1.1.1, this data faces the challenge
of limited avaiability as the number of subjects is small and the number
of time measurements each subject possesses is also low. In addition,
there is a lot of sparsity in a given time series making the time series
non-uniformly sampled.

Furthermore, an intervention can be successful if the deviation in weight
gain from the normal trajectory is detected as soon as possible. In
terms of machine learning, this means that the learning algorithm
only has access to an individual’s measurements for training until a
specified day, thus limiting the availability of personal data required to
develop personalised models that can monitor individual trajectory. This
challenge of personalisation detailed in section 1.1.2 further limits the
availability of data.
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Figure 1.1: Gestational weight data with respect to time with subject 9
and 65 having abundant measurements vs data from subjects 16 and 53
that have very few measurements.

Typically, the raw weight gain data is shared to a central server along
with other meta-data where this data is processed to learn efficient ML
models. Since the weight gain data and other meta-data are personal
and sensitive, there is a need to address the privacy concerns of sharing
the raw weight data to a central data controller over time via a mobile
application as described in section 1.1.4.

1.2.2 Alzheimer’s disease prediction

Alzheimer’s disease (AD) is the most prevalent form of dementia and a
neurodegenerative ailment. It is urgent and difficult to predict the onset
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of symptoms in the early stages of this progressive condition [27]. The
design of clinical trials and the development of therapeutic interventions
rely on the correct identification of patients in the earliest stages of disease,
when therapies are most likely to be beneficial. The clinical status of
an Alzheimer’s patient is determined by regularly employed cognitive
scores, specifically the mini mental state examination (MMSE) [28], the
Washington University Clinical Dementia Rating Sum of Boxes score
(CDRSB) [29], and the AD Assessment Scale-Cognitive subtest score
(ADAS-Cog13) [30].

Generally, Alzheimer’s disease data comprises numerous measurements
taken over the course of multiple visits. This data might consist of data
from several heterogeneous sources ranging from clinical notes to imaging
data. Fig. 1.2 shows the dataset collected as part of the TADPOLE
challenge [31] by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
consortium1 [32].

Figure 1.2: Multi modal dataset of an Alzheimer patient consists of
image data, genetics, cognitive tests and demographic information taken
over several visits to the hospital [32]

1http://adni.loni.usc.edu/
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The data from 1737 patients collected every six months over a period of
120 months includes imaging modalities like magnetic resource imaging
(MRI), positron emission tomography (PET) and diffusion tensor imaging
(DTI), cerebro-spinal fluid (CSF) markers of amyloid beta and tau-
deposition, cognitive assessments measured in the presence of a clinical
expert, genetic information such as alipoprotein E4 (APOE4) status from
DNA samples and general demographic information [31].

The Alzheimer’s dataset consists of similar challenges as were presented
for gestational weight gain (GWG) use-case in section 1.2.1. The GWG
data is univariate, meaning there is only one input variable (time) that
influences the output variable (weight gain), whereas the Alzheimer’s
data is multivariate (there are multiple input variables), where the
output variable (cognitive decline) is also dependent on the multivariate
input variables in addition to the historical output measurements. The
aforementioned challenges present themselves as data from several visits
are absent among individuals, and early prediction of cognitive decline
reduces personal data available for training.

Multiple input variables are missing across several visits making the data
highly sparse for modelling the cognitive decline. 95 subjects out of 1737
were selected such that data from at least ten visits (out of 24 total
visits) are present and missing data are no more than 82.5% of the input
variables. This decision was made in accordance with [33] so that we can
compare our approach with their state-of-the-art results. Furthermore,
in order to design effective clinical trials, it is critical to be able to predict
cognitive deterioration as early as possible, hence limiting the accessible
input data for developing personalised models. These difficulties were
outlined in sections 1.1.1 and 1.1.2.

1.2.3 Infant mortality prediction

Child mortality remains a major challenge in India and is responsible
for approximately 39.1 deaths per 1,000 live births in 2017 [34]. Child
mortality as a pregnancy outcome is considered a major attribute in
building efforts to preventive antenatal care thus reducing infant mortality.
We chose a publicly available healthcare survey dataset conducted over
women that underwent pregnancy in several states in India [35].
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We select data from the open government platform in India where the
Indian government has provided open access to datasets, documents,
etc. for public use. This dataset is also collected as part of a joint
initiative between government of India and US government. A number
of 355 features in the Women pregnancy schedule (WPS) dataset [35]
are present in the form of questionnaire, with fields related to social,
economic, health status or demographic indicators as well as the outcome
of pregnancy (live or stillbirth).

The data contains rows that represent individual subjects and columns
that contain a particular questionnaire answer also referred to as a feature.
Missing data (as described in section 1.1.3) is often handled by deleting
the row containing missing values or by imputing the missing values by
training an imputation algorithm on a subset of the given dataset.To
obtain a reliable model, the subset utilised for training the imputation
procedure should be complete (i.e. no missing data). However, there
is no complete subset of data in the aforementioned questionnaire data.
To construct robust infant mortality prediction models, it is therefore
critical to deal with missing data in different ways. This is addressed in
detail in chapter 5.

1.2.4 Pain Management at Workplace

Musculoskeletal disorders (MSD) are injuries and illnesses affecting the
muscles, nerves, tendons, joints, cartilage, and spinal discs. Work-
related musculoskeletal disorders (WMSD) are conditions where the
work environment and work performance significantly contribute to the
MSDs [36]. WMSDs are the most prevalent occupational health issue
and the leading cause of absenteeism at workplace affecting about sixty
percent of the workforce in Europe [37]. “Pain chronification” is the
transformation of temporary pain into persistent pain at work and is one
of the long-term effects of MSDs. Preventive pain management reduces
the likelihood of developing chronic pain. Additionally, there are several
models that integrate different biological, social and psychological factors
to the perception of pain [38], [39], [40] that illustrate how various persons
experience pain, which results in the subjectivity of pain assessments.
Thus, predicting pain in a personalised manner is essential for preventing
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pain persistence. It is crucial that both patients and medical practitioners
have the education and abilities necessary to manage pain correctly [41].
Therefore, it is essential to conduct an accurate assessment of pain in
advance, as this can help a person limit their expectations and fears
about returning to work.

To achieve this, we recruited 99 participants from multiple sectors in
Belgium and asked them to keep a daily diary of their work-related
pain on a scale from 0 (no pain) to 100 (maximum pain). Due to the
users’ reluctance to record their pain levels at the end of the day, these
self-reported pain levels are missing a significant amount of data across
time. This presents several modeling difficulties for individual pain data.
In order to predict pain as early as possible, only few measurements from
an individual can be used for training a personalised model. In addition,
this limited time-series data are sampled irregularly. These difficulties
were discussed in section 1.1.1. Because pain data is self-reported, it
is inherently subjective, making it difficult to create a one-size-fit-all
model that can be used to predict pain levels in all the individuals.
We will discuss in chapter 6 each person’s pain fluctuates around their
baseline pain measurement. This subjective baseline is based on their
perception of pain and varies across individuals. Consequently, the pain-
forecasting model requires a much-needed personalisation, as highlighted
in section 1.1.2.

In this dissertation, we would like to define our research questions that
lie at the intersection of these broad challenges with applications that
span one if not multiple of these challenges. Figure 1.3 is a Venn diagram
of these challenges in each use case.
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1.3 Research Objective

When it comes to using machine learning to learn models, whether
for classification or regression, the availability of data is now a must,
and its abundance enables the deployment of data-intensive methods
such as deep learning. In applications such as those discussed in this
thesis, however, we shall see that this is not always the case. Data
can be restricted for a variety of purposes, including measurement,
privacy and/or personalisation as mentioned in section 1.1. The primary
objective of this dissertation is to investigate if machine learning models
can attain reliable performance when given with a range of data-related
challenges, notably in the context of time series data in healthcare. With
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this in mind, we wish to develop machine learning algorithms capable
of addressing these obstacles, prompting us to formulate the following
research questions (RQ):

RQ1: Can we predict a patient’s health state with limited patient-
specific time series data?

SUB-OBJECTIVES

(a) Can we reliably predict the gestational weight gain in
expecting women from sparse weight data collected up to
certain days in pregnancy (Chapters 2, 3)?

(b) Can we reliably predict the cognitive decline in Alzheimer’s
patients with sparse observations in time from multiple input
sources (Chapter 3)?

(c) Can we reliably predict the pain measurements in workers
from various sectors with sparse historical pain measurements
(Chapter 6)?

RQ2: Can we detect infant mortality using structured tabular
data with a very high percentage of missing data?

SUB-OBJECTIVES

(a) How to handle missing data when the missingness assumptions
are biased (Chapter 5)?

(b) How to select features for unbiased handling of missing values?
(Chapter 5)?

RQ3: Can we create personalized machine learning models that
can adapt over time to generate accurate predictions using
few data points?
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SUB-OBJECTIVES

(a) Can we create personalised models that can reliably predict
the gestational weight gain in expecting women, cognitive
decline in alzheimer’s patients and pain levels in a workplace
(Chapters 2, 3, 6)?

(b) Can we develop an alignment technique for time series’ from
patients with Alzheimer’s that accounts for the fact that
individuals have variable degrees of cognitive decline at the
time of recruitment? (Chapter 3)?

(c) How quickly can these models start predicting accurately the
end-of-pregnancy weight gain (Chapter 2), cognitive decline in
an alzheimer patient (Chapter 3), pain levels in a workplace
(Chapter 6)?

RQ4: Can we build machine learning models that can train in
a secure manner while dealing with sensitive raw data
without losing prediction performance?

SUB-OBJECTIVES

(a) Can we construct time series forecasting models with a
sufficient performance-to-privacy trade-off to predict the
gestational weight gain in pregnant women? (Chapters 4)?

(b) Is it possible to transfer the model and fine-tune it without
transferring the complete raw data across two geographical
regions (Chapter 2)?

1.4 Outline

We would now like to outline the remainder of this dissertation,
having provided an introduction to the difficulties associated with ML
applications in healthcare.
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Chapter 2 introduces the problem of gestational weight gain estimation
in expecting women. We introduce the problem as a multistep-ahead
forecasting problem with the purpose of predicting multiple future steps.
We introduce a unique weight measurements dataset collected during
an individual’s pregnancy that is sparse and non-uniformly sampled.
We present a unique preprocessing technique in which raw data are
transformed based on pre-pregnancy baseline data and medical guidelines.
Then, a personalised machine learning model is learned by modifying
the parameters of a general model based on available personal data.

Chapter 3 Introduces another human health-related application in
which clinical trial design is affected by the early prediction of cognitive
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loss in Alzheimer’s patients. This longitudinal dataset comprising several
modalities, such as imaging data and questionnaire data, is missing
multiple visits, resulting in missing data. We present a novel localised
learning based on dynamic time warping in which subjects similar to
the test subject are used to learn priors and then forecasting model
is learnt on this selected subset using Gaussian processes to achieve
state-of-the-art forecasting results.

In chapter 4, we suggest a new federated approach as an alternative to
the current centralised approach for predicting pregnancy weight gain.
Instead of pooling raw data on the central server, this is accomplished
by learning small local models that are aggregated on the central server.

Chapter 5 presents a large-scale questionnaire based dataset that
concerns infant mortality prediction. This chapter highlights the
importance of the underlying missing mechanisms before performing
blind missing data imputation, especially in healthcare. A novel empirical
approach is presented that can aid in the identification of biased features
that, if incorrectly imputed, would create wrong models that do not
perform well on a new data.

Chapter 6 presents data collected from individuals who reported their
daily pain levels at work. This chapter describes pre-processing techniques
that can be applied to data that takes into account the subjective nature
of pain measurements. Then, we use the proposed localised learning
strategy to select a subset of individuals whose pain data are similar to
that of a given individual, as described in chapter 3 to model the pain in
a personalised way.
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Abstract

Pre-pregnancy body mass index and weight gain management are
associated with pregnancy outcomes in expecting women. Poor
gestational weight gain (GWG) management could increase the risk
of adverse complications. These risks can be alleviated by lifestyle-
based interventions if an undesired GWG trend is detected early on in
the pregnancy. Current literature lacks analysis of gestational weight
gain data and tracking the pregnancy over time. In this work, we
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collected longitudinal gestational weight gain data from women during
their pregnancy and model their weight measurements to predict the
end-of-pregnancy weight gain and classify it in accordance with the
medically recommended guidelines. The measurement frequency of the
weights is often very variable such that segments of data can be missing
and the need to predict early utilising few data points complicates
data modelling. We propose a Bayesian approach to forecast weight
gain while effectively dealing with the limited data availability for early
prediction. We validate on diverse populations from Europe and China.
We show that utilising individual’s data only up to mid-way through the
pregnancy, our approach produces mean absolute errors of 2.45 kgs and
2.82 kgs in forecasting end-of-pregnancy weight gain on these populations
respectively, whereas the best of state-of-the-art yields 8.17 and 6.60 kgs
on respective populations. The proposed method can serve as a tool to
keep track of an individual’s pregnancy and achieve GWG goals, thus
supporting the prevention of excessive or insufficient weight gain during
pregnancy.

2.1 Introduction

In this increasingly obesogenic society, weight management is a key
lifestyle-related condition that affects people of all ages and ethnicities.
One of the most important demographic groups affected by this is
pregnant women. 47% of the pregnant women gain too much weight over
the gestational period and around 23% tend to gain too little weight
during their pregnancy [2]. Institute of Medicine (IOM) updated the
recommended set of guidelines [3] on how much weight women in different
BMI categories should gain during their pregnancy to encourage optimal
health for the mother and her child (Table 2.1). With only 30% of the
women in the normal weight category after pregnancy [2], most of the
women do not follow the guidelines or realize too late in the pregnancy
that an intervention or control of the weight gain is necessary.
Risks associated with undesired weight gain: There have been
several studies that associate gestational weight gain with pregnancy
related outcomes. For example, excessive Gestational Weight Gain
(GWG) can pose several short and long term risks for the mothers such
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Table 2.1: 2009 IOM guidelines [3] for weight gain and rate of weight
gain during pregnancy with respect to BMI. The guidelines assume a
weight gain of 0.5 − 2 kg in the first trimester of pregnancy.

Pre-pregnancy
Body Mass Index
(BMI) category

Mothers of singletons

Total weight gain
(in kgs)

Weight gain
in the first

trimester (kgs)

Rate of weight gain
in the second

and third trimesters (kg/wk)
Underweight

(<(18.50 kg/m2) 12.70 − 18.14

0.50 − 2.00

0.45 − 0.59

Normal-weight
(18.50 − 24.90 kg/m2) 11.34 − 15.88 0.36 − 0.45

Overweight
(25.0 − 29.9 kg/m2) 6.80 − 11.34 0.23 − 0.32

Obese
( 30.0 kg/m2) 4.99 − 9.07 0.18 − 0.27

as fetal macrosomia and post-partum weight retention leading to maternal
obesity [4]. Women entering into pregnancies with high pre-pregnancy
Body Mass Index (BMI) are at increased risk for gestational diabetes [5].
It can also result in large-for-gestational-age infants and/or caesarean
delivery or other labor and delivery complications [2]. In terms of risks for
the offsprings, Oken et al. [6] and Sridhar et al. [7] found that exceeding
the recommended guidelines was associated with a 46% increase in odds
of having an overweight/obese child after adjusting for maternal pre-
pregnancy BMI, race/ethnicity, age at delivery, education, child age,
birth-weight, gestational age at delivery, gestational diabetes, parity,
infant sex, total metabolic equivalents, and dietary pattern. Additionally,
adverse cardiovascular diseases in later stages of the offspring’s life is
also reported in [8]. On the contrary, gaining too little weight during
pregnancy is also not considered healthy. Evidence for a correlation
exists between inadequate weight gain and perinatal mortality. Davis
et al. studied over 100,000 records from the National Center for Health
Statistics (NCHS) 2002 Birth Cohort Linked Birth/Infant Death Data
and indicated that inadequate gestational weight gain is highly associated
with increased odds of infant death up to 1 year after death [9]. Other
reported risks include increased risk of pre-term birth or small-for-
gestational-age infants [2] or failure to initiate breastfeeding [3].

There have been several factors associated with the undesired gestational
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weight gain such as age, ethnicity, genetics [10], [4] which are fixed.
Apart from these fixed factors, modifiable factors related to lifestyle
such as amount of physical activity and food intake also show a high
correlation with the gestational weight gain [11]. Several intervention
studies [12], [13] showed that lifestyle based interventions can improve
the outcome of gestational weight gain, if the intervention is timely,
preferably initiated before the start of the pregnancy [14].

In this work, we aim to reliably predict the gestational weight gain
using the weight measurements from initial days of the pregnancy. Our
proposed approach uses the weight gain measurements from other subjects
in the training data to generate prior information about the (personal)
model of the test subject. The model is then trained on the available
limited data of the test subject along with the generated prior information
resulting in an increase in the performance of the overall system, which
we discuss later. Our proposed solution can help prenatal care providers
in risk assessment during a pregnancy and provide adaptive coaching to
the mothers. Moreover, mothers can track the rate of weight gain and
use the model to monitor weight gain, thus reducing GWG related risks
at the end of their pregnancy.

Real life weight measurements are used that are mostly self-reported
(measurements consistent with regular mid-wife/ hospital visits) by 233
expecting mothers during their pregnancy in Europe and China. We
formulate this as an absolute weight prediction problem with the end
goal of predicting the weight at the end of the pregnancy and classifying
if the weight is within the IOM recommended guidelines or not. We have
restricted our analysis to the mothers with singleton pregnancy for this
study. Data from mothers expecting more than one child is very rare to
obtain. Also, the guidelines for gestational weight gain consider singleton
mothers [3].

Lifestyle interventions can be done in the form of personal coaching by
traditional health-care providers, or eHealth mobile-application based
coaching or a mix of both [15], [16]. A schematic diagram of the
solution following a mix of both is provided in Fig. 2.1 where recorded
weight measurements are sent for processing along with meta-data and
feedback/alerts can be shared with the individual and/or caregivers.
Recommended weight gain during pregnancy varies from person to person
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Figure 2.1: Schematic diagram of GWG weight estimation

based on their BMI ranges. Women with underweight pre-pregnancy
BMI are expected to gain weight at a higher rate than women that
were overweight before pregnancy. This calls for personalization of the
learning method. Additionally, it is important to note that the problem
of estimation is a multi-step forecasting problem, which means that we
train a model using self-reported weights at the start of the pregnancy
period (e.g. first 180 days) and use this model to forecast the weight at
the end of pregnancy (around day 270-280).

The primary contributions of this paper are,

• collecting weight gain data from women across time during the
course of their pregnancy in a practical scenario (example, via self
reporting),

• building personalised model for GWG trend prediction using as
little personal data as possible,

• unique raw weight gain transformation approach that reduces inter-
BMI class variance for accurate GWG modelling.
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• validating the proposed approach across different geographical
regions and examine the model transfer to evaluate the gener-
alizability of the approach.

2.2 Related Works

Various works [2], [17] study the association of pre-pregnancy BMI, the
amount of weight gain during pregnancy and the health risks to mothers
and infants. Diana et. al. propose a differential equation model for
pregnant women in different pre-pregnant BMI category that predicts
GWG that results from changes in energy intakes [18]. This method helps
predict the impact of changes in dietary energy intake on GWG in these
BMI categories. Although this tool helps in understanding the dietary
needs, there exists no studies that helps pregnant women understand and
track the absolute weight gain during their pregnancy in a personalised
manner based on individual’s weight gain data.

Several time series forecasting methods exist in the literature such as state-
space approaches e.g. Kalman filtering [19] and Autoregressive Integrated
Moving Average (ARIMA) [20] that learn structures from the time series
data for few-step ahead predictions, given sufficient historical personal
data. However, they tend to converge towards the mean as the forecast
horizon increases, thus giving inaccurate predictions [21]. Alternatively,
a polynomial model of lower order (1, 2, or 3) can be used to estimate
the end-of-pregnancy weight gain using weight measurements from the
start of the pregnancy period, if enough reliable weight measurements
collected uniformly over time are available for training. However, there
are two major challenges i) weight measurement data are often noisy,
incomplete, sparse and non-uniformly sampled due to the self-reported
nature, ii) available data from the initial few days of the pregnancy are
often limited, complicating the training of a model. Polynomial fit using
maximum likelihood estimation (MLE) or ARIMA suffer from at least one
of these challenges. In the recent decade, deep learning approaches such
as Long short-term memory (LSTM) networks [22] have become popular
and they are known to model the non-linearity among the datasets very
well for forecasting. However, lack of availability of individual training
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data pertaining to early prediction in our case, and high number of
trainable parameters associated makes them unsuitable in the practical
scenario at hand. Fig. 2.2 illustrates the early prediction of weight gain
measurements for two subjects using state-of-the-art methods.
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Figure 2.2: State-of-the-art methods, MLE with (order = 1, 2, 3),
ARIMA, LSTM to predict the end-of-pregnancy weight-gain for ith

subject. The prediction accuracy that can be obtained from the data
shown in left subplot is superior to the accuracy using the data that is
shown in the right. The data shown in (a) is of a higher quality at the
start of the pregnancy period (i.e. more uniformly sampled, less sparse).

In this paper, we experiment with parametric Bayesian regression to
model the time series data. In contrast to the previous work [23], our
algorithm incorporates meta-data such as pre-pregnancy weight and
BMI to improve the efficacy. We also test the generalization capability
of our proposed algorithm on new data from a different geographic
region by training our proposed approach on data from one region and
testing the learned model on another region. We show that our approach
outperforms state-of-the-art in early weight gain prediction by using data
from training subjects to create an a-priori model estimate and then
tuning it to model the test subject’s limited available personal training
observations. To our knowledge, this is the first study that uses few
weight measurements from the early days of pregnancy to estimate the
end-of-pregnancy weight gain.
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2.3 Database

Data from diverse pregnant women were collected in Europe (DE) and
China (DC). Women that were in their gestational week 5 or later
were recruited randomly from midwife practices in Europe and private
hospitals in China. The details of these datasets are described below:

DE

Two midwife locations recruited 90 participants in Eindhoven, The
Netherlands over a period of three months. However, data from only
80 women were considered for the final analysis as 10 subjects dropped
out of the study due to miscarriage or technical problems. 40% of the
women were experiencing their first pregnancy, while for another 40%
it was their second and 20% had more than two previous pregnancies.
Education level was generally high with more than 60% having at least
college degree. This means that women with low and no education are
under-represented in this data. This may be relevant as it is well known
that Socio Economic Status (SES) is correlated with nutrition, weight-
gain and lifestyle factors in general. 9% of women reported smoking. The
weight data was collected using a WiFi-connected weight scale, Withings
WS301. The participants were asked to log their weights weekly and
the recorded weight data was sent to the cloud via a mobile application.
Participants were instructed to weight themselves at least once per week.
However, post-hoc analysis shows that participants recorded 2.0 ± 1.4
measurements per week. Overall, 86% of participants were adherent to
the study measurement protocol with most of the women measuring
more than 1 time per week.

DC

Two hospitals recruited 366 subjects living in Shanghai, China. After
filtering the subjects that had a disease or left the study in the middle,
153 women’s pregnancy weight gain data were considered. About 2/3 of

1https://www.withings.com/
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subjects were having their first pregnancy and only few were pregnant
for the 3rd or 4th time. The overwhelming majority of the subjects have
received at least college degree, which together with a median household
income of 2811 − 4200 US$ per month indicates their relatively high
socio-economic status. The weight data were collected weekly in home
as well as on regular visits to the hospital. The in-hospital weight data
was highly correlated with the in-home collected data, indicating that
the in-home measured data were reliable for further analysis.

Additional meta-data such as age, height and pre-pregnancy weight
were also collected for both the datasets. The participants provided an
informed consent pre-data collection, and the study was approved by the
Internal Ethics Committee for Biomedical Experiments of the involved
organizations (ICBE Reference number 2015-0079 and 2017-0189 for DE

and DC respectively).

Table 2.2: Dataset description for data from different geographies

Dataset
Attribute

DE (80 Subjects)
Mean ± Std

DC (153 Subjects)
Mean ± Std

Age (years) 31.01 ± 3.50 32.10 ± 3.51
Height (meters) 1.69 ± 0.07 1.64 ± 0.05

Pre-pregnancy weight (kgs) 69.01 ± 15.10 57.90 ± 9.77
Pre-pregnancy BMI (kgs/m2) 24.11 ± 4 21.40 ± 3.22

Delivery (days) 277.00 ± 10.00 273.20 ± 12.20
Weight Gained (kgs) 13.70 ± 4.70 14.10 ± 4.30
Number of recorded
weight gain samples 59.83 ± 41.02 17.21 ± 7.30

It is important to note that DC is sparser than DE in time. The maximum
number of samples for an individual present in DC is 37 and in DE this
is 230. This is one of the reasons why modelling such a data is difficult.
The data in DC shows less variability among individual subjects in terms
of pre-pregnancy BMI class (Table 2.2).

Table 2.3 shows the data distribution in our sample dataset pre and
post-pregnancy for under, within and over guidelines. Interestingly, our
sample data-set’s distribution is close to that in [2], which is obtained
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from a large population of more than a million women, with almost half
of the women gaining above the recommended guidelines. This further
strengthens the need for this study.

Table 2.3: End of pregnancy weight class with respect to IOM guidelines
for both datasets (represented as DE(DC))

Pre-pregnancy
BMI class #Sub Distribution post-pregnancy

Underweight Normal Overweight
Underweight 3 (23) 1 (5) 2 (13) 0 (5)

Normal 45 (110) 11 (15) 15 (50) 19 (45)
Overweight 32 (20) 4 (3) 8 (5) 20 (12)
80 (153) subjects 16 (23) 25 (68) 39 (62)

(Class %) 20% (15.1%) 31.2% (44.4%) 48.8% (40.5%)

2.4 Methods

Notation. We are given a population of N − 1 subjects that, by means
of self-reporting tools, acquired N − 1 time series of gestational weight
gain measurements as X = {(x1, y1), · · · -(xN−1, yN−1)}, where xi =
[ti

1, ti
2, ti

3, · · · , ti
mi

] represents the input gestational days up to delivery
day ti

mi
and yi = [yi

1, yi
2, yi

3, · · · , yi
mi

] represents the output weight gain
for ith subject, where yi

k = y(ti
k). It is important to note here that ti

1
does not necessarily equal tj

1, i, j ∈ {1, 2, · · · , N − 1}. This is because
each subject acquires measurements at different times according to their
personal preferences and adherence to data collection.

Additionally, we are given individual weight measurements from test
subject’s (N th subject) initial t+

d days of pregnancy data, D =
{(t+

1 , y+
1 ), (t+

2 , y+
2 ), · · · , (t+

d , y+
d )}. We call this the personal-training data.

Weight gain data from N − 1 training subjects over entire gestational
period is called the public-training data.

The objective is to try to learn function(s) f from given public and
individual training data, such that,

y+
i = f(t+

i ) + ϵi (2.1)
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where ϵi ∼ N (0, σ2) is independent and identically distributed (i.i.d)
according to a Gaussian.

Our parametric approach learns parameters’ information a-priori from
the public-training data. We then use this generated prior-knowledge
along with the personal-training data to build personalised models and
learn f . The individual weight gain in future at delivery time t+

m is
forecasted using the learned model f and y+

m = y(t+
m) ≈ f(t+

m).

Firstly, before we discuss the parametric regression, we introduce a
pre-processing technique for transformation of input data using IOM
guidelines.

2.4.1 Transformation using IOM guidelines

We subtract the pre-pregnancy weight to calculate the weight gain data.
After using pre-pregnancy weight to standardize the data, we propose
to transform the obtained weight gain data by introducing a non-linear
trend controlled by a subject’s pre-pregnancy BMI. This trend is based
on the pre-pregnancy-BMI classes and their respective expected rate
of weight gains in accordance with IOM guidelines. Lower and upper
guidelines are obtained using linear interpolation based on the total
weight gain and the rate of weight gain that are suggested by the IOM
guidelines (Table 2.1). For the ith subject with pre-pregnancy BMI class
bmii at time tk, this means that the following extrapolation is proposed.

Lbmi(tk) =



(
∆min ∗ tk

90

)
0 ≤ tk ≤ 90,

∆min+
(

(αbmii

min −∆min)∗(tk−90)
tmax−90

)
90 ≤ tk ≤ tmax

(2.2)
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Ubmi(tk) =



(
∆max ∗ tk

90

)
0 ≤ tk ≤ 90,

∆max+
(

(αbmii
max −∆max)∗(tk−90)

tmax−90

)
90 ≤ tk ≤ tmax

(2.3)
ρbmi(tk) = Ubmii(tk) − Lbmii(tk)

2 (2.4)

where bmii = {‘underweight’,‘normal’,‘overweight’,‘obese’} is calculated
using pre-pregnancy BMI, ∆min = 0.5 kgs, ∆max = 2 kgs are the first
trimester (90 days) minimum and maximum gains respectively according
to the guidelines (Table 2.1). αbmi

min and αbmi
max are the minimum and

maximum allowed weight gains during second and third trimester in
IOM guidelines (Table 2.1). For example, for bmi = ‘underweight’ class,
αunderweight

min = 12.7, αunderweight
max = 18.14. Assuming tmax = 280 days as

the day of delivery, Fig. 2.3 show the guidelines and ρbmi for different
BMI classes following eqn. (2.2), (2.3) and (2.4) respectively. The
transform and inverse-transform weight-gain operation can be performed
respectively using eqn. (2.4) as follows:-

ytransform(ti
k) = y(ti

k) × ρbmi(ti
k) (2.5)

ydetransform(ti
k) = ytransform(ti

k)
ρbmi(ti

k) (2.6)

It should be noted that we are introducing a non-linear trend in our
pre-processing approach by multiplication with ρ(t) instead of standard
division-based normalisation. As Fig. 2.3a and Table 2.1 suggests, an
underweight woman is allowed a larger weight-gain bandwidth than
an obese woman. We multiply the original weight gain data with this
bandwidth factor ρ calculated based on pre-pregnancy BMI class that
allows an underweight woman to have a wider window of weight gain
than an obese woman (Fig. 2.3b ). Such scaling ensures that the data
across different subjects and BMIs are closer to each other in transformed
space for a better fit. Fig. 2.4 shows how original and transformed data
scale across each BMI class among all the subjects in dataset DE .
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Figure 2.3: Transforming the weight gain data using extrapolated
guidelines based on different BMI classes

2.4.2 Regression

We can fit a pth-order polynomial with f = w0 + w1t + w2t2 + · · · + wptp

in eq. (2.1) and estimate the coefficients w = [w0, w1, · · · , wp]T by
maximizing the likelihood (L) over an individual’s personal-training data
D, L(w) = P (D|w),

ŵMLE = argmax
w

P (D|w) =
d∏

i=1
p(y+

i |t+
i ; w) (2.7)

Eq. (2.7) refers to the model learnt from the individual’s sparse limited
observations up to given td days. Next, we exploit the public-training
data and find the maximum likelihood point estimates (MLE) of ŵi

for each individual time series in the public-training data following eq.
(2.7). If we assume gaussianity over the distribution of w such that w ∼
N (µŵ, Σŵ), we can find a closed-form solution of maximum-a-posterior
(MAP), wMAP analytically. Here, µŵ = mean([ŵ1, ŵ2, · · · , ŵN−1]T ),
Σŵ = cov([ŵ1, ŵ2, · · · , ŵN−1]T ) are mean and covariances of the
polynomial coefficients ŵ1, ŵ2, · · · , ŵN−1 that are each obtained using
the individual gestational weight gain data from each of the N − 1
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Figure 2.4: Pre-pregnancy based BMI class based transformation of
subjects’ weight gain from dataset DE .

subjects in the public-training data. This distribution over the MLE
estimates of the coefficients, p(w) is acquired from the N − 1 subjects in
the public-training data as an a-priori estimate. The likelihood learnt
from the self-training data and the a-priori distribution learnt from the
population data are then combined using bayes theorem to calculate the
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maximum-a-posteriori (MAP) estimate of the coefficients p(w|D).

ŵMAP = argmax
w

p(w|D) = argmax
w

P (D|w)p(w)
P (D) (2.8)

We can ignore P (D) in eqn. (2.8) as it doesn’t depend on w. The forecast
at time t+

m is given by ŵMAP [t+
m t+

m
2 · · · t+

m
p]T .

2.4.3 Classification using guidelines

We further extend the prediction results for better interpretation by
classifying the predicted weight gain into three classes, ‘underweight’,
‘normal’, and ‘overweight’ represented as integer values ‘-1’, ‘0’ and ‘1’
respectively. For this purpose, we compare the predicted weight gain with
the recommended weight-gain guidelines at the delivery day td to get the
3-class classification output. Following eq. (2.2) and (2.3), classification
function c(ti, yi(ti)) for ith subject is defined as a function of time ti and
weight gain value yi(ti):

c(ti, yi(ti)) =


− 1 yi(ti) < Lbmii(ti),

0 Lbmii(ti) ≤ yi(ti) < Ubmii(ti),

1 Ubmii(ti) ≤ yi(ti)

(2.9)

2.5 Experiments

We experiment with 1st to 5th order to fit our weight-gain data. We
empirically chose a third order polynomial as it obtains the minimum
prediction error among all other orders in cross-validation. However, with
transformation based pre-processing, we choose order 2 for modelling
ytransformed as the transformation itself adds to the non-linearity by
order 1.
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2.5.1 State-of-the-art

ARIMA. This is a time series forecasting approach [20] that exploits
correlations in historical data. Forecasting using ARIMA methods
requires uniformly spaced samples of the time series. We introduce
uniformity in personal training data by linear interpolation between
samples. We fit an ARIMA(p,d,q) model by i) enforcing equi-spaced
sampling by linear interpolation, ii) performing a grid search over the
hyper-parameters [24] to find an optimal autoregressive order, degree of
differencing, and moving average order, iii) forecasting multi-steps ahead
in time to find the end-of-pregnancy gestational weight gain using the
optimised hyper-parameters over the training part (GWG data until day
td).

LSTM. We evaluate LSTM based regression network with 200 hidden
units by training them to minimise the mean absolute error using the
‘adam’ optimization method [25]. The hyperparameters search space
was set as follows, epochs = {50, 100, 150, 200, 250}, learning rate =
{0.0001, 0.0005, 0.001, 0.005}, batch size = {16, 32, 64, 128}.

MLE. We also tested a polynomial fitting approach following maximum
likelihood estimation (MLE) with different order polynomials. Order 2
produces best results (among the orders 1 to 5).

Each method in the state-of-the-art is trained using either raw data or
data processed using the pre-processing strategy given in the section 2.4.1.
For brevity, the findings for only the best performing data are maintained
in the following results. With transformed data, LSTM and MLE
performed best, however ARIMA performed best when given input
from raw data.

2.5.2 Evaluation Metric

The performance of regression was computed using Mean Absolute Error
(MAE),

MAE = 1
N

N∑
i=1

|y(ti
mi

) − ypred(ti
mi

)|
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We use accuracy acc as the desired metric for evaluating classification
performance defined using eq. (2.9) as

acc = 1
N

N∑
i=1

I

(
c
(
ti
mi

, yi
pred(ti

mi
)
)

= c
(
ti
mi

, yi(ti
mi

)
))

= #correct predictions in recommended guidelines
#total subjects

(2.10)

where I is the indicator function such that I(A) = 1, if event A occurs
and 0 otherwise and ti

mi
is the delivery day for ith subject. Accuracy acc

at a time tj is the accuracy (averaged over N users) calculated using
eq. (2.10) when personal-training data for the ith subject is considered
to be available only until the day tj . Next, we calculate the normalized
area under the accuracy curve (AuAC) to evaluate the performance of a
given approach with respect to the available training data between days
T0 to T1 as

AuACT1−T0 =
∫ T1

T0
acc(t) dt∫ T1

T0
1 dt

=
∫ T1

T0
acc(t) dt

T1 − T0

We omit T0 from the notation AuACT1−T0 and use AuACT1 to denote
AuAC until day T1 for simplicity as T0 = 120 is fixed in our analysis.
This is because atleast one subject exists with no recorded weight gain
measurement before day 120. Fig. 2.5 shows two exemplary curves A
and B with B being better at early prediction than A, hence AuACB

160 >
AuACA

160.

2.6 Results

We evaluate the performance of the described approaches in terms of MAE
and accuracy of the predicted weight gain (class) against the actual end-of-
pregnancy weight gain (class). To validate the performance, we perform
leave-one-subject-out cross validation, where training dataset in each
iteration consists of public-training data (weight-gain from N −1 subjects)
and personal-training data from the test subject as defined in section 2.4.
We experiment by varying the amount of available personal-training
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Figure 2.5: AuAC for two exemplary accuracy curves A and B. The
higher the accuracy with respect to time, the higher the AuAC.

data until a certain day in pregnancy and perform cross-validation to
evaluate the performance of different approaches against training data
availability. We also present performance measures for early prediction
by taking day ‘140’ as the early threshold as it is mid-way through the
pregnancy. Finally, we study the effects of transferring model learnt
from one geographic region to infer the data from subjects in another
geographic region.

2.6.1 Weight gain trend visualisation

We predict the trend of weight gain on both the datasets DE and DC

and present in Fig. 2.6 how such a prediction looks like with limited
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training data. Fig. 2.6 shows the personal-training data up to 140 days
into the pregnancy and the best and worst prediction results in terms
of mean absolute error alongside the actual weight gain measurements
during the later stages of pregnancy using the proposed approach with
transformation. Since we are concerned about the end-of-pregnancy
weight gain, we calculate the MAE right before the delivery date between
actual and predicted weight gain while also show the predicted trend
of weight gain for these subjects. The errors in prediction for the (best,
worst) cases among the DE and DC are (0.93, 9.24) and (0.03, 11.42) kgs
respectively. One can see that in Fig. 2.6(c) and (d), there is only single
training observation before day 140. In Table 2.4 the confusion matrix
for predicting different classes according to recommended guidelines on
the both the datasets with training data until day 140. Also, Table 2.4(c)
shows the confusion matrix based on model learnt from dataset DE and
tested on DC . Next, we perform leave-one-subject-out cross validation

Table 2.4: Confusion matrices for classification of end-of-pregnancy
weight gain (underweight(u), normal(n) and overweight(o)) based on
personal-training data up to only 140 days into the pregnancy using
proposed method (PT ) in (a) LOOCV for dataset DE , (b) LOOCV for
dataset DC and (c) transferring model learn on dataset DE to dataset
DC .

Pred Pred
u n o u n o

True
u 8 6 2

True
u 1 22 0

n 4 15 6 n 0 49 19
o 1 7 31 o 1 23 38

(a) DE (b) DC

Pred
u n o

True
u 14 8 0
n 7 48 10
o 3 26 31

(c) fDE
→ fDC
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Figure 2.6: Proposed approach with transformation (PT ) to forecast
weight gain with best (a), (c) and worst (b), (d) predictions with the
actual weight gain data and recommended guidelines with number of
training days = 140 on dataset DE (a), (b) and DC (c), (d).

(LOOCV) over all the subjects in each of the dataset by varying the
availability of personal-training data before a given day in gestational
age and calculate the performance averaged over all the subjects.
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2.6.2 Comparison with State-of-the-art

To compare the performance of the proposed approach with the state-
of-the-art methods, we study Mean absolute error (MAE) and accuracy
(acc) against different amount of available personal-data. Fig. 2.7 shows
that our proposed method outperforms the state-of-the-art approach in
early detection (until day 160). All the improvements of the proposed
method PT are statistically significant based on a paired t-test with equal
variances and p < 0.05 on both the datasets DC and DE compared to
state-of-the-art.

Furthermore, ARIMA models’ results are statistically insignificant as
compared to proposed method for available training data from day 170
to 210 for both the datasets. Additionally, from Fig. 2.7, it can be
observed that the MAE reduces, and accuracy increases with increasing
availability of personal-data. Paired t-test with equal variances suggest
that these improvements are statistically significant only for dataset DE

when sufficient training data is available (day 190 onwards) and is never
statistically significant for DC .

Next, in addition to accuracy we try to quantify the performance of all
the approaches against different availability of training data using a single
metric by calculating AuAC between day 120 to day 140. These values
for different methods are presented in Table 2.5. Also, the accuracy
score with training data until day ‘140’ reported in Table 2.5 suggests an
improvement of around 25.9% and 31.1% over the best of state-of-the-art
for datasets DE and DC respectively.

Table 2.5: MAE(t140)‡, AuAC†
140 and acc(t140)† for proposed technique

v/s state-of-the-art (Best values in bold, ‡Lower is better, † Higher is
better).

Method Proposed State-of-the-art
PT P ARIMA LSTM MLE

Dataset DE DC DE DC DE DC DE DC DE DC

MAE(t140)‡ 2.45 2.60 2.82 2.57 16.22 6.60 12.10 16.01 8.17 54.76
AuAC†

140 0.65 0.53 0.59 0.56 0.43 0.33 0.43 0.22 0.51 0.32
acc(t140)† 0.68 0.59 0.61 0.46 0.51 0.45 0.43 0.35 0.54 0.41
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Figure 2.7: Performance scores (mean absolute error and accuracy) for
the proposed approach with respect to state-of-the-art on DE and DC .
A single (abscissa, ordinate) pair in the figure represent the performance
score (ordinate) averaged over all the subjects with respect to availability
of training data until a certain day (abscissa). MAE reduces (a,c)
and accuracy increases (b,d) as availability of training data increases.
Majority label percentage in respective datasets is taken as the accuracy
baseline.

2.6.3 Effect of model transfer between datasets

We test the proposed approach in two settings to test the model transfer
as follows, i) we train the MAP model on DE and test the model learnt
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on DC , ii) we perform leave-one-out cross validation (LOOCV) on DC

where no subjects from DE were taken into account. Fig. 2.8 shows the
comparison of model transfer with or without the transformation based
processing step.
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Figure 2.8: In early prediction, accuracy assessed on DC with model
transfer from DE is superior to accuracy with LOOCV (with only DC).

It can be observed in Fig. 2.8 that accuracy of model transfer based on
PT is greater than LOOCV until day 160 i.e in early prediction. However,
accuracy of the proposed MAP approach without the transformation is
almost always better with model transfer.

2.7 Discussion

Predicting weight gain reliably in pregnant women as early as possible is
at the heart of this study. In this study, we experiment by first collecting
weight-gain datasets in two different geographies and building prediction
models that utilise prior information generated from public-training
dataset to tune the personal-model for accurate estimation of the end-of-
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pregnancy weight gain. The total percentage of the most represented class
post-pregnancy is set as a baseline for comparing prediction accuracy.
According to Table 2.3, this baseline is 0.49 for DE and 0.44 for DC

marked in Fig. 2.7.

With limited amount of available personal-training data for prediction of
weight gain, our MAP based Bayesian approach forms an a-priori estimate
of model coefficients based on public-training data model coefficients.
This addition of prior in the model also acts as a type of regularization.
This results in high performance gains in early prediction of around
25.9% and 31.1% over the best of state-of-the-art for datasets DE and DC

respectively. Additionally, including the transformation based processing
step improves the performance further (Table 2.5). This is because our
transformation step introduces a non-linearity in time based on pre-
pregnancy BMI that scales each subject’s raw weight gain data with
respect to the allowed rate of weight gain thus scaling each time series
to similar range. Also, the polynomial fit for transformed time-series is
done with one lower order (p = 2) than the ordinary MAP fit (p = 3)
which improves the generalization ability of the fit. It is evident from
Fig. 2.6(b), the worst result occurs when the person’s weight gain trend
is different from any of the available subjects in public-training data
and the personal-training data (until day 140) is also insufficient to
capture this trend. We think that there are two ways in which this can
be addressed 1) increasing the amount of personal-training data and/or
2) increasing the size of public-training data by adding more subjects
that reduces the variance of the model. Fig. 2.6(c) and (d) show the
best and worst result on dataset DC . It can be observed that in both
the cases only a single personal-training observation is present before
day 140 with it being present close to test data in time in the best case
(Fig. 2.6(c)) and being further away in time to the forecast horizon in
the worst case (Fig. 2.6(d)). One can infer that the points close in time
to the forecast horizon have more importance in reliable prediction than
the ones farther away in time.

Table 2.4(a) and (b) suggest that most of the prediction errors are to
the neighbouring classes. The accuracy is lowest for the underweight
class as it is the most under-represented class (Table 2.3) in our dataset.
Fig. 2.7a,c and Fig. 2.7b,d show the mean absolute error in prediction
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and the accuracy for different datasets averaged over all the subjects.
Fig. 2.7 shows that the prediction error reduces and accuracy improves
as the personal-training data availability increases.

Although at a glance at Fig. 2.7(a), it might look like ARIMA’s MAE for
dataset DC is less than proposed PT when training data is available as
early as day 170. However, as described in subsection 2.6.2 the low mean
absolute error is statistically insignificant as compared to PT until day
210. As more personal-training data is available by day 210 for dataset
DC and by day 240 for dataset DE , the personal models based on ARIMA
tend to become more accurate than the proposed approach. Although,
this could be of importance in problems with low forecast-horizon, but
in cases where early forecast is needed such as ours, proposed approach
outperforms ARIMA.

We can observe from Fig. 2.7 that for such a smaller dataset with
non-uniformly sampled time series, even ARIMA performs better than
LSTM. LSTM based deep learning approaches perform better when huge
amount of data is available and enough training data is present. In our
case, this availability of personal-training data is not present because
of two reasons i) the data is sampled irregularly and has a very low
sampling frequency and ii) early intervention requires using as little
personal-training data as possible. We believe that when more subjects
participate, our approach will scale better than LSTM based approach
because of the aforementioned reasons.

Remark that the methods MLE, ARIMA, and LSTM provided as state-
of-the-arts train a model using only the test subject’s limited personal
data, as these algorithms can handle the time series data from a single
participant at a time in a personalised manner. A multivariate treatment
of MLE or LSTM might involve using data from all the subjects and then
training a model that uses information of all the subjects at a different
time instants. However, in the case of non-uniformly sampled data the
training data might appear noisy as not all the subjects’ information is
available at a given time instant and the model created using the training
data is a very general one that cannot be personalised using the test
subjects’ available data.

The proposed approach (MAP) is an extension of the MLE method that
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utilises other subjects’ data along with personal data to improve the
performance.

Fig. 2.8 shows that model ‘Transfer’ works better than ‘LOOCV’
irrespective of pre-processing. Table 2.4(c) shows that there is a huge
improvement in predicting the class “underweight” with this model
transfer without compromising the performance of other classes. The
dataset DE exhibits more variability in terms of capturing weight-gain
trend among different BMI classes with pre-pregnancy BMI ranging from
20 to 28 kg/m2. This might be one of the causes that model trained on
this dataset generalizes well on DC .

Our proposed Bayesian approach with pre-processing has a prediction
MAE of only 2.45 kgs (DE) and 2.82 kgs (DC) and a classification
accuracy of 67.5% (DE) and 58.9% (DC) at day ‘140’(mid way through
the pregnancy) for early intervention as compared to state-of-the-art
approaches, best of which has an MAE of 8.17 (DE) and 6.60 kgs (DC)
and an accuracy up to 53.8% (DE) and 44.8% (DC). Fig. 2.7 shows that
our approach predicts better than the state-of-the-art when training from
data using 120-240 days, and predicts close to state-of-the-art during the
very last few days of the pregnancy. AuAC140 can be thought of as an
early intervention score that measures how accurate the classification
performance is with varying amount of training data from day 120
until day 140. In other words, the early prediction performance of our
technique with transformation has an AuAC140 of 0.65 (DE) and 0.53
(DC). Another key step in this work was to apply model transfer to
test the generalisation capability of the model between two different
geographic regions that further improves the prediction capability on the
sparser dataset DC .

2.8 Conclusion

In this study, we propose an efficient early-weight gain prediction
system in pregnant women. We validate and show the efficacy of
our proposed approach over this unique dataset from two diverse
geographical regions. Our approach utilises the power of combining
a-priori information learnt from the public-training data and tunes the
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parameters of personal training data based on this prior information.
Additionally, we incorporate a pre-processing step to scale our data using
meta-data such as pre-pregnancy weight and BMI to achieve additional
boost in our performance. Our results show the reliable estimation of end-
of-pregnancy weight gain that can help to provide proper interventions
by pre-natal care providers and to reduce risks of adverse maternal and
neonatal effects of excessive or inadequate GWG.
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Abstract

Modelling real-world time series can be challenging in the absence of
sufficient data. Limited data in healthcare, can arise for several reasons,
namely when the number of subjects is insufficient or the observed time
series is irregularly sampled at a very low sampling frequency. This is
especially true when attempting to develop personalised models, as there
are typically few data points available for training from an individual
subject. Furthermore, the need for early prediction (as is often the case
in healthcare applications) amplifies the problem of limited availability
of data. This article proposes a novel personalised technique that can
be learned in the absence of sufficient data for early prediction in time
series. Our novelty lies in the development of a subset selection approach
to select time series that share temporal similarities with the time series
of interest, commonly known as the test time series. Then, a Gaussian
processes-based model is learned using the existing test data and the
chosen subset to produce personalised predictions for the test subject.
We will conduct experiments with univariate and multivariate data from
real-world healthcare applications to show that our strategy outperforms
the state-of-the-art by around 20%.

3.1 Introduction

Time series forecasting is an extensive field of research for diverse
applications with possibilities in economics, physical or environmental
sciences, or healthcare. Traditional treatment of time series includes
multiplicative methods such as the auto-regressive integrated moving
average model (ARIMA) and its multivariate treatment or state-
space models such as the Kalman filter and generalised autoregressive
conditional heteroskedasticity (GARCH) process that are additive [3].
These methods are well suited for modelling time series when the data are
uniformly sampled. However, as the number of time series in a dataset
increases, these methods do not scale well because each time series must
be trained individually. Moreover, it is difficult to model the shared
temporal patterns across various time series in the whole dataset during
training and forecasting.
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Modelling real-world healthcare related time series for forecasting is
often difficult owing to the limited availability of data due to practical
constraints. For example, if a study is conducted only with a small
number of participants, then the dataset might not always be a complete
representation of a given task. However, limited subjects alone might
not be the only issue. For instance, accelerometer-based time series
data gathered at high frequency (on the order of 25 Hz) to classify
human activity recognition. Even if the label information is present
every 5 seconds in a recording of 5 minutes from a single subject, there
are 125 points in time to model each label and 60 such instances can
be acquired from a single recording. As a result, even with a small
number of participants, it is possible to develop generalizable, high-
performing models [4]. If individual time-series are sampled at very low
sampling rate from a small number of subjects, the modelling becomes
difficult, e.g. modelling daily weight gain over a period of pregnancy.
The problem of limited subjects and low sampling frequency is further
aggravated when the observed time series, univariate or multivariate, are
sporadic in nature, i.e., they are noisy and contain missing values. Few
examples include sensor failure, data artifacts in climate time series, or
in healthcare use-cases. For example, a patient can skip regular health
check-up appointments for intentional or unintentional reasons resulting
in multiple missing entries in the electronic health record (EHR) [5].
Furthermore, the individual forecasts must be performed as quickly as
possible so that timely interventions can be implemented. This further
restricts the availability of the personal data required to learn individual
patterns.

Modern deep learning techniques have gained traction in time series
forecasting because they can utilise multiple time series from the training
data to discover non-linear temporal patterns [6]. However, deep learning
models expect huge amounts of training data to learn these patterns [7],
[8]. Additionally, state-of-the-art deep learning models for time series
forecasting still suffer when the training data is sporadic in nature and
multi-step forecasting is difficult in the presence of insufficient time series
data [9], [10].

This work will develop methods for forecasting time series data in
healthcare applications where for each participant time series data is
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Figure 3.1: An example to illustrate our SS-GP approach. (a) The
training and target time series that are considered (the green dotted
line shows that target data is only available until time t+

d ). (b) The
training data that are aligned in time with the target time series. (c) A
subset of the training data that share similar temporal characteristics
with the target data (the purple and the dark green curves are therefore
discarded). (d) The training data and the available target data are used
to predict a sequence of future values in the target time series (red dotted
line).

available. Given a target time series (of a test subject) of non-uniformly
sampled instances, the main aim is to predict future values over a period
of time. In particular, we will treat the following challenges which are
often encountered in healthcare data: (a) time series forecasting when
for each subject the data are non-uniformly sampled and can have a
very low sampling frequency and (b) the estimation of individualised
models while very little individual data are available. Note that these
data-related difficulties are even more challenging when at the same time
the number of subjects is low.

The solution proposed in this paper consists of a subset selection (SS)
approach to select time series from the training data (of other subjects)
that share temporal similarities with the target time series. This subset
of time series is then used to train a non-parametric Gaussian process
(GP) in a Bayesian way [11]. Modelling unevenly sampled time series
with Gaussian process-based techniques eliminates the need to impute
data to make them uniformly sampled. We will show that this approach
(further referred to as SS-GP) can improve the target series’ forecasting
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performance, especially when the time series in the selected subset are
aligned in time with the target time series.

Fig. 3.1 showcases an example: first, the training data are aligned with
the target time series; second, a subset of time series from the training
data is selected that share similar temporal characteristics with the target
time series. The subset is then used to train a GP for multi-step ahead
prediction, i.e., for predicting a sequence of future values in the target
time series.

We experiment with two real-life time-series datasets from healthcare
to prove the efficacy of the proposed solution in multi-step time series
forecasting. We further demonstrate the implications of limited individual
data on training by varying the availability of data in time and assessing
the prediction error. We empirically show that our approach not only
reliably predicts in the case of missing observations but also accurately
predicts multiple steps ahead in time in the case of limited personal data.

The main contributions of this paper are:

• We propose a new multi-step time series prediction approach that
can handle time series with non-uniformly sampled time series data
in limited datasets.

• We design a time series realignment technique that tackles time
series in a training set that were initiated at different times. In
other words, when time t0 of the training time series is different,
realigning them with respect to each other prior to modelling leads
to a more exact pattern match and a more precise forecast.

• We suggest dynamic subset selection, which takes advantage of
shared temporal patterns to dynamically select a smaller subset of
time-series from the training data.

• Finally, we empirically show that the SS-GP approach outperforms
state-of-the-art approaches on two real-world healthcare datasets
where there is a need to predict early and where missing data are
inevitable.
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3.2 Related Work

Time series literature consists of widespread approaches for forecasting
ranging from classical works from the 1960s to contemporary works [12],
[13]. Classical works like state-space or autoregressive approaches such
as ARIMA for univariate and VARIMA for multivariate approaches exist
that predict the individual observations in time series [14]. Much of these
approaches are applied in an auto-regressive manner where one step
predictions are achieved by applying the learned model recursively. This
tends to achieve significant errors in prediction if the forecast horizon is
large. Currently, deep learning-based methods such as recurrent neural
networks (RNNs) are popular due to their automatic feature extraction
abilities in sequence modelling. Improved variants of RNNs that alleviate
vanishing gradient problems such as long-short term memory networks [6]
and gated recurrent units (GRU) [15] are capable of capturing long term
dependency with uniformly sampled sequence data. Authors in [16]
create a mask where the data is missing and use this mask along with
available data as input thus utilising missingness in data as informative
features to train RNNs and cope with missingness in the data.

Multiple approaches in deep learning have focused on time series classifi-
cation and regression in healthcare ranging from ECG classification [17]
to glucose forecasting [18]. Authors in [16], [19] have presented works
that are able to diagnose a condition, such as sepsis in an intensive
care unit environment, by learning from multivariate clinical data using
resources such as electronic health records (EHRs). The majority of
these methods that can manage missing data have been trained on a
significant amount of data, providing them an advantage. However,
when insufficient training data is available, traditional machine learning
strategies outperform deep learning strategies [20]. There have not been
any systematic work that handles limited data availability. We attempt
to address such deficiency in training data that stems from either (a) the
irregularly sampled time series, or (b) the limited number of samples of
an individual time series resulting from the necessity to predict as soon
as possible.

Gaussian processes (GPs) provide a framework to model time series in
the presence of such irregularly sampled instances and can quantify the
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uncertainty of predictions. For example, GP models are used in clinical
time series classification and imputation [21].

This work proposes a personalised approach for multi-step time series
forecasting that can handle non-uniformly sampled time series through
Bayesian learning.

3.3 Notation

Let us assume, N subjects are studied and the training data consists of
time series data of K predictor variables denoted by x at time t for each
subject 1 ≤ j ≤ N :

xj
1(t), ..., xj

K(t).

Our goal is to make predictions about a response variable yj(t) based on
such feature data. For each subject however the time series are sampled
at i different times, tj

i , such that,

tj
1 < tj

2 < · · · < tj
mj ,

where mj denotes the number of measurements of the feature xj
k(1 ≤

k ≤ K) that are available for the jth subject. Remark that, for a given
subject j, all predictor variables are measured at the same time instances.

In what follows, the feature data is denoted in matrix notation:

Xj = [xj
k(tj

i )]ik

denoting a mj × K matrix of which the kth column contains the data of
the kth feature of the jth subject over all the time instances.

The measurements of the responses of a subject are collected in a vector:

yj = [yj(tj
1) . . . yj(tj

mj )].

Note that the response variable for subject j is sampled at the same time
instances as the predictor variables of subject j.

There are two ways that data in time series might go missing:
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• missing observations within a time-series : time series in the jth

instance of training or target data might not be evenly spaced, i.e.,
tj
(i+1) − tj

i ̸= tj
(i+2) − tj

(i+1), ∀i ∈ {1, 2, · · · , mj − 2}.

• missing observations in different time instants within all time-series
: Time series data of predictor variables are not sampled at the
same times across different subjects, i.e., tj

i is not necessarily equal
to tj′

i , ∀j, j′ ∈ {1, · · · , N}, i ∈ {1, · · · , mj}

Suppose, we are interested in predictions for a target subject (indexed
with ‘+’) based on the measurements of the predictor variables X+ and
the measurements of the response variable available up to some time t+

d :

y+ = [y+(t+
1 ) y+(t+

2 ) · · · y+(t+
d )],

where we assume that t+
d << tj

mj , ∀j ∈ {1, . . . , N} i.e., the available
temporal information for a target subject is limited compared to the
number of time instances that are available for training for other subjects
primarily due to the need for early prediction. The objective is to try to
learn a function f , such that, the future response value at hth time-step
can be predicted as,

y+
(d+h) = f( Xj , yj︸ ︷︷ ︸

training data

, X+, y+︸ ︷︷ ︸
target data

) + ϵh, (3.1)

where
ϵh

i.i.d.∼ N (0, σ2)

is independent and identically distributed (i.i.d) gaussian.

There are two multi-step forecasting strategies, direct vs iterative. Note
that we use a direct multi-step prediction strategy where the responses at
t+
d+1, · · · , t+

d+h time steps are predicted using only the available data until
time t+

d . However, an iterative multi-step forecasting technique predicts
only the next time occurrence at t+

d+1 at a time. Multi-step predictions
then can be made by including the previously predicted value (y+(t+

d+1))
of the response variable in the training data to predict the response at
the next time instance and so on until hth time-step is predicted [22].
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3.4 State-of-the-art

In this section, we provide a brief overview of the existing techniques.

3.4.1 Subset Selection

Despite its simplicity, the k-nearest neighbours technique remains the
benchmark for the classification of univariate time series [23]. In the
case of multivariate time series, we employ k-means based clustering to
create k profiles among the given dataset of time series grouping them
by similar patterns. We further discuss the implementation details in
section 3.6.2.

3.4.2 Time series forecasting

Maximum Likelihood Estimation (MLE): A pth-order polynomial
can be estimated with coefficients β = [β0 β1 · · · βp]T such that y+(t) =
β0 + β1t + β2t2 + · · · + βptp. The training can be done by maximizing the
likelihood over the available responses y+ = [y+(t+

1 ) y+(t+
2 ) · · · , y+(t+

d )],
ℓ(w) = P (y+|β),

β̂MLE = argmax
β

P (y+|β) =
d∏

i=1
p(y+(t+

i )|t+
i ; β). (3.2)

Eq. (4.6) is the model created using only a few observations from the
target data up to the time t+

d days. This method results in personalised
models and predictions, but the limited availability of data can hamper
inference. This article will show how to properly use data from other
subjects to address this issue.

Maximum-a-posteriori estimation (MAP) [2]: The maximum
likelihood estimate of β̂ may be found using the available training data
(of other subjects). As an a-priori estimate, the distribution of these
coefficient estimates, p(β), obtained from the N participants in the
training data may be used. The maximum-a-posteriori estimate of the
coefficients, p(β|y+) is calculated by combining the likelihood learned
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from the target data with the prior distribution learned from the training
data using Bayes theorem:

β̂MAP = argmax
β

p(β|y+) = P (y+|β)p(β)
P (y+) . (3.3)

At time t+
m, the prediction is given by β̂MAP [t+

m t+2
m · · · , t+p

m ]T . In both
MLE and MAP, the parameter p is selected based on the application of
interest, which should be known in advance.

ARIMA: is a method for forecasting time series data based on
correlations in historical data [14]. Time series samples must be
consistently spaced when utilising ARIMA algorithms for forecasting.
Personal training data can be made uniform using linear interpolation
between samples. For a uniformly sampled target time series response
variable, an ARIMA model of order (p, d, q) capable of modelling
y+ = [y+(t+

1 ) y+(t+
2 ) · · · y+(t+

d )] is defined by the equation:

ϕ(B)(1 − B)dy+(t) = θ(B)w(t), (3.4)

where y+(t) and w(t) represent time series and random error at time t
respectively. B is a backward shift operator defined by By+(t) = y+(t−1),
d is the order of differencing. ϕ(B)and θ(B) are autoregressive (AR) and
moving averages (MA) operators of orders p and q, respectively, and are
defined as,

ϕ(B) = 1 − ϕ1B − ϕ2B2 − · · · − ϕpBp

θ(B) = 1 − θ1B − θ2B2 − · · · − θpBq,
(3.5)

where ϕ1, ϕ2, ..., ϕp are the autoregressive coefficients and θ1, θ2, ...θq are
the moving average coefficients.

LSTM. Long Short-Term Memory (LSTM) networks are a particular case
of Recurrent Neural Networks (RNN) with the ability to model temporal
dependencies from the past and have shown outstanding prediction
performance [6]. This is done by using forget, memory and output gate
that control the flow of the data during learning. This makes it easier to
decide whether the data in each LSTM cell should be discarded, filtered,
or added to the next cell [6].

Gaussian Processes. The Gaussian Processes (GP) are non-parametric
models appropriate for sparsely available data. GP is a collection of



STATE-OF-THE-ART 69

random variables, such that the joint distribution of every finite set of
them is Gaussian (multivariate) [11]. We are given a training data Xs
for N subjects:1

Xs =


X1

X2

...
XN

 =



x1
1(t1

1) x1
2(t1

1) · · · x1
K(t1

1)
x1

1(t1
2) x1

2(t1
2) · · · x1

K(t1
2)

...
... . . .

x1
1(t1

m1) x1
2(t1

m1) · · · x1
K(t1

m1)
x2

1(t2
1) x2

2(t2
1) · · · x2

K(t2
1)

...
... . . .

x2
1(t2

m2) x2
2(t2

m2) · · · x2
K(t2

m2)
...

... . . .
xN

1 (tN
mN ) xN

2 (tN
mN ) · · · xN

K(tN
mN )



, (3.6)

and ys = [y1 y2 · · · yN ]⊤. f is defined from eq. (6.1) as f(x) ∼
GP(m(x), k(x, x′)) with mean and covariance functions m(x) and k(x, x′)
respectively. The covariance function encodes all the assumptions of
the data such that two independent observations closer to each other
have similar outputs. This nearness is used to model the structure of
the multivariate time series, given that the covariance remains positive
semi-definite [11]. We chose a squared exponential covariance function
based on the assumption that the data have independent and identically
distributed gaussian noise with variance σ2

n,

k(x, x′) = σ2
f exp

(
− 1

2l2
|x − x′|2

)
(3.7)

Given ys = [y1(t1
1) · · · , y1(t1

m1) · · · yN (tN
1 ) · · · yN (tN

mN )]⊤ and K as a
matrix Kab = k(xa, xb), ∀xa, xb ∈ Xs using eqn. (6.5), and following the
optimisation procedure from [11], the hyperparameters {σf , l, σn} are
estimated by maximising the marginal likelihood p(ys|Xs; {σf , l, σn}).
The prediction at time t+

m+ for the observation xm+ = [x+
k (t+

m+)]m+k is
given by the mean function, µ and variance function, σ2,

µxm+ = k⊤
+(K + σ2

nI)−1ys

σxm+ = k(xm+ , xm+) − k⊤
+(K + σ2

nI)−1k+

(3.8)

1The superscript represents the jth subject and not the exponent.
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where k(xm+) is denoted as k+, and k(xm+) = [k(xm+ x1
1) · · · , k(xm+ xN

mN )]⊤.

Autoregressive Gaussian Processes (AR-GP) [22] Peterson et
al. [22] employ auto-regressive Gaussian processes (AR-GP) to predict
the cognitive decline of Alzheimer’s disease patients over the next four
time steps. This is further discussed in section 3.6.2. They start by
building a population-level forecast model using data from training
subjects. They use domain-adaptive GPs to sequentially adapt the GP
posterior for the test subject using the available data from the test
subject. In contrast to our direct technique for multi-step prediction,
this is accomplished via an iterative strategy by utilising the data up
until time t − 1 to predict the response at time t. The predictions made
are then used again with training data to predict time instant t + 1 and
so on.

3.5 Methodology

In this section, the subset selection (SS) based gaussian process (GP)
approach (SS-GP) is introduced. First, a novel approach for SS is
described. Second, we develop an algorithm to align the time series in
the subset with a target time series.

3.5.1 Dynamic subset selection

Given a discrete time series yref , and a collection of N time series
yj(1 ≤ j ≤ N) we want to find a time series ysim ∈ yj that is closest to
yref , i.e. dist(ysim, yref ) < dist(yj , yref )∀j ∈ {1, N}[24]. The closeness
is calculated by matching time points in two time series based on a
distance metric dist. For example, to calculate the Euclidean distance
between two equal-length time series yp = [yp

1 , yp
2 , · · · , yp

m] and yq =
[yq

1, yq
2, · · · , yq

m] a one-to-one matching is performed to calculate the
distance as dist(yp, yq) =

√∑m
t=1(yp

t − yq
t )2. Fig. 3.2 shows examples of

one-to-one time-point matching with Euclidean distance (dotted line)
with Fig. 3.2a exhibiting more similarity with a Euclidean distance of 0.1
as compared to Fig. 3.2b that has a Euclidean distance of 5.1 compared
to a reference time series.
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(a) (b)

Figure 3.2: Normalised Euclidean distances between (a) similar time
series and (b) dissimilar time series. The reference time series that is
considered is shown in dark green.

Distance Measurement

Remember that our goal is to make predictions of the response variable
y+(t) for t > t+

d . Our aim in this section is to find a subset of
response variables yj(t) (1 ≤ j ≤ M) that show similar temporal
characteristics with y+(t) for t < t+

d . This will lead to a subset
X̂ = {(X1, y1), · · · , (XM , yM )} with M << N of the training dataset
{Xs, ys} that is used in a non-parametric GP approach for predicting
y+(t). For this purpose, we start by calculating the distances between
target response time series data y+ = [y+(t+

1 ) y+(t+
2 ) · · · y+(t+

d )] and
training data’s response variable (nearest to the allowed time point,i.e.
‘≤ t+

d ’). Let’s denote this distance vector as Ω+ = [ω1+ ω2+ · · · ωN+]T ,
where ωj+ = dist([yj(tj

1) · · · yj(tj
d)], [y+(t+

1 ) · · · y+(t+
d )]). In contrast

to equal-length time series in Fig. 3.2, it is difficult to determine the
Euclidean distance (dissimilarity) between two time series with unequal
lengths. Therefore, we use Dynamic time warping (DTW) [25] as a
distance metric dist in our study that allows one-to-many matching
and thus subsumes Euclidean distance. DTW distance has an ability to
match time series of different lengths and is robust to shifting and scaling
along the time axis [26]. It matches two time series by (i) calculating a
local cost matrix between each pair of elements between these time series,
and then the goal of minimising the overall cost (distance) is achieved
by (ii) finding an optimal alignment that runs along a low cost “valley”
within the cost matrix [27].
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Fig. 3.3 illustrates that DTW first aligns the time series. Points of
the time series that are matched are connected by a dotted line. The
final distance is computed by taking the sum of the Euclidean distances
between the matched points. Clearly, the reference time series (in green)
is more similar in trend to the time series shown in Fig. 3.3b compared
to the one shown in Fig. 3.3a.
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Figure 3.3: DTW distances between time series with different lengths.
The matched points are indicated by a dotted line. The reference time
series is shown in dark green. In (a) the DTW distance is 170 and the
time series are more dissimilar than in (b) where the DTW distance is
6.9.

Since we are calculating the DTW distances in the output space, i.e.,
between the response time series’ (yj), the distance measurement is
applicable in settings where the input time series is multivariate. As
long as the output time series is univariate the DTW distance can be
calculated as proposed, which is the case in many healthcare applications.
For a multidimensional DTW treatment, the reader is referred to [28].

Subset selection

After calculating the distance vector Ω+ of length N between a target
time series y+ and other time series’ (yj), the nearest subjects are
determined by dynamically calculating a cut-off point for the target time
series in the following way :
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Figure 3.4: (a) DTW distances, dissimilarity measures between time
series, plotted in ascending order with some possible choices of threshold
values. (b) Proposed heuristic is used to calculate the closest subset on
the training part (in light purple, t < t+

d ) and the test part for subject
1.This illustration is from the gestational weight gain prediction use-case
explained in section 3.6.2

1. Arrange elements by their closeness to the target time series
: sort the distance vector Ω+ in increasing order as Ω̂+ =
[ω̂1+ ω̂2+ · · · ω̂N+]⊤, such that ω̂k+ ≤ ω̂(k+1)+∀k ∈ {1, 2, · · · , N}.

2. Select cut-off for subset selection when the rate of change of
DTW distance is high: calculate ‘turning points’ at index ‘k’
such that the absolute rate of change of DTW distance is highest
in the local neighbourhood (±1 index),

(
ω̂(k−1)+ − ω̂(k−2)+

)
≤(

ω̂k+ − ω̂(k−1)+
)

≥
(
ω̂(k+1)+ − ω̂k+

)
.

3. Choose a turning point for subset selection : choose the value at the
first turning point ‘ω̂k’ as our threshold ωth for finding the closest
time series set X̂ . The closest selected subset consists of all time
series whose DTW distance is less than this threshold compared to
the target time series.

Note that more turning points can be calculated by choosing the next
minimum as described further.
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The intuition for turning points is represented in Fig. 3.4a, which shows
the DTW distances measures between response variables of target and
the training time series in ascending order. The possible choices of
thresholds calculated as defined by turning points occur at locations
ωthL

, ωthU
, ω

′
thL

, · · · ω
′′′
thL

. Note that ωthL
represents the point where

the first minimum occurs in the rate of change in DTW distances.
Similarly, multiple such turning points exist that can be used as thresholds
represented with the prime (′) symbol. Intuitively, ωthU

can be considered
as another appropriate choice for threshold. However, the first value of
turning point, ωthL

is chosen as the preferred threshold. It selects the
“smallest” most informative subset from the training data to capture
the trend while keeping the variability among the selected subset to a
minimum as compared to other thresholds. For the sake of simplicity,
Fig. 3.4b shows a univariate time series of subject 1 from a dataset
(explained in section 3.6.2) and the selected closest subset according to
the proposed heuristics. Using the proposed heuristics, the subjects that
are closer in the training phase (coloured in red) show a similar trend in
the forecasting phase.

Using the SS approach proposed above, we can find a subset X̂ from
{Xs, ys}. The subset X̂ contains time series that are similar to the target
time series and are therefore expected to contain the most essential
information for forecasting the target time series data. The subset
X̂ will be used to train a non-parametric GP in the proposed SS-GP
approach. The computational complexity of a GPs depends on the
number of training points n according to O(n3). Restricting the training
of the GPs to the subset X̂ will considerably reduce the computational
complexity (as compared to a training on the complete data set Xs)
because n(X̂ ) << n(Xs). Moreover, we will show through our case
studies that an increase in prediction performance can be obtained.

Additionally, such a localised non-parametric distance-based approach
allows for the selection of neighbours based on the temporal nature of the
data. This makes our approach generally applicable with other learning
methods where priors are formed based on the available closest time
series data.
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3.5.2 Collective temporal realignment

Typically, it is assumed that the time series in the training data are
available from some fixed time t = t0. However, in practical scenarios,
the time series in the dataset may have different onsets and rates of
progression.

Dynamic time warping (DTW) accounts for the similarity in amplitude
among time series by calculating the distance between them. It realigns
the two time series non-linearly, onto a common set of instants such that
the sum of the Euclidean distances between the corresponding points, is
smallest. We propose a time series alignment based on the shape of the
response variable. We try to find a time instant τoptimal with respect to
the target response series such that when the response time series in the
training dataset are lagged/led by τoptimal, their shape most resembles
that of the target’s response time-series. For a given target response
variable (y+), we realign the time series in Xs in time. We hypothesise

Algorithm 1 Temporal realignment for target data
1: procedure temporal realignment
2: Input : y+ = [y+(t+

1 ) y+(t+
2 ) y+(t+

3 ) · · · y+(t+
d )]

3: lags = [−τd, · · · , −τ1, 0, τ1, τ2, · · · , τd]
4: Output : τoptimal N×1
5: for i = 1 to N do
6: yi = [yi(ti

1) yi(ti
2) · · · yi(ti

d)]
7: minDist = Inf
8: for iter = 1 to 2d + 1 do
9: τ = lags(iter)

10: curDist = dist(y+, yi
(t+τ))

11: if curDist < minDist then
12: τoptimal(i) = τ

that readjusting the training data with respect to the target data will
result in better subset selection. The approach is as follows,

1. Given target data observations of the response variable until time
td, calculate distance from lagged/led versions of N time series in
the training data using the metric

√
(∑d

n=1 y+(t+
n ) − yi(ti

n+τ ))2
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2. For the jth time series in the training data, the value of τk+ that
minimises the above metric is τoptimal(j)

3. We then create lagged/led versions of predictor and response
variables in the jth training data using τoptimal(j) for the given
target time series. This gives us the temporal fitted lagged/led
version of Xsaligned.

Before proceeding with DTW-based subset selection, the collective
temporal realignment is performed as a pre-processing step. The goal of
collective temporal realignment is to adapt the time series’ in training
data with respect to the time series’ in test data because they may have
different times of initiation. The training data’s input and output time
series are then realigned based on the computed delays.

DTW-based dynamic subset selection is then applied to get X̂ . After
temporal realignment and dynamic subset selection based on the available
target data (y) in the training and test dataset we apply Gaussian
processes based prediction on {X̂ , X+} as it is most resilient to the
missing data in time series. We use the selected M << N time series
that are in the closest subset of a given time series along with eqn. (3.8).

Mean Absolute Error (MAE) is used as the performance metric to
evaluate the regression performance.

MAE = 1
N

N∑
j=1

|y(tj
mj

) − ypred(tj
mj

)|

.

3.6 Experiments

We start by describing the setup of our experiments and the methods
that we use to benchmark the proposed SS-GP approach. Furthermore,
we give a detailed description of the use cases we will treat.
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3.6.1 Baseline

Parametric. We fit a 3rd order polynomial on the response variable
varying with time. First, an MLE estimate is made on all the subjects
in training data. These model estimates are used as prior distribution to
calculate a maximum-a-posteriori estimate (explained in section 3.4.2)
to learn a final model. The response variable for a given test subject
is then predicted using this final model at a given time instant. This
is done in a leave-one-subject-out fashion so that each subject’s data is
estimated once. A 3rd order polynomial is used as it provides the least
mean absolute error among other orders (1 to 5) of polynomials for both
the data sets.

ARIMA. ARIMA has a limitation that it only works well with uniformly
sampled data. This is difficult when data are missing. We fit an
ARIMA(p,d,q) model on the response variable of the target data as follows
i) linearly interpolating the data to make the data evenly-spaced in time,
ii) tuning the hyperparameters [29] to find an optimal autoregressive
order, degree of differencing, and moving average order by performing a
grid search, iii) using the optimised hyperparameters over the training
part to forecast at a time instant (given data until day td). This is done
for each test subject.

LSTM. We evaluate an LSTM-based regression network with 200
hidden units. The training is done using Adam’s optimisation to
minimise the mean absolute error [30]. The hyperparameters search
space was set as follows, epochs = 50, 100, 150, 200, 250, learning rate
= 0.0001, 0.0005, 0.001, 0.005, batch size = 16, 32, 64, 128

AR-GP. AR-GP are trained to forecast the response variable using the
input and response features until time t. For each subject, the missing
observations are filled using the forward filling approach, where data
from a previous observation are carried over to the following observation.
When the training matrix is completed, the parameters of AR-GPs are
learned by minimising the negative log-likelihood [22].

AR-GP + MICE. Multivariate imputation by chained equations
(MICE) is an imputation strategy for matrix completion [31]. It works
by iteratively building predictive models to fill each specified variable in
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the matrix. Each variable is imputed using other variables in the dataset
and the iterations are run until convergence is met. AR-GP works by
first forward filling the data to complete the matrix for training. We also
use the state-of-the-art MICE approach to impute the data and then
apply AR-GP to compare the performance.

We evaluate these methods on different univariate and multivariate
real-life datasets in a leave-one-subject-out cross-validation scenario.
A detailed explanation of how the proposed model is compared with
baselines in different datasets is described as follows.

3.6.2 Datasets

Health progression modelling requires longitudinal data from a person
that can provide long-term predictions for disease status of an individual.
Often, this data exists in the form of electronic health records or sequence
readings collected over time. Current state-of the-art methods such as
deep learning methods provide accurate models of individuals’ health
status in case of big data sets where both the number of individuals
and the number of individual measurements through time are large [32].
However, in the presence of limited training data (small N and t+

d ≈ 0),
such as when early disease discovery is of utmost importance, such
approaches produce sub-optimal results. Our framework for time series-
prediction in the absence of missing or limited data can enhance health
prediction capabilities. Hence, we select two datasets from real life
presented as follows:

Gestational Weight Gain

One health demographic is managing gestational weight gain among
women. Approximately 70% of pregnant women gain either too little or
too much weight at the end of their pregnancy in accordance with the
Institute of Medicine recommended guidelines [33]. Inappropriate weight
gain during pregnancy has been associated with short- and long-term
health complications to the mother and baby. Thus, early recognition
of signs of weight gain during pregnancy is essential [2]. In this study,
data were collected from diverse subjects in Europe where 80 women
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Attribute Mean ± Std
(80 subjects)

Age (years) 31 ± 3.5
Height (meters) 1.69 ± 0.07

Pre-pregnancy weight (kgs) 69 ± 15
Pre-pregnancy BMI (kgs/m2) 24 ± 4

Delivery (days) 277 ± 10
Weight Gained (kgs) 13.7 ± 4.7

Number of weight
gain samples 59.83 ± 41.02

Table 3.1: Dataset description for univariate gestational weight gain data

in their fifth week of pregnancy or later were recruited from midwife
practices in Eindhoven, The Netherlands. The weight data were collected
by a WiFi-connected scale, Withings WS302. The dataset is described
in Table 4.1. Note that this is a case of univariate time series data where
only one variable (weight gain) is measured with respect to time. A
mobile application allowed participants to log their weights weekly, and
the weight data was sent to the cloud.

The participants provided an informed consent pre-data collection and
the study was approved by the Internal Ethics Committee for Biomedical
Experiments of the involved organisations (ICBE Reference number
2015-0079 respectively).

We model the weight (gain) y as a function of time, (tj
1, tj

2, · · · , tj
m) using

the proposed approach. We achieve this by first normalising measured
weight with pre-pregnancy weight to obtain weight gain data and then
fitting various forecasting approaches. For the parametric approaches,
we utilise the complete data from N − 1 subjects to generate a prior to
estimate a MAP model. We experiment with first, second and third-order
polynomial based parametric approaches to fit our time-series data. In
cross-validation, we obtain the polynomial order (= 3) empirically for
the parametric approach, which has the lowest prediction error among
all other orders.

2https://www.withings.com/
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For the proposed non-parametric approach, we use the data from N − 1
subjects as training data in addition to the available target data of the
remaining subject to train the Gaussian processes in the baseline setting.
Dynamic subset selection is performed on the training data with respect
to the available target data.

Alzheimer’s disease prediction

Another health complication is Alzheimer’s disease (AD). AD is a
neurodegenerative disorder and the most common form of dementia.
Prediction of this progressive disorder’s symptom onset at early stages
is urgent and complex [34]. The design of clinical trials and developing
therapeutic interventions depends on accurately detecting patients at the
early stages of the disease where treatments are most likely to be effective.
The clinical status of an Alzheimer’s patient is based on commonly used
cognitive scores namely, the mini mental state examination (MMSE) [35],
the Washington University Clinical Dementia Rating Sum of Boxes
score (CDRSB) [36], and the AD Assessment Scale-Cognitive subtest
(ADAS-Cog13) [37].

To this end, we use the data collected as part of the TADPOLE
challenge [38] by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
consortium3 [39]. The data from 1737 patients taken every six months
over the course of 120 months consists of different modalities such as (1)
various features extracted from imaging modalities like magnetic resource
imaging (MRI), positron emission tomography (PET) and diffusion
tensor imaging (DTI), (2) cerebro-spinal fluid (CSF) markers of amyloid
beta and tau-deposition; (3) cognitive assessments measured in the
presence of a clinical expert; (4) genetic information such as alipoprotein
E4 (APOE4) status from DNA samples and (5) general demographic
information [38]. Around 266 features were extracted based on these
modalities and merged together over time to form a coherent numerical
multivariate time series feature set. Since the complete dataset has a lot
of missing visits, we follow the state-of-the-art approach for Alzheimer’s
disease marker forecast [22] and selected a smaller dataset of 95 subjects
such that data from at least ten visits is present and missing data is no

3http://adni.loni.usc.edu/
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more than 82.5% of the feature set. This helps in benchmarking our
proposed approach with the AR-GP approach [22].

In the case of this multivariate time series data, our experimentation to
predict a cognitive score (MMSE, ADAS or CDRSB) using 266 features
that vary with time is as follows:

1. Collective temporal realignment: The Alzheimer’s study [39]
recruited patients that were already going through some stage of
cognitive decline. Since the disease progression in every individual
differs in their onset, the target time series (y) for each of the
patients had a different t0. Therefore, we calculate the value of
τoptimal(j) using the response variable of the target data and the
response variable of the jth subject in the training data. This lag is
calculated for all the subjects in the training data with respect to a
given target subject. Based on the calculated τoptimal(j), lagged/led
versions of the predictor (Xj) and the response (yj) are created to
be used for further training.

2. Subset selection based on the response variable y: Based on the
available target data (X,y) from a given test subject until month
td, we find the subjects in the training dataset with a similar
cognitive decline. This is done by applying the subset selection
approach explained in section 3.5.1 on yj . Note that we apply
subset selection on the response variable instead of X since it gives
us similar subjects in output space.
We also compared the performance of our subset selection approach
with a k-means clustering approach. Clusters were obtained using
the input features of the multivariate time series. For a given test
subject, the subjects in the closest cluster are considered as training
data. These training subjects along with the available test subject’s
data are used to train a non-parametric GP as follows: (1) the
missing values are forward filled (2) K clusters with centroids {ck}
are created using k-means clustering with training data matrix
until month td (3) calculate distance dk = dist(X+, ck) of the test
subject’s predictor variables data X+ from each centroid {ck} and
the optimal profile (subset) is selected as cluster copt = ci such
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that, di < dj , ∀i ≠ j ∈ [1, K] In what follows, we will refer to this
method as the “K-means + GP” approach.

Disease progression Estimation : We perform non-parametric
regression using Gaussian processes on the input feature set X. First,
given a test subject’s response variable y+, a time aligned training data is
made that consists of a lagged version of Xs and ys. Subsequently, subset
selection is performed by finding subjects in the training data whose
response variable (yj) is close to the test subject’s response variable
(y+). Once a subset is selected, GP based regression is performed on
[X , X+] using eqn. (6.5) and (3.8). We perform leave-one-subject out
cross-validation on the dataset.

In both cases, developing models to automatically predict Alzheimer
disease-related metrics or gestational weight gain is of utmost importance
to intervene appropriately and in time. This makes the availability of
the target data another challenge. To test how well these methods can
perform with limited target data, we experiment by varying the amount
of available target data with respect to time, i.e, 0 ≤ t+

d ≤ t+
m.

Remark that, in the case of gestational weight gain prediction, the
objective is to predict a single observation in time, i.e., the end-of-
pregnancy weight gain. The performance is measured by predicting the
end-of-pregnancy (≈ 270 day) weight gain for a test subject when data
was available until 120, 130, 140, · · · , 260 days.

In the case of Alzheimer’s disease, however, we are also interested in the
disease’s trajectory, not merely an ultimate endpoint prediction. Two
subsequent visits are spaced an average of 6 months apart, and we will
predict the disease progression for each month despite having little data
(i.e., only observations from the first 30 months are used in the training
phase to predict progression up to month 120).

We evaluate and present the results related to the performance of different
approaches across time with different availabilities of the target data. We
also benchmark our proposed approach with the K-means + GP approach
and the AR-GP approach [22], the latter of which is considered as a
state-of-the-art approach for predicting cognitive decline of Alzheimer’s
patients.
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3.7 Results & Discussion

3.7.1 Gestational weight gain prediction

We study the performance of various forecasting algorithms when
predicting the weight gain of a target subject for the end of the pregnancy
while the time series data of weight gain of the target subject are only
available up to time t+

d . The most crucial aspect of gestational weight
gain prediction is whether the weight at the end of the pregnancy is
in the range recommended by the IOM guidelines [33]. Therefore, we
investigate the weight gain prediction ability of forecasting algorithms
that are trained with changing availability of a target individual’s data
(i.e, varying t+

d ). The results can be found in Fig. 3.5, which shows the
prediction error averaged over all the subjects as a function of the moment
t+
d . The prediction error reduces when more training data is available.

Also, it can be observed in Fig. 3.5 that the GP approach performs
worse than the SS-GP approach. Based on a paired t-test, which assumes
equal variances, we found that all differences between performances of
the SS-GP model and the other models are statistically significant at
a significance level of 5%. Only for the SS-GP and the MAP model
performances, no statistically significant difference was found. This is
not unexpected because of the simplicity of the dataset. For t+

d > 220,
the performance of ARIMA significantly outperforms the performance
of all other approaches. However t+

d = 220 is too close to the horizon
to result in effective intervention. Note that the average delivery day
is around day 277. The benefit of using our SS-GP approach is further
illustrated in Fig. 3.6.

In Fig. 3.6a, we show the performance of GPs when all training data is
used to make predictions for a target subject. Since the training data
consists of subjects with various rates of weight gain, the predicted trend
in the target subject is influenced by all the measurements in the training
data at a given time. The variability in the prediction is reduced by
selecting a subset of time series from the training data that share similar
patterns with the target data. These subjects are then used to forecast
the target data, as shown in Fig. 3.6b.
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Figure 3.5: MAE of predicted weight on delivery day (multiple steps
ahead in time) with respect to different approaches. MAE reduces as
more training data becomes available.

3.7.2 Alzheimer’s disease prediction

Unlike the gestational weight gain use case, where the final objective
was to predict the end-of-pregnancy weight gain because the data was
recorded daily, we aim to predict the progression of Alzheimer’s disease
at each visit, since these visits are separated by six months or more.
For this purpose, we will study the performance of several methods for
predicting three metrics for cognitive decline that are commonly used by
clinicians and that were introduced in section 3.6.2: MMSE, ADAS13,
and CDRSB.

Following our realignment approach, we first calculate the optimal τ
for each response time series (cognitive score) in the training dataset
with respect to the available response data from the test subject. We
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Figure 3.6: Prediction error (i = 1th subject) is (a) high (low confidence)
when the complete training dataset is considered due to inter-subject
differences but (b) reduces using close subset selection based on heuristics.
The prediction confidence (grey) also increases using the SS approach.

compute the standard deviation at a particular time instant for all
response time series in the training data that are aligned with respect
to the target subject. This standard deviation should be smaller than
when no alignment is performed. We experimented with all the subjects
in a leave one out fashion. In Fig. 3.7 each line depicts the standard
deviation of the ADAS13 matrix created using aligned versions of the
time series for a given test subject. By computing the standard deviation
without alignment, a baseline was established. We observed that > 80%
of the subjects have a standard deviation less (more desirable) than the
baseline when adjusted for the alignment using our temporal realignment
approach. This shows that most of the subjects are adjusted in time
with respect to disease progression after realignment.

To predict the Alzheimer’s disease progression, we varied the availability
of target data from month 30 until month 108. Fig. 3.8 shows the
cross-validation results, averaged over all subjects, for the prediction of
ADAS13 using our SS-GP approach. Each line in Fig. 3.8 corresponds
to a different number of available measurements for the test subject.
Given the available training data until a specific month, each point on
this line represents the prediction error in forecasting cognitive score for
the month depicted on the x-axis, averaged over all subjects. One can
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Figure 3.7: Standard deviation (std) of the cognitive decline (ADAS13)
after the proposed alignment for each subject (in black). The closer the
std is to the x-axis, the more similar the subjects’ time series are.

observe from Fig. 3.8 that there is an increasing trend in prediction error
when the forecast horizon increases. For example, given the training
data availability until month 30 (orange line with + marker), the mean
absolute error when predicting for month 60 is higher than for month 36.
Additionally, Fig. 3.8 shows that the prediction performance improves
as more data from the test subject becomes available for training. For
instance, for the predictions at month 48, the MAE obtained when
training data are available up till month 42 is smaller than the MAE
obtained when training data are available up till month 30. The other
metrics for cognitive decline (MMSE and CDRSB) were found to show
similar patterns in prediction performance.

As seen in Fig. 3.8, the worst result is observed when the available
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Figure 3.8: Mean absolute error measured with respect to different data
available in time for different steps in time prediction for ADAS13. The
average MAE for a specific month is lower when the data availability is
higher.

training data is highly limited, and the forecast horizon is set far in
time. This occurs when training data are only available until month
30 and forecasts are made up till month 120. Since we need to predict
as early as possible, we present the results for all further experiments
when training data are only available until month 30, and the forecast
horizon stretches from month 36 to month 120. Using training data up
till month 30 ensures us that during training at least one data point of
each subject is included.

Furthermore, at month 114, a peak in MAE is observed in Fig. 3.8. This
is due to the fact that, at month 114, no measurements of the target
variable are available for a lot of subjects.



88 MODELLING TIME SERIES THROUGH INFORMATIVE SUBSET SELECTION

Fig. 3.9 shows the forecast performance for the three cognitive metrics for
different subset selection strategies and different regression approaches.
For the AR-GP approach a forward filling approach is used to deal with
missing data [22]. However, we also studied the performance of the
AR-GP approach when a state-of-the-art imputation technique is used
instead, i.e. a multivariate imputation by chained equations (MICE)
for matrix completion [31]. We refer to this combination as AR-GP +
MICE.

Note that on average, a 1-3 point decrease in Mini Mental State
Examination [40], a 1-2 point increase in Clinical Dementia Scale sum of
boxes [40], and a 3-3.1 point increase in Alzheimer’s Disease Assessment
Scale-Cognitive (ADAS-Cog)[41] are indicative of a meaningful decline.

The differences between the proposed and compared models are
statistically significant (p < 0.05) based on a paired t-test with equal
variances. However, compared to the SS-GP approach, no statistical
difference is found with the MAP approach when predicting MMSE and
with the K-means + GP approach when predicting ADAS13 or CDRSB.
Thus, we can conclude that our method performs consistently (equal if
not better) across all metrics of cognitive decline when compared with
the state-of-the-arts.

Note the methods MLE, ARIMA, and LSTM provided as state-of-the-
arts train a model using only the test subject’s limited personal data, as
these algorithms can handle the time series data from a single participant
at a time in a personalised manner as described in section 2.7.

The proposed approach (SS-GP) is also compared to MAP (an extension
of the MLE), GP, AR-GP, AR-GP+MICE that utilise other subjects’
data along with personal data to improve the model’s performance.
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Figure 3.9: Proposed approach achieves lowest MAE on the metrics
(a) MMSE and (b) ADAS13 and comparable MAE with k-means based
clustering on (c) CDRSB.
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3.8 Conclusion

In this article, we proposed a novel approach, termed the SS-GP approach,
for forecasting time series that are not necessarily uniformly sampled.
For this purpose, we combined the non-parametric GP regression with
a subset selection procedure that selects a set of time series from the
data that closely resembles the test subject’s data. Our subset selection
procedure is robust as it selects the subset size dynamically based on
temporal similarities between the time series in the subset and the test
time series. The temporal similarity is measured with a DTW distance
that can be computed between time series with a different length. We
validated this method on two use cases and compared it with several
other approaches.

Firstly, on the univariate gestational weight gain dataset, our approach
performs similar to a parametric polynomial fitting which is not
unexpected because of the simplicity of the data set. However, the
SS-GP is able to reduce the variability in predictions because predictions
are only based on time series data that share similar patterns with the
data of the test subject.

Secondly, for a more complex data set consisting of multivariate time
series data to predict cognitive decline of Alzheimer’s patients our SS-GP
approach is able to outperform state-of-the-art approaches such as the
AR-GP approach [22]. In particular, the SS-GP approach, improves
prediction results when the forecast horizon is long and only a limited
amount of data is available.

3.9 Limitations & Future Work

Although effective in regression when data is missing, Gaussian Processes
(GPs) have a high computational complexity of O(n3). Our subset
selection is a local approximation technique that decreases complexity by
including only the most useful training points (<< n) that are close to
the test point. However, the collective realignment technique has a high
time complexity because it determines the ideal alignment for a specific
test time series by comparing it to all the time series in the training
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dataset. In future research, we would like to experiment with another
scalable sparse approximation of GPs developed in [42] that can further
reduce the time complexity.

In addition, the proposed approach is only tested on data sets from
healthcare considering the necessity that arises in this domain from data
acquisition limitations. In an environment where data acquisition is
costly, it would be beneficial to evaluate our method on more data sets
and application domains where time series can be sparsely sampled, such
as process quality monitoring in industries.

Acknowledgement

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 766139. This publication reflects only the
authors’ view, and the REA is not responsible for any use that may be
made of the information it contains.



Bibliography

[1] C. Puri, G. Kooijman, B. Vanrumste, and S. Luca, “Forecasting
time series in healthcare with gaussian processes and dynamic
time warping based subset selection”, IEEE Journal of Biomedical
and Health Informatics, vol. 26, no. 12, pp. 6126–6137, 2022. doi:
10.1109/JBHI.2022.3214343.

[2] C. Puri, G. Kooijman, F. Masculo, S. Van Sambeek, S. Den Boer,
S. Luca, and B. Vanrumste, “Pregdict: Early prediction of
gestational weight gain for pregnancy care”, in 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), IEEE, 2019, pp. 4274–4278.

[3] R. H. Shumway and D. S. Stoffer, Time series analysis and its
applications: with R examples. Springer, 2017.

[4] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L.
Oukhellou, and Y. Amirat, “Physical human activity recognition
using wearable sensors”, Sensors, vol. 15, no. 12, pp. 31 314–31 338,
2015.

[5] B. M. Marlin, D. C. Kale, R. G. Khemani, and R. C. Wetzel,
“Unsupervised pattern discovery in electronic health care data
using probabilistic clustering models”, in Proceedings of the 2nd
ACM SIGHIT international health informatics symposium, 2012,
pp. 389–398.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory”,
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

92

https://doi.org/10.1109/JBHI.2022.3214343


BIBLIOGRAPHY 93

[7] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-
and short-term temporal patterns with deep neural networks”,
in The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, 2018, pp. 95–104.

[8] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber”, in International
Conference on Machine Learning, vol. 34, 2017, pp. 1–5.

[9] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “GRU-ODE-
bayes: Continuous modeling of sporadically-observed time series”, in
Advances in Neural Information Processing Systems, 2019, pp. 7379–
7390.

[10] M. Liu, A. Zeng, Z. Xu, Q. Lai, and Q. Xu, “Time series is a special
sequence: Forecasting with sample convolution and interaction”,
arXiv preprint arXiv:2106.09305, 2021.

[11] C. E. Rasmussen, “Gaussian processes in machine learning”, in
Advanced lectures on machine learning, Springer, 2004, pp. 63–71.

[12] J. G. De Gooijer and R. J. Hyndman, “25 years of time series
forecasting”, International journal of forecasting, vol. 22, no. 3,
pp. 443–473, 2006.

[13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling”, English (US), in NIPS 2014 Workshop on Deep
Learning, December 2014, 2014.

[14] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

[15] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase
Representations using RNN Encoder–Decoder for Statistical
Machine Translation”, in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1724–1734.

[16] Z. C. Lipton, D. Kale, and R. Wetzel, “Directly modeling missing
data in sequences with RNNs: Improved classification of clinical
time series”, in Machine Learning for Healthcare Conference, 2016,
pp. 253–270.



94 BIBLIOGRAPHY

[17] N. Strodthoff and P. e. Wagner, “Deep learning for ECG analysis:
Benchmarks and insights from PTB-XL”, IEEE Journal of
Biomedical and Health Informatics, vol. 25, no. 5, pp. 1519–1528,
2020.

[18] K. Li, C. Liu, T. Zhu, P. Herrero, and P. Georgiou, “GluNet: A deep
learning framework for accurate glucose forecasting”, IEEE journal
of biomedical and health informatics, vol. 24, no. 2, pp. 414–423,
2019.

[19] J. Futoma, S. Hariharan, and K. Heller, “Learning to detect sepsis
with a multitask gaussian process rnn classifier”, in International
conference on machine learning, PMLR, 2017, pp. 1174–1182.

[20] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical
and machine learning forecasting methods: Concerns and ways
forward”, PloS one, vol. 13, no. 3, e0194889, 2018.

[21] L. Clifton, D. A. Clifton, M. A. Pimentel, P. J. Watkinson, and
L. Tarassenko, “Gaussian process regression in vital-sign early
warning systems”, in Engineering in Medicine and Biology Society
(EMBC), 2012 Annual International Conference of the IEEE, IEEE,
2012, pp. 6161–6164.

[22] K. Peterson, O. Rudovic, R. Guerrero, and R. W. Picard,
“Personalized gaussian processes for future prediction of alzheimer’s
disease progression”, NeurIPS Workshop on Machine Learning for
Healthcare., 2017.

[23] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The
great time series classification bake off: A review and experimental
evaluation of recent algorithmic advances”, Data mining and
knowledge discovery, vol. 31, no. 3, pp. 606–660, 2017.

[24] E. J. Keogh and M. J. Pazzani, “A simple dimensionality reduction
technique for fast similarity search in large time series databases”,
in Pacific-Asia conference on knowledge discovery and data mining,
Springer, 2000, pp. 122–133.

[25] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.”, in KDD workshop, Seattle, WA, vol. 10,
1994, pp. 359–370.



BIBLIOGRAPHY 95

[26] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping”, Knowledge and information systems, vol. 7, no. 3,
pp. 358–386, 2005.

[27] M. Müller, “Dynamic time warping”, Information retrieval for
music and motion, pp. 69–84, 2007.

[28] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh,
“Generalizing dtw to the multi-dimensional case requires an
adaptive approach”, Data mining and knowledge discovery, vol. 31,
no. 1, pp. 1–31, 2017.

[29] R. Shibata, “Selection of the order of an autoregressive model by
akaike’s information criterion”, Biometrika, vol. 63, no. 1, pp. 117–
126, 1976.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization”, arXiv preprint arXiv:1412.6980, 2014.

[31] S. v. Buuren and K. Groothuis-Oudshoorn, “MICE: Multivariate
imputation by chained equations in R”, Journal of statistical
software, pp. 1–68, 2010.

[32] S. El-Sappagh, T. Abuhmed, S. R. Islam, and K. S. Kwak,
“Multimodal multitask deep learning model for alzheimer’s disease
progression detection based on time series data”, Neurocomputing,
vol. 412, pp. 197–215, 2020.

[33] K. M. Rasmussen, P. M. Catalano, and A. L. Yaktine,
“New guidelines for weight gain during pregnancy: What
obstetrician/gynecologists should know”, Current opinion in
obstetrics & gynecology, vol. 21, no. 6, p. 521, 2009.

[34] J. L. Cummings, “Challenges to demonstrating disease-modifying
effects in Alzheimer’s disease clinical trials”, Alzheimer’s &
Dementia, vol. 2, no. 4, pp. 263–271, 2006.

[35] M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““Mini-mental
state”: A practical method for grading the cognitive state of patients
for the clinician”, Journal of psychiatric research, vol. 12, no. 3,
pp. 189–198, 1975.

[36] C. P. Hughes, L. Berg, W. Danziger, L. A. Coben, and R. L. Martin,
“A new clinical scale for the staging of dementia”, The British
journal of psychiatry, vol. 140, no. 6, pp. 566–572, 1982.



96 BIBLIOGRAPHY

[37] W. G. Rosen, R. C. Mohs, and K. L. Davis, “A new rating scale for
Alzheimer’s disease.”, The American journal of psychiatry, 1984.

[38] R. V. Marinescu, N. P. Oxtoby, A. L. Young, E. E. Bron,
A. W. Toga, M. W. Weiner, F. Barkhof, N. C. Fox, S. Klein,
D. C. Alexander, et al., “Tadpole challenge: Prediction of
longitudinal evolution in Alzheimer’s disease”, arXiv preprint
arXiv:1805.03909, 2018.

[39] S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack,
W. Jagust, J. Q. Trojanowski, A. W. Toga, and L. Beckett, “The
Alzheimer’s disease neuroimaging initiative”, Neuroimaging Clinics,
vol. 15, no. 4, pp. 869–877, 2005.

[40] J. S. Andrews, U. Desai, N. Y. Kirson, M. L. Zichlin, D. E. Ball, and
B. R. Matthews, “Disease severity and minimal clinically important
differences in clinical outcome assessments for Alzheimer’s disease
clinical trials”, Alzheimer’s & Dementia: Translational Research &
Clinical Interventions, vol. 5, pp. 354–363, 2019.

[41] A. Schrag, J. M. Schott, A. D. N. Initiative, et al., “What is
the clinically relevant change on the ADAS-Cog?”, Journal of
Neurology, Neurosurgery & Psychiatry, vol. 83, no. 2, pp. 171–173,
2012.

[42] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian
process approximations”, in Artificial Intelligence and Statistics,
PMLR, 2007, pp. 524–531.



Chapter 4

Privacy-Preserving Learning
for Gestational Weight Gain
Estimation

This chapter was previously published as:
C. Puri, K. Dolui, G. Kooijman, F. Masculo, S. Van Sambeek,
S. Den Boer, S. Michiels, H. Hallez, S. Luca, and B. Vanrumste,
“Gestational weight gain prediction using privacy preserving federated
learning”, in 2021 43rd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), 2021, pp. 2170–2174

C. Puri, K. Dolui, G. Kooijman, F. Masculo, S. Van Sambeek, S. D. Boer,
S. Michiels, H. Hallez, S. Luca, and B. Vanrumste, “Privacy preserving
pregnancy weight gain management: Demo abstract”, in Proceedings
of the 17th Conference on Embedded Networked Sensor Systems, 2019,
pp. 398–399

97



98 PRIVACY-PRESERVING LEARNING FOR GESTATIONAL WEIGHT GAIN ESTIMATION

Abstract

Gestational weight gain prediction in expecting women is associated
with multiple risks. Manageable interventions can be devised if the
weight gain can be predicted as early as possible. However, training the
model to predict such weight gain requires access to centrally stored
privacy sensitive weight data. Federated learning can help mitigate this
problem by sending local copies of trained models instead of raw data
and aggregate them at the central server. In this paper, we present a
privacy preserving federated learning approach where the participating
users collaboratively learn and update the global model. Furthermore,
we show that this model updation can be done incrementally without
having the need to store the local updates eternally. Our proposed model
achieves a mean absolute error of 4.455 kgs whilst preserving privacy
against 2.572 kgs achieved in a centralised approach.
Clinical relevance - Privacy preserving training of machine learning
algorithm for early gestational weight gain prediction with minor trade-
off to performance.

4.1 Introduction

In pregnancy, inadequate or excessive weight gain remains a key health
issue. Global estimates suggest that only around 30% of pregnant women
end up being adequately weighed recommended by the Institute of
medicine [3], [4]. There are several risks associated with such excessive
or inadequate gestational weight gain, for example, excessive weight gain
can lead to fetal macrosomia or post-partum maternal obesity putting
the mothers at incresased risk of gestational diabetes [5]. Similarly,
inadequate weight gain can lead to small-for-gestational-age infants [3].

Early prediction of gestational weight gain can help mitigate this problem
by helping neonatal healthcare providers or expecting women in devising
better management and interventions. Traditional approaches exist
in which raw data from all the subjects is collected and sent to a
central location. At this central location, the data is saved, processed
and models to estimate gestational weight gain are trained. Even
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though, one can achieve high predictive performance in such a centralised
approach, there are several privacy concerns associated with such a model
building approach, especially in the light of the General Data Protection
Regulation (GDPR) imposed by the European Union (EU) and increased
awareness about privacy preservation among end-users. The centralized
storage creates a large surface area for security and privacy attacks. It
leaves the user lacking control of his/her own personal data. Finally, in
applications where the data collected is large in size, especially larger
than the model, handling sensitive data on the server side becomes
cumbersome as well.

Google proposed federated learning [6] where many local devices
collaboratively train a model in association with a central server, while
keeping raw sensitive data distributed in the users’ own devices. This
is made possible by the ubiquity and the improved computational
capabilities of the edge devices such as smart-phones. In federated
learning, user devices only share model updates with the centralized
server after training models iteratively on the local data available on-
device. Federated learning is particularly applicable to use-cases where
the data is collected from user devices and the data is sensitive in nature.
In order to achieve this, we have designed and implemented a privacy-
preserving federated approach for the prediction of gestational weight
gain. The key contributions of this paper are (a) implementation of
federated learning approach for prediction of gestational weight gain, (b)
studying the effect of varying number of participants in collaborative
learning, and (c) updating the global model incrementally such that the
local updates are deleted once they are incorporated into a global model.

4.2 Related Works

Parametric methods such as maximum likelihood estimation or ARIMA
[7] approaches have been used traditionally for time series prediction that
utilise individual training data. Authors in [8] propose an improvement
over these state-of-the-art techniques to predict an individual’s end-of-
pregnancy weight gain as early as day 140 with an average mean absolute
error of around 2.572 kgs. The model is trained by learning an a-priori
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model based on data from other users stored at a data center and using
this information in association with limited data from test individual to
predict reliably. Such a centralised data storage implementation needs
access to centrally stored data from a variety of users, in this case,
pregnant women. This high performance is achieved at the expense of
privacy sensitive information of users. Authors in [2] prove that such
decentralised learning approach can help predict the gestational weight
gain reliably with privacy preserved. However, the model aggregation in
which local models are combined to form a single global model required
storage of the local models eternally on the central server. This can
lead to various forms of attacks on the models stored on the server or
intercepted model updates including model inversion [9] and privacy
leakage [10], [11]. In this work, we built upon our previous works and
propose that such distributed learning can also be achieved by learning
the global model incrementally without storing the local updates for
infinite amount of time.

4.3 Data

We consider data from 80 women that were in their gestational week
5 or later recruited in Eindhoven, The Netherlands. The weight
data was collected using a WiFi-connected weight scale, Withings
WS301. The participants were asked to log their weights weekly and
the recorded weight data was sent to the cloud via a mobile application.
Additional meta-data such as age, height and pre-pregnancy weight
were also collected. The participants provided an informed consent
pre-data collection and the study was approved by the Internal Ethics
Committee for Biomedical Experiments of the involved organizations
(ICBE Reference number 2015-0079). This sample dataset’s distribution
is close to that in [3], which is obtained from a large population of more
than a million women, with almost half of the women gaining above the
recommended guidelines [8].

1https://www.withings.com/
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Table 4.1: Dataset description

Dataset
Attribute Mean ± std
Age (years) 31 ± 3.5

Height (meters) 1.69 ± 0.07
Pre-pregnancy weight (kgs) 69 ± 15

Pre-pregnancy BMI (kgs/m2) 24 ± 4
Delivery (days) 277 ± 10

Weight Gained (kgs) 13.7 ± 4.7
Number of recorded
weight gain samples 59.83 ± 41.02

4.4 Methods

Given a population of N subjects that acquired N time series of
gestational weight gain measurements as X = {(x1, y1), · · · , (xN , yN )},
where xi = {ti

1, ti
2, ti

3, · · · , ti
mi

} represents the input gestational days upto
delivery day ti

mi
and yi = {yi

1, yi
2, yi

3, · · · , yi
mi

)} represents the output
weight gain for ith subject, where yi

k = y(ti
k). It is important to note here

that ti
k does not necessarily equal tj

k, i, j ∈ {1, 2, · · · , N}. This is because
the data is self-reported such that each subject acquires measurements
at different times according to their personal preferences and adherence
to data collection.

Furthermore, we are given individual weight measurements from test sub-
ject’s initial t+

d days of pregnancy data, D = {(t+
1 , y+

1 ), (t+
2 , y+

2 ), · · · , (t+
d , y+

d )}.

We try to learn function(s) f from X and D, such that,

y+ = f(t+) + ϵ (4.1)

where ϵ ∼ N (0, σ2) is independent and identically distributed (i.i.d)
according to a Gaussian.
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4.4.1 Centralised parametric approach

Traditionally used methods include parametric approach like fitting a
pth-order polynomial with f = w0 + w1t + w2t2 + · · · + wptp in eq. (6.1)
and estimating the coefficients w = [w0, w1, · · · , wp]T by maximizing the
likelihood (L) over an individual’s personal-training data D, L(w) =
P (D|w),

ŵMLE = argmax
w

P (D|w) =
d∏

i=1
p(y+

i |t+
i ; w) (4.2)

This can be done on a local device using only the estimates of a single user
following eq. (4.2) that refers to the model learnt from the individual’s
sparse limited observations upto given td days. Often, such a prediction
is far from reliable as it uses only few points from personal data. Authors
in [8] show that such a prediction can be improved by considering the
public-training data. The public-training data (X ) can be exploited
and the maximum likelihood point estimates (MLE) of ŵi for each
individual time series in the public-training data following eq. (4.2) can
be derived. If we assume gaussianity over the distribution of w such that
w ∼ N (µŵ, Σŵ), we can find a closed-form solution of wMAP analytically.
Here, µN

ŵ = mean([ŵ1, ŵ2, · · · , ŵN ]T ), ΣN
ŵ = cov([ŵ1, ŵ2, · · · , ŵN ]T )

are mean and covariances of the polynomial coefficients ŵ1, ŵ2, · · · , ŵN

that are each obtained using the individual gestational weight gain
data from each of the N subjects in the public-training data. This
distribution over the MLE estimates of the coefficients, p(w) is acquired
from the N subjects in the public-training data as an a-priori estimate.
The likelihood learnt from the individual’s personal-training data (D)
and the a-priori distribution learnt from the population data are then
combined using bayes theorem to calculate the maximum-a-posteriori
(MAP) estimate of the coefficients p(w|D).

ŵMAP = argmax
w

p(w|D) = argmax
w

P (D|w)p(w)
P (D) (4.3)

The forecast at time t+
m is given by ŵMAP [t+

m t+
m

2 · · · t+
m

p]T . This
approach is called parametric because the choice of order of the
polynomial p depends on the application of interest.
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4.4.2 Federated approach with eternal updates (F∞)

Federated learning is the process of storing only the model weights
from individual subjects that are pushed to a central server. This
preserves the privacy of a subject by only sending the model coefficients
instead of complete raw data information as followed in the centralised
approach. These small updates of local model coefficients (ŵi) are sent
to the central server where these updates are stored eternally, so that
whenever a new model update arrives or a global update is needed
all parties can participate and a global model can be aggregated as
µŵ = mean([ŵ1, ŵ2, · · · , ŵN ]T ), Σŵ = cov([ŵ1, ŵ2, · · · , ŵN ]T ). The
federated learning process (Fig. 4.1) that we utilised is as follows:-

(1) the centralized server sends the meta-data, (for example, order p of
the polynomial, current global model estimate) to the participating
subjects, once all subjects agree upon it,

(2) the local subjects estimate model coefficients ŵMLE based on
maximising the likelihood of the local data,

(3) these local model updates are then shared to the server

(4) the server aggregates the individual models and create an updated
global model,

(5) the global model is shared with the participating subjects.

This process is repeated as new subjects participate or the already
participating subjects gather more data to push updated local models to
the server. The local updates from participating subjects are stored
eternally at the central server for secure aggregation to accurately
estimate the global update. Hence, this method is also denoted as
F∞ as the updates are stored for infinite time.

4.4.3 Federated approach with ephemeral updates (F∞)

Although federated learning with eternal updates gives better privacy
guarantees than sharing user data and learning on a central server, it
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Figure 4.1: Federated learning ensures local data remains on-device and
only model weights are shared at the central server.

still leaves the system vulnerable to attacks from older model updates
or models themselves. The reason why stored model updates over
time can still reveal sensitive information is because they are derived
from the sensitive data of the user and is a representation of high level
statistical distribution of the data[12]. We propose a scenario where only
incremental updates from participating users are shared and are deleted
from the central server once the global model is updated. Assuming
a multivariate normal distribution, the global model µN , ΣN

ŵ can be
updated using the past global model µN−1, ΣN−1

ŵ and the new shared
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local model (ŵN ) as follows:-

µN
ŵ = (N − 1)µN−1

ŵ + ŵN

N

= µN−1
ŵ + ŵN − µN−1

ŵ
N

(4.4)

Similarly, covariance for N th update can be estimated as 2,

ΣN
ŵ = ΣN−1

ŵ + ŵN ŵN⊤

N − 1 − N · µN
ŵµN⊤

ŵ
N − 1 + µN−1

ŵ µN−1⊤

ŵ (4.5)

4.5 Experiments

We perform leave-one-out cross validation to evaluate and compare
performance of our approaches, where training dataset in each iteration
consists of weight gain data from n ≤ N public-training subjects and
self-training data from the test subject. Here, n denotes the number
of participants that had already participated in the federated learning
pregnancy and an updated global model exists based on these n number
of participants. We experiment with different values of n to show the
effect of number of initiating users on the regression performance. We
subtract the pre-pregnancy weight from the absolute data to get weight-
gain data to ensure further local model security. The performance of
regression was computed using Mean Absolute Error (MAE), MAE =
1
N

∑
N |y(ti

m) − yref (ti
m)|. We experiment with first, second, third, fourth

and fifth order polynomial based approach to fit our weight-gain data.
The weight-gain data is normalised to pass through origin, so intercept
term can be omitted. We chose third-order polynomial as it obtains
minimum prediction error.

4.6 Results

Initially, we assume that n = 10 random users have already participated in
the model building process and we perform leave-one-out cross validation

2See Appendix for proof.
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on the rest of 70 subjects by sending a global model learnt based on
n = 10 subjects as an initial estimate. Fig. 4.2(a) and 4.2(b) show the
worst and best performing subjects respectively in terms of estimating
end-of-pregnancy weight gain based on such a federated learning scheme.
Note that personal weight gain data until day 120 is used which is shown
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Figure 4.2: Federated learning generates (a) worst (subject id #14) and
(b) best result (subject id #47) with limited personal data upto 120
days when only 10 users have participated initially. Performance for the
subject id #14 can be seen improving when (c) 70 users participated in
federated learning or when (d) the availability of personal-data increased
(upto 180 days).

in black in Fig. 4.2 and the further values to be predicted are plotted in
green. Fig. 4.2(c) shows that when a global model initiated by n = 70
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users is distributed, the regression performance improves. The end-of-
pregnancy weight prediction also improves with only n = 10 participating
users if the personal-data availability increases (Fig. 4.2(d)).

Next, we present the prediction results averaged over N − n subjects
where n is varied as 10, 40, and 70 and N = 80. Fig. 4.3 shows that
performance improves (MAE decreases) as self-training data availability
increases or when the initial number of users participating in federated
learning increase.
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Figure 4.3: Average mean absolute error decreases as personal training
data increases or number of initial users increase.

The centralised approach with 80 subjects produces the minimum
absolute error in prediction with around 2.57 kgs error in predicting
end-of-pregnancy weight gain. The federated approach with ephemeral
updates (F∞) performs worse by about 1.89 kgs than centralised MAP
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approach with around 4.46 kgs mean absolute error. Fig. 4.4 shows that
the federated learning out-performs the rest of the state-of-the-arts in
predicting gestational weight gain in the presence of limited personal
data (upto 200 days).
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Figure 4.4: Performance of federated learning as compared to state-of-
the-art approaches.

4.7 Discussion

In this paper, we propose the implementation of federated learning in
time series related to healthcare. Apart from centralised learning where
the raw data is shared and stored at the server for model building,
we discuss two different federated scenarios that differ in how long the
updates are stored at the central server.

Fig. 4.3 shows that the performance of the federated learning approach
is different when the initial number of users participating in the training
process varies. As the number of users that are involved in initial model
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building increases, the performance improves. This can be attributed
to the fact that the global model becomes more generalised when the
number of users have increased. Similarly, a decreasing trend is observed
in mean absolute error from Fig. 4.3 and Fig. 4.4 with respect to the
number of training days available. It is intuitive that as more and more
training data becomes available, the individual model starts estimating
the end-of-the-pregnancy weight more accurately. But, it is desirable to
predict the weight gain as early as possible for necessary intervention.

Fig. 4.4 shows that the performance of the two federated learning
approaches with different local model storage strategies have identical
performance as the availability of the training data increases. It can
be observed that the federated approaches (F∞ (green) and F∞(blue))
performance in early prediction of the weight gain is much better than
the state-of-the-arts and is very close to the centralised approach, thus
guaranteeing a good trade-off in performance and privacy preservation.
As more and more training data for an individual pregnancy is available
the performance of centralised approach, MLE and the federated learning
approaches is close to each other as the global a model a-priori has less
influence on local model.

4.8 Conclusion

In this paper, we try and propose a federated learning strategy that
enables the preservation of privacy of a user while attaining state-of-the-
art performance. We try and predict the gestational weight gain at the
end of pregnancy as early as possible. The proposed approach achieves
around 4.455 kgs of mean absolute error as early as 140 days into the
pregnancy. In the future, we would like to improve upon the privacy of
the shared model updates by making them differentially private (adding
a noise to local weights) and establishing formal privacy guarantees.
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APPENDIX

Proof of Federated Covariance estimation with ephemeral updates:

ΣN
ŵ = 1

N − 1

N∑
i=1

(
ŵi − µN

ŵ

) (
ŵi − µN

ŵ

)⊤

= 1
N − 1

N∑
i=1

[
ŵiŵi⊤ − ŵiµN⊤

ŵ − µN
ŵŵi⊤ + µN

ŵµN⊤
ŵ

]

= 1
N − 1

N∑
i=1

ŵiŵi⊤ − 2
(

N∑
i=1

ŵi

)
µN⊤

ŵ +
N∑

i=1
µN

ŵµN⊤
ŵ

= 1
N − 1

N∑
i=1

ŵiŵi⊤ − 2NµN
ŵµN⊤

ŵ + NµN
ŵµN⊤

ŵ

= 1
N − 1

N∑
i=1

ŵiŵi⊤ − NµN
ŵµN⊤

ŵ

(4.6)

In order to calculate the update, we use the ∆Σ = ΣN
ŵ − ΣN−1

ŵ .
Substituting eq. 4.6 to calculate ∆Σ, we get

∆Σ = ΣN
ŵ − ΣN−1

ŵ

= ŵN ŵNT

N − 1 − N · µN
ŵµNT

ŵ
N − 1 + µN−1

ŵ µN−1T

ŵ

(4.7)
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Chapter 5

Feature Selection for Handling
Missing Data

This chapter was previously published as:
C. Puri, G. Kooijman, X. Long, P. Hamelmann, S. Asvadi, B. Vanrumste,
and S. Luca, “Feature selection for unbiased imputation of missing
values: A case study in healthcare”, in 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), IEEE, 2021, pp. 1911–1915

Abstract

Datasets in healthcare are plagued with incomplete information.
Imputation is a common method to deal with missing data where the
basic idea is to substitute some reasonable guess for each missing value
and then continue with the analysis as if there were no missing data.
However unbiased predictions based on imputed datasets can only be
guaranteed when the missing mechanism is completely independent of
the observed or missing data. Often, this promise is broken in healthcare
dataset acquisition due to unintentional errors or response bias of the
interviewees. We highlight this issue by studying extensively on an
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annual health survey dataset on infant mortality prediction and provide
a systematic testing for such assumption. We identify such biased features
using an empirical approach and show the impact of wrongful inclusion
of these features on the predictive performance.
Clinical relevance - We show that blind analysis along with plug and play
imputation of healthcare data is a potential pitfall that clinicians and
researchers want to avoid in finding important markers of disease.

5.1 Introduction

Missing data is a ubiquitous problem in statistical analysis or data science
irrespective of the domain, be it social sciences or health sciences. Most, if
not all the machine learning algorithms presume that all the information
is present for all the available features. Conventional techniques of
handling missing data include performing complete case analysis which
is deletion of missing cases but this strategy results in lesser informative
subset of the dataset.

Health data are being massively generated due to the advancement
of both data acquisition and analysis technologies, examples of which
include time-series data from intensive care units (ICU), biomarker data,
electronic health records (EHR), or health surveys. The global market
for big data in health care has been projected to grow significantly from
US$19.6 billion in 2018 to US$ 47.7 billion in 2022 [2]. Undoubtedly,
this rise is due to the penetration of data analytics for better predictive
clinical outcomes, analyzing disease, and tracking patterns thus increasing
overall public health. Modelling such large scale data and predicting the
health status for improvement of the patient is challenging. One such
challenge is addressing missing values in data, that arise, for example,
from unrecorded data from ICU machines due to lead detachment
or respondents intentional/unintentional non-responsiveness to health
surveys [3].

Datasets (particularly in healthcare) are often preprocessed by various
imputation techniques that rely on the assumption of independence
between the missing mechanism and the observed data. Statistical tests
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to verify this assumption often fail when missing data is abundant and a
subset of reasonable size of complete data is absent [4].

In this article, we illustrate the common pitfall of blindly applying
imputation techniques that can lead to biased results. To this end, we
utilize a publicly available dataset from the annual health survey in India
and show how state-of-the art imputation techniques fall short in reliable
feature matrix completion for classification purposes. Furthermore, we
propose an empirical approach to study the effect of including features
that are strongly associated to the occurrence of missing data.

A large part of existing literature on missing data analysis that we discuss
later studies one or more methods to impute data. In this article, we
highlight the biased effect that imputation might have on the results of a
predictive classification model in the presence of imbalanced missingness
across different classes and we propose a method that can support in
preventing careless imputation of missing data.

The remainder of the paper is structured as follows. In section 5.2, we
talk about the imputation techniques and types of missingness. Further,
we describe the dataset in section 5.3. Section 5.4 elaborates upon the
experiments performed in order to show the impact of the described
challenges with unbiased missing values imputation. We conclude by
giving final remarks to the reader in section 5.5.

5.2 Related Work

Several approaches exist that handle missing data by (a) deletion of the
cases that have values missing for a single variable, simply excluding such
cases can be used to build complete datasets [5] or (b) estimating a single
set of missing values by single imputation using statistical moments, k-
nearest neighbours or (c) a confidence interval imputation by much more
complex multiple imputation [6]. A specific implementation of multiple
imputation strategy known as the Multivariate Imputation by Chained
Equations (MICE) involves multiple steps of imputation in which every
variable is imputed conditionally on all other variables [7]. Deletion
based imputation can lead to loss of statistical power and can introduce
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bias when a smaller complete subset is selected from a non-complete
dataset.

Based on the type of missingness, three basic mechanisms are present [5],
described as follows, Suppose we have missing data on a variable Y and
we have some other variable X, then, one defines:

• Missing completely at random (MCAR) : If the probability of
missing data on Y is unrelated to the value of Y itself or to the
values of any other variables in the data set, the data is said to be
MCAR.

• Missing at random (MAR): If the missingness depends only on the
data that are observed but not on the missing components, the
data are MAR. i.e., P (Y missing|Y, X) = P (Y missing|X)

• Not missing at random (NMAR): If the probability that Y is
missing depends on the unobserved value of Y itself, then the
mechanism is NMAR.

Most of the imputation strategies work under the assumption that the
missingness is MCAR [4]. Statistical tests like Little’s test [4] exist
that can test whether the data is MCAR or not. However, in the
absence of a small complete subset (when missing data is abundant), it is
difficult to conduct such a test and existing imputation techniques tend
to fail in reliably predicting the missing values. Authors in [8] and [9]
discuss different imputation methods and compare the performance of
imputation techniques with different amount of missingness on different
datasets. They advise that different missing data mechanism needs
different imputation strategy, however none of the previous works talk
about the imbalance in missingness that can be present in different classes
when considering a classification problem. Imputation without analysis
of such an imbalance can lead to erroneous completion of the feature
matrix which we will show later.

In this article, we illustrate the challenges of using imputation methods
when the MCAR assumption is not met. For this purpose, we use a case
study from healthcare and we propose an algorithm to study the effect
of including features that are strongly associated to the occurrence of
missing data.
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5.3 Data

We chose a publicly available healthcare survey dataset conducted over
women that underwent pregnancy in several states in India [10]. Child
mortality remains a major challenge in India and is responsible for
approximately 39.1 deaths per 1,000 live births in 2017 [11]. Child
mortality as a pregnancy outcome is considered a major attribute in
building efforts to preventive antenatal care thus reducing infant mortality.
Poor pregnancy outcome in India is not just attributed in defining the
outcome but is also a consequence of substandard health information
systems. The National Institute for Medical Statistics of the Indian
Council of Medical Research (ICMR - NIMS) has launched the National
Data Quality Forum (NQDF) in collaboration with the Population
Council. The purpose of the NQDF is establishing protocols and good
practices for betterment of data collection, storage and dissemination[12].
Major barriers to the data quality include (a) lack of comparability,
(b) discordance between system and survey level estimates, (c) lengthy
questionnaires, (d) questions related to socially restricted conversation
topics, (e) age-reporting errors or non-response, (f) intentional skipping of
questions, (g) under-reporting due to subjective question interpretation
and incompleteness, and (h) paucity of data to generate reliable estimates
on mortality [12]. We select data from the open government platform in
India where the Indian government has provided open access to datasets,
documents, etc. for public use. This dataset is also collected as part
of a joint initiative between government of India and US government.
Authors in [13] have shown the risks of using such open datasets from
non-verified sources such as [14]. They identify that Woman Schedule
Section 1 and Section 2 (called WPS dataset) is from a verified source [10].
A number of 355 features in the WPS dataset [10] are present in the form
of questionnaire, with fields related to social, economic, health status
or demographic indicators as well as the outcome of pregnancy (live or
stillbirth).

Since the dataset consists of questions from surveys, some questions are
explicitly on the child birth outcome thus making some of the features
highly correlated with the fact whether the child birth resulted in a
live or stillbirth. Hence, features such as baby weight taken or not,
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weight measurement, immunization card details, different vaccines, polio,
hepatitis, vit. A, IFA tablet, feeding details, breastfed, animal dairy, solid
food month, etc. were removed to maintain causality of the labels with
respect to the feature set because these features can only be recorded if
the pregnancy outcome is positive. We then selected 233 features out of
355 as the final feature list for further analysis.

5.4 The case study

Given a feature matrix X = {x1, x2, ..., xN }, x ∈ Rd observed for N
subjects, the objective is to learn a function h : X → Y , where Y = {0, 1}
corresponds to prediction of still or live birth respectively. The class
of stillbirth also includes all cases of induced abortion and spontaneous
abortion. The number of cases for live birth are much more than all the
stillbirth cases. Hence, we look at the problem of learning a model for
binary classification of live and stillbirth.

Imputation of the feature matrix occurs during pre-processing before
training the model, as shown in Figure 5.1.

Input Data Imputation

Model Training Prediction

Figure 5.1: Typical processing pipeline for learning with missing data.

We compare the performance of the imputation approach by keeping the
processing pipeline fixed i.e the training data and the classifier and its
parameters are fixed and only the imputation approach is varied. For our
experiments, we perform a 10-fold cross validation with minority class
as the positive class (stillbirth) and plot the average receiver operating
characteristic. Figure 5.2 shows that a random forest classifier with single
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imputation methods like constant based filling for imputation achieves
the best performance. This motivated us to look closely into the features
and the missingness in relation to the class label.
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Figure 5.2: A simple zero based constant filling appears to have the most
predictive power (keeping classifier and its parameters fixed) when the
imputation methods are applied blindly without understanding the type
of missingnes.1

We take two exemplary features that are discrete-valued categorical
features namely “source_of_anc” and “maternity_financial_assistance”.
In the annual health survey, “source_of_anc” refers to the institution
offering antenatal care (ANC). 12 different government or private
institutions operating at different governance level are assigned real

1Notice the difference in x and y coordinates as this is a zoomed-in snippet of the
AUROC curve to improve the visibility of the curves.
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numbers. For example, women receiving antenatal care at government
operated rural center called anganwadi are assigned the real number ‘1’.
Similarly, women receiving ANC from private hospitals are assigned the
value ‘9’. The complete description of the domain space is mentioned
in [10] and is mapped to R in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 99}. For
the feature “maternity_financial_assistance”, women who took financial
assistance under the government scheme Janani Suraksha Yojana (JSY)
are assigned the value ‘1’ for this feature. If they avail any other
government scheme, real number ‘2’ is assigned, ‘3’ for any other
non-government scheme and ‘4’ in case no financial assistance was
availed. The domain space for this feature is mapped in R to {1, 2, 3, 4}.
Figure. 5.3(a) and (b) represent the feature “source_of_anc” and
“maternity_financial_assistance” respectively. These two features are
representative for multiple features which have a lot of missing values
or are filled with zero in the questionnaire, possibly due to errors in the
interview. For the sake of discrimination, we do not combine the missing
values and zero-entries even if they mean the same thing.
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Figure 5.3: Exempelary features (a)“source_of_anc” and (b)
“maternity_financial_assistance” with different classwise imbalance in
terms of availability of the data, Class 1 = live birth, Class 0 = stillbirth

As can be observed from Figure. 5.3(a) 9.7% data is missing in class “0”
and 77.48% data is missing for class “1” for the feature “source_of_anc”.
Similarly from Figure. 5.3(b), “maternity_financial_assistance” feature
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has around 0.187% data missing for class “0” and 75.82% data is missing
for class “1”. This percentage imbalance in missing data will be further
irritated if we consider the occurrence of zero in the data as ‘0’ is not
in the domain space of most of the features and was recorded maybe as
a missing value. Suppose we fill the missing data with a simple single
imputation approach, for example, a constant ‘c ∈ R’ or mean, for feature
“source_of_anc”, then for 77.48% of the data in class ‘1’ the feature
value will be c and the remaining 22.52% will take values somewhere
in the domain of the feature {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 99}. On the
other hand, only 9.7% of the data is missing for class ‘0’ and will be
assigned the value c. Rest of the class ‘0’ (90.263%) will take values
from the domain of the feature. Since class “1” has more missing data
than class “0”, constant-filling based imputation methods will provide
a false sense of discriminatory power to the feature. The institution
that provided antenatal care to the mother is indicated by the feature
“source_of_anc”. This feature is less frequently documented in live
birth instances (77.48% is missing) than when the baby is stillbirth
(22.52% is missing), which causes a prominent peak (in red) in the
distributions of the two classes at the value “NaN" (the missing value).
When corrected with basic imputation techniques, this mismatch in the
feature’s recording by the interviewer throughout the data collecting
process gives the feature discriminatory power. However, it does not
accurately reflect the distribution of the feature between the two classes.

Figure. 5.4 represents a compact view of all the features plotted with
respect to availability of data in each class. All the features that exhibit
classwise-imbalance in availability of feature data are shown in ∗. The
line y = x in Figure 5.4 represents the features that have equal amounts
of missing data in each class (marked in ◦). The margins along the line
y = x represent the tolerance level (e.g. = 10% tolerance) for visualising
whether the feature is useful or not in the absence of actual feature
value.
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Figure 5.4: Each data point (∗, ◦) represents a feature with x and y
coordinates being the missing percentage in class 0 and 1 respectively.
Each feature outside the tolerance margins (marked as ∗) have high
absolute percentage difference between the available class “0” and class
“1”. As depicted, features from Figure. 5.3(a and b) are also apparently
intolerable features

One way of finding out if the features are missing completely at random
is by performing Little’s test [15]. We found on performing Little’s test
that the data is not missing completely at random.

We develop an empirical approach to evaluate the features that exhibit
such behaviour and use the algorithm provided in Algorithm 2. The
algorithm first, calculates the percentage missing data in each class. If
the difference in percentage of the missing data calculated in the previous
step differs by a pre-decided tolerable limit, then we say that the feature
is a tolerable feature with respect to the imbalance in missing data,
otherwise, it is an intolerable feature. For example, as can be observed
from Figure 5.3a and b, both the features have an absolute difference of
> 60 which is greater than a pre-decided tolerance limit of 10, decided
empirically. Hence, both the features are intolerable and have false
discriminatory power for model-learning if used with imputation. We
test with different values of tolerance thresholds to test the variation of
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Algorithm 2 Finding features inside tolerable range
1: procedure find tolerable features
2: Input : X = {x1, x2, ..., xN }, x ∈ Rd, Y = {0, 1}
3: Parameter : perThresh ∈ [0, 100] ▷ tolerance (in %)
4: mis0 = 0 ▷ Initiate missing count for class 0
5: mis1 = 0 ▷ Initiate missing count for class 1
6: tolerableFeatInd = []
7: for i = 1 : d do
8: f0 = xi(Y == 0)
9: f1 = xi(Y == 1)

10: for j = 1 : length(f0) do
11: if isnan(f0(j)) then
12: mis0 = mis0 + 1
13: for j = 1 : length(f1) do
14: if isnan(f1(j)) then
15: mis1 = mis1 + 1
16: misPer0 = 100 ∗ mis0/length(f0)
17: missPer1 = 100 ∗ mis1/length(f1)
18: absDiffMiss = abs(missPer0 − missPer1)
19: if (absDiffMiss < perThresh) then
20: tolerableFeatInd = [tolerableFeatInd, i]

performance if such erroneous features are included in model-building
blindly. Figure. 5.5 represents the classification of live-stillbirth prediction
performance with different imputation strategies and different tolerance
thresholds (margin as depicted in Figure. 5.3) as described in algorithm 2.
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Figure 5.5: Classification performance with zero, mean-filling and MICE
based imputation when tolerance threshold varies from [10, 30, 50, 100]
and the area under the ROC curve represented upto two decimal places.

A number of 86, 90, 117 and 233 features were selected based on tolerance
thresholds 10, 30, 50 and 100 respectively. Figure 5.5 shows that we get
much higher performance when the tolerance threshold is set high. This is
due to the fact that at high tolerance threshold we include more features
that are biased because of the imbalance in missingness in different
classes. For example, when tolerance is set to maximum (i.e. = 100), all
the 233 features are included in training and the performance is the same
as shown in Fig. 5.2. However, when the tolerance threshold is as low as
10, we include less biased features (depicted as ◦ in Figure 5.4). Here,
the final performance achieved with tolerance level 10 is around 0.68.
We also observe that at the threshold of 10, where minimum number
of biased features are included, the state-of-the-art MICE approach
performs better than the constant-filling approaches.
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5.5 Conclusion

This paper reflects on the need for caution when imputing missing values
for classification. The assumptions such as MCAR or MAR are not
always easy to verify. Most of the state-of-the-art imputation techniques
work well when data is MCAR and a subset of complete data is present
for guiding the imputation process. We showed the effect of imputation
on the performance by studying a case in healthcare. It was evident
from our experiments that attention was needed when features were
used with missing values that are strongly associated with the class label
and including these in a predictive model can lead to a false sense of
discriminatory power. In the future, we would like to develop methods
to find the tolerance threshold and fill the missing data in an unbiased
manner.
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Chapter 6

Pain Estimation in Workplace

This chapter is accepted as:
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and B. Vanrumste, “Daily pain prediction in workplace using gaussian
processes”, HEALTHINF, 2023 (accepted).

Abstract

Work-related Musculoskeletal disorders (MSDs) account for 60% of
sickness-related absences and even permanent inability to work in the
Europe. Long term impacts of MSDs include “Pain chronification” which
is the transition of temporary pain into persistent pain. Preventive pain
management can lower the risk of chronic pain. It is therefore important
to appropriately assess pain in advance, which can assist a person in
improving their fear of returning to work. In this study, we analysed
pain data acquired over time by a smartphone application from a number
of participants. We attempt to forecast a person’s future pain levels
based on his or her prior pain data. Due to the self-reported nature of
the data, modelling daily pain is challenging due to the large number
of missing values. For pain prediction modelling of a test subject, we
employ a subset selection strategy that dynamically selects a closest
subset of individuals from the training data. The similarity between the
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test subject and the training subjects is determined via dynamic time
warping-based dissimilarity measure based on the time limited historical
data until a given point in time. The pain trends of these selected subset
subjects is more similar to that of the individual of interest. Then, we
employ a Gaussian processes regression model for modelling the pain. We
empirically test our model using a leave-one-subject-out cross validation
to attain 20% improvement over state-of-the-art results in early prediction
of pain.

6.1 Introduction

Musculoskeletal disorders (MSD) are presently a widespread type of
work-related health problem and a leading cause for absenteeism from
work across all sectors and occupations. Around 60% of all the health
related problems in Europe (EU) are work-related MSDs that account
for 60% of sickness related absences and even permanent inability to
work [2]. This creates a financial burden on individuals, businesses, and
society [3]. Prevention of MSDs from the outset of a person’s career
will allow for an extended work life and better job satisfaction [4]. MSD
prevention can also address the long-term implications of demographic
ageing, as outlined in the objectives of the Europe 2020 strategy for smart,
sustainable, and inclusive growth. Consequently, MSDs are not only an
occupational burden, but also a public health and societal challenge [3].

Long-term impacts of MSDs include “Pain chronification”, which is
the transformation of transient pain into permanent pain as a result of
recurrent physical strain sustained while doing work-related activities [5].
Other than physical pain experience, there is vast amount of evidence
on the importance of pain coping strategies, cognitive appraisals (e.g.
catastrophizing, high threat values, and fear-avoidance believes), negative
emotions and expectations [6], [7], [8]. These factors influence how
sensory information is processed in the spinal cord and the brain. There
are several models that integrate different biopsychosocial factors to
the perception of pain such as the fear-avoidance model [9], avoidance-
endurance model [10], and the common sense model [11]. These models
illustrate how various persons experience pain, which results in the
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subjectivity of pain assessments. Thus, predicting pain in a personalised
manner for early intervention is essential for preventing pain persistence.
It is crucial that both patients and medical practitioners have the
education and abilities necessary to manage pain correctly [5].

Currently, pain management is done based on the initial patient
evaluation (history, physical examination) which is followed by prompt
treatment based on the level of the pain [5]. This is especially true for
the acute stages of pain. In cases of chronic pain, evidence suggests
that therapies should be directed less by current pain levels and more
by participation in valued activities despite discomfort [12]. Therefore,
appropriately measuring pain in early stages can aid in pain management
by evaluating medication efficacy, comprehending the complicated
relationship between pain and personal/contextual factors, and preparing
patients and healthcare providers for a challenging period with flare-
ups. Preventative pain management can also reduce the likelihood of
it becoming chronic. Multiple pain management applications exists
but are only limited to maintaining logs of the level/intensity of the
pain [13]. However, for more successful pain management, it is essential
to accurately estimate the pain in advance, preferably several days ahead,
which can help a person moderate his or her expectations and anxieties
about returning to work. Additionally, pain prediction can provide
healthcare practitioners with a better understanding of the required
treatment and assist with individualised planning.

This study attempts to forecast the pain experienced by workers from
various industries several days ahead based on the daily recorded history
of pain. To this end, workers were asked to record their daily levels
of satisfaction and pain in a smartphone application on a scale from 0
(no pain) to 100 (worst possible pain). Then, we attempt to forecast
future pain levels by modelling individual pain levels recorded until a
certain day. This is technically difficult because the data is self-reported,
and app users did not always indicate their pain levels on a daily basis,
resulting in missing data. Fig. 6.1 shows how an individual’s pain data
looks like with respect to time. With the study data of over 300 days,
more than 70% of the participants lack 66% of the daily data (< 100
entries).

The lack of observations in an individual’s time series data restricts
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Figure 6.1: Two distinct users documented their pain levels over a 300-day
period using (a) as few as 22 samples and (b) as many as 228 samples.

the application of traditional time series modelling techniques such as
the autoregressive integrated moving average model (ARIMA), which
requires uniformly sampled data [14].

Authors in [15] provide an extensive survey of the application of modern
machine learning techniques for the estimation or detection of pain. The
majority of the pain experiences discussed in the literature [15] are related
to a hospital or post-operative scenario, rather than persistent workplace-
related pain. Furthermore, pain forecasting models that use machine
learning are built on clinical data (e.g. drugs administered, patient
comorbidity data) collected during pain experiences post a surgical
operation, enriching the information available for modelling [16], [17].

Deep learning (DL) is a branch of machine learning that, when given
massive volumes of data, may automatically learn representations from
raw data to achieve a specific objective, such as classification or regression
[18], [19], [20], [21]. DL has been used in multiple healthcare related
applications that can predict the health of an individual from the time
series data. For example, detecting cardiac abnormality [22] or forecasting
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glucose levels [23] in individuals. Works such as [24], [25] developed deep
learning techniques that can address the non-uniformly sampled time-
series data when a large training dataset is available. Traditional machine
learning strategies, however, outperform deep learning strategies when
training data is insufficient [26].

In this work, we follow the method proposed in [27], where a subset of the
training data is selected followed by learning a regression model based
on Gaussian processes (GP). Here, we would like to showcase the efficacy
of the subset selection approach followed by GP based regression to
model an individual’s pain measurements until a certain day. The subset
selection approach works by first selecting individuals from training data
that resemble closely the progression of pain over time to that of the
target individual. The number of individuals to be selected is chosen
dynamically based on the similarities across individuals. The dynamically
chosen subset along with the avaiable data from the target subject is then
used to train a regression model for improved prediction performance.
However, directly applying the method of [27] doesn’t give the best
results owing to the subjective nature of the pain measurements. Hence,
we add a pre-processing treatment of the data prior to subset selection
and learning the GP model. We explain the need to do so as follows,

1. Pain measurements of an individual vary a lot across time. This
might be because of the pain persistence over time or by the number
of individual days with more stress resulting in more pain. Hence,
unlike a general increasing trend in gestational weight gain [27], it
is difficult to find a pattern in the pain measurements over time.
Thus, there are anomalous instances in the pain measurements that
can result in an inaccurate general model.

2. Pain measurements are self-reported and are highly subjective in
nature. This means that individuals have certain biases to only rate
their pain (scored between [0-100]) around a fixed baseline, e.g., a
person with a baseline reported pain of 20 will seldom report a pain
of 80. Thus, scaling individual pain measurements for modelling is
a necessary step.

The objective of this work is to study if:
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• It is possible to estimate an individual’s pain levels from a small
number of non-uniformly collected historical pain measurements.

• Given the subjective nature of pain data, is it possible to use
previous pain measurements of other individuals in a training
dataset to enhance pain prediction?

The main contributions of this paper are:

1. We develop models of daily pain data to forecast and manage pain
level trends over time.

2. We propose a two-step pre-processing strategy to enhance pain
prediction modelling. This is accomplished by smoothing the
pain time series in training data and self-normalising the target
individual’s pain data with the few measurements provided.

3. We use a subset-selection strategy to generate the most informative
subset of training data for a given target individual. Individuals in
this closest subset exhibit similar pain trends to the individual of
interest.

4. We devise modelling based on the selected subset using Gaussian
processes for multi-step forecasting of pain up to n-days ahead in
time.

The dataset is described in section 6.2, followed by the proposed
methodology in section 6.3. In section 6.4, we describe the experiments
conducted to generate the results. Results and their implications are
discussed in greater detail in section 6.5, and concluding remarks are
presented in section 6.6. Section 6.7 concludes the paper by discussing
potential future directions and constraints.

6.2 Data

In this study, 340 participants were recruited from various work sectors.
At the start of the study, participants were asked about different
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work-related factors, their pain complaints, pain-related perceptions,
coping strategies, and other contextual factors (indeed, such as physical
activity and time spent sitting). From January 2021 to May 2022, they
were required to maintain a daily journal in which they recorded their
overall pain levels, mood (not with yes/no questions), stress levels, and
satisfaction along with baseline questions such as age, gender, height,
weight, and industry of employment. The pain levels were recorded
on a scale of 0 (best) to 100 (worst) using an mHealth smartphone
application.1. Questions related to mood (sad, angry, happy, fatigued,
cheerful) were also part of the daily journal.

190 participants were excluded because they did not record daily pain
values at all. In addition, 51 more individuals were removed based on
the criterion of not having more than 10 daily pain values recorded, with
more than 2 values separated by 1 week. The remaining 99 participants’
data were used to develop pain prediction models. Fig. 6.2 presents the
gender-wise distribution of participants in different industries.

This study was conducted within the context of the Personal Health
Empowerment project, which focused on investigating and developing new
monitoring and treatment options for employees with MSDs. The PHE
project and corresponding studies were approved by the Social Ethics
Commission of KU Leuven (G-2019081713) and carried out according to
the Belgian and international privacy and ethical legislation. The Belgian
occupational service for protection and prevention at work (IDEWE) was
responsible for the recruitment. They distributed the information about
the project amongst their clients and employees. Interested employees
had to provide informed consent to participate.

6.3 Methodology

Let’s assume pain levels measured across time are available for N subjects
as ‘training data’ D = {(x1, y1), ...(xN , yN )}, where xi = [ti

1 ti
2 ti

3 · · · ti
m]

represents the input variable ‘time’ up to a certain day ti
m and yi =

[yi
1 yi

2 yi
3 · · · yi

mi ] represents the output variable ‘pain’ for the ith subject,
where yi

k = y(ti
k).

1https://www.idewe.be/health-empower
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Figure 6.2: 21 males and 77 females participated in the study with
majority (62 out of 99) working in the healthcare industry providing
care.

In addition, data from a person of interest, henceforth referred to
as the target individual, are provided till a certain day t+

d as S =
{(t+

1 , y+
1 ), (t+

2 , y+
2 ), · · · , (t+

d , y+
d )}.

We try to learn a mapping f from the training and target data, such
that,

y+ = f(t+) + ϵ. (6.1)

where ϵ ∼ N (0, σ2) is independent and identically distributed (i.i.d)
gaussian.
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Using the learnt model f , the target individual’s pain measurements are
then predicted at time t+

mi as y(t+
mi) = f(t+

mi).

6.3.1 Smoothing

Let’s begin by discussing the smoothing operation. Given a time series
in training data yi = [yi

1 yi
2 yi

3 · · · yi
mi ], a moving average (MA) of order

w can be used to obtain a smoothed time series ŷi = [ŷi
1 ŷi

2 ŷi
3 · · · ŷi

mi ].
This w-MA can be written as

ŷi
t = 1

w

w−1
2∑

j=− w−1
2

yi
t+j , (6.2)

where w is an odd integer. Moreover, ⌊w
2 ⌋ zeros are padded to the

beginning and end of the given time series yi to obtain same m number
of observations in the derived w-MA time series in eq. 6.2. If the w-length
time window contains missing observations for a given non-uniformly
sampled time series, just the available points are used to calculate the
moving average.

6.3.2 Self-Normalisation

We normalise a given time-series with its available individual information.
A time-series yi = [yi

1 yi
2 yi

3 · · · yi
mi ] is normalised using mean µyi and

standard deviation σyi calculated as follows:

µyi = 1
mi

mi∑
j=1

yi
j

σyi =

√√√√√ 1
mi

mi∑
j=1

(yi
j − µyi)2.

(6.3)

The jth observation (yi
j) of normalised time-series yi = [yi

1 yi
2 yi

3 · · · yi
mi ]

is obtained from the time-series yi as

yi
j =

yi
j − µyi

σyi

(6.4)
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The normalised data can be rescaled to original scale as yi
j = yi

j ×σyi +µyi .

6.3.3 Regression

We use Gaussian Processes (GP) as they are the state-of-the-art time
series modelling methods when dealing with missing data. GP is defined
as a set of random variables, such that any finite number of them have
a joint Gaussian distribution [28]. ‘f ’ from eq. (6.1) is defined as a
GP f(t) ∼ GP(m(t), k(t, t′)), with mean function m(t) and covariance
function k(t, t′). We assume the data is noisy with i.i.d gaussian noise,
having noise covariance σ2

n, and choose a squared exponential kernel as the
gaussian covariance function to model the closeness of two observations,

k(t, t′) = σ2
f exp

[
−(t − t′)2

2l2

]
. (6.5)

As is evident from eqn. 6.5, the similarity between two observations
decreases exponentially as t begins to differ from t′, i.e the similarity is
highest when t = t′. Thus, when two observations are far apart in time,
the kernel considers them more dissimilar than when they are closer
together in time.

Given ý = [y1
1, · · · , y1

m, · · · , y1
N , · · · , yN

N ]T and K as a matrix of entries
Kp,q = k(tp, tq), ∀tp, tq ∈ D. We optimise the hyper-parameters
{σf , l, σn} by maximising the marginal likelihood p(ý|D; {σf , l, σn}) [28].
The prediction at time t+

mi is given as a gaussian distribution whose mean,
µ and variance, σ2 are given by

µ(t+
mi) = k+

T (K + σ2
nI)−1ý

σ(t+
m) = k(t+

m, t+
m) − k+

T (K + σ2
nI)−1k+,

(6.6)

where k+ = k(t+
m), k(t+

m) = [k(t+
m, t1

1), · · · , k(t+
m, tN

m)]T .

Gaussian process prediction is hampered by the fact that the computing
complexity of inference and likelihood evaluation is O(n3), where n is
the input size, making it impractical for bigger data sets. Next, we will
explore subset selection, which can minimise computing complexity while
enhancing prediction accuracy.
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Subset selection
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Target data

Moving averaged

Self-Normalisation GP –>Rescaling

training data

Figure 6.3: An illustration of our methodology. Moving averaging is
performed on the training data to smoothen it. Target data is available
until a day t+

d (dotted green line). Subset selection is performed on
moving-averaged training data that shares similar temporal pattern to
the target observations. Each time series (target or training) is self-
normalised with its available observations before being fed to Gaussian
Processes. A prediction on target data is made (red dotted line).

6.3.4 Subset selection

We follow the subset selection approach from [27] to find a smaller but
informative subset (D̂) of the training data for a given target individual’s
data. Particularly, a subset D̂ with M(<< N) individuals’ data is found
from the given training data D,

D̂ = {(x1, y1), · · · , (xM , yM )}

=
{

(t1
1, y1

1), .., (t1
m1 , y1

m1), .., (tM
1 , yM

1 ), .., (tM
mM , yM

mM )
}

,
(6.7)

such that the individuals selected in the subset are similar to target
individual’s pain trend.

Using a subset D̂ with M(<< N) individuals’ data gives a computational
advantage over considering N subjects, as the time complexity of GPs
training and inference is proportional to the cubic power of the number
of observations. Furthermore, if the most informative subset is selected,
the prediction capability is improved. This is due to the fact that, during
training, observations from M patients with a similar trend in pain are
close to each other and have less variability at any given time t. Due to
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inter-subject variances, this variability (at time t) is high when all N
individuals are considered for training Gaussian processes.

To find the closeness between two time series, we use the Dynamic Time
warping (DTW) as the distance metric. The choice of DTW metric as a
distance measure is due to its capability to index time series with unequal
lengths [29].

The subset selection is a two-step process in which (i) distances between
the target time series and time series in training data is calculated,
and then (ii) the nearest subset is dynamically selected based on the
calculated distances.

Distances between the target data S = {(t+
1 , y+

1 ), (t+
2 , y+

2 )..., (t+
d , y+

d )}
and individual time series in training data D are calculated using the
dynamic time warping (DTW) distance metric. Let’s denote the DTW
distance between target time series (denoted by +) and ith time series
in training data by λi+. Remark that that target data is only available
until t+

d but the time-series in training data are present until ti
m(>> t+

d ).
Therefore, the data for time series in training data are considered only
until day t+

d to calculate the distance λi+. If the data at ti
d is not

available, the nearest time point < t+
d is chosen. The distance vector

Λ+ = [λ1+ λ2+ · · · λN+] is calculated between target time series and all
the time series in training data.

Subset selection is dynamically done based on the distance vector Λ+.
First, Λ+ is sorted in ascending order. This ensures that the subjects
are arranged in order of their closeness to the target subject, Λ̂+ =
[λ̂1+ λ̂2+ · · · λ̂N+], such that λ̂k+ ≤ λ̂(k+1)+∀k = 1, 2, · · · , N . Second,
turning points at index ‘k’ are calculated, such that,(

λ̂(k−1)+ − λ̂(k−2)+
)

≤
(
λ̂k+ − λ̂(k−1)+

)
≥
(
λ̂(k+1)+ − λ̂k+

)
,

Multiple such turning points can exist at different indexes in Λ̂+ vector.
Third, the value at the distance value at the index k where the first
turning point occurs (λk) is chosen as the distance threshold to calculate
the closest subset. ith time series in D is selected in the subset if λi+ < λk.
Choosing the first turning point enables the dynamic selection of the
smallest and most informative subset. Fig. 6.3 showcases the processing
pipeline where the moving average based smoothing is done on the
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training data before subset selection. Since pain levels in each individual
series are normalized using self-data, all training time series are scaled to
the same level prior to being fed into the Gaussian process model. We
will observe that this enhances the reliability of the predictions.

6.4 Experiments

We perform leave-one-subject-out (LOSO) cross-validation to evaluate
the performance of our proposed approach. In each iteration, a unique
individual’s data is treated as target data and rest of the subjects’ data
are the training data. We first smoothen the training data and target data
using a moving averaging of order five (w = 5). Then, in each iteration,
a closest subset is evaluated dynamically with respect to the target data
followed by self-normalising each time series (target data and selected
subset) using eq. 6.3 and 6.4. Note that our subset selection approach
dynamically selects a threshold in each iteration (i.e for each target data).
A GP based regression is performed to forecast the future values for the
target subject. The performance of regression was computed using Mean
Absolute Error (MAE) averaged over N subjects. MAE for prediction at
a time th is given as MAE(th) = 1

N

∑N
i=1 |ypred(ti

h) − yorig(ti
h)|.

6.4.1 State-of-the-art

• Baseline: A baseline was created to judge the performance of the
algorithms. This baseline was created by using the last available
value of the target subject as future prediction of the daily pain
value.

• ARIMA: Auto-Regressive Integrated Moving Average (ARIMA)
has remained a state-of-the-art time series forecasting approach
with uniformly spaced samples of time series [30]. Through linear
interpolation, uniformity was introduced into the sparsely sampled
pain time series of the subject of interest. Then, an ARIMA(p, d, q)
model was fit on the uniformly sampled target time series. In order
to find the optimal autoregressive order (p), degree of differencing
(d), and moving average order (q), a grid-search was performed
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to find the optimal hyperparameters following [31]. The learned
model is then used to make a multi-step-ahead prediction of pain
levels using the optimized hyperparameters.

• LSTM: Long short-Term Memory networks (LSTM) are deep
learning techniques that can produce exceptional prediction
performance by implementing gates (forget, memory, and output)
that regulate the flow of information during training [32]. We
follow a similar approach as with ARIMA approach where the
avaiable data from a target subject is uniformly sampled by linear
interpolation. We evaluate an LSTM network with 10 hidden units
and the training is done using ADAM’s optimisation to minimise
mean absolute error [33].

• Maximum-a-Posteriori (MAP) estimation: A lth order
polynomial can be fit using available target data to estimate
the polynomial coefficients θi, ∀i ∈ {1, 2, · · · , l} [27]. Moreover,
subjects from training data can be used to create priors over the
polynomial coefficients to get a better estimate known as maximum-
a-posterior (MAP) estimate [27]. We test with polynomial of
different orders (order 1 to 5) to find that the first order polynomial
produces the least mean absolute error in LOSO cross-validation.

6.5 Results & Discussion

In this research, we investigate whether it is possible to estimate a person’s
pain levels using a small number of non-uniformly collected historical pain
measurements. As pain data is subjective and varies amongst individuals,
we also intended to determine if we might improve pain prediction by
incorporating the prior pain measurements of other individuals into the
training dataset. For this reason, we study the performance of various
algorithms presented in this paper when predicting pain levels of an
individual in future. In Fig. 6.4, we present the Mean Absoute Error
(MAE) when predicting the pain 7 days ahead on the y-axis. On the
x-axis in Fig.6.4, the availability of target data until a certain day is
presented. Subset selection (SS) along with moving averaging (MA)
and/or self-Normalisation (SN) were performed and Gaussian processes
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Figure 6.4: Mean absolute error (MAE) is measured with respect to
availability of target data. Different combinations of subset selection
(SS) followed by Gaussian processes (GP) were performed with proposed
pre-processing components such as moving averaging (MA) and/or self-
Normalisation (SN).

was used as a regression model. It is evident from Fig. 6.4 that the
performance of subset selection (SS) followed by Gaussian processes
(GP) is demonstrably superior to that of Gaussian processes alone. This
is a result of the inclusion of an informative subset of participants in
training who exhibit a comparable trend in pain to the target data.
Additionally, subset selection on the moving averaged (MA) time series
of the training data, followed by self-normalisation and subsequently the
Gaussian process, performed the best, particularly when predicting for
less available target data.

We hypothesised that pain data is subjective and that self-reported
pain measurements are biased because individuals can only compare
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their current pain feelings to their past pain experiences. Therefore,
self-normalisation with respect to the historical pain measurements of
an individual provides this significant performance improvement. In
addition, as the availability of personal pain data increases over time, so
does the accuracy of prediction. We believe that as more training data
becomes available from an individual, the selected subset will consist
of subjects whose patterns resemble that of the target subject more
closely than when there are only a few data points. Thus, the variance in
the training data available for regression is less and thus the prediction
improves. This is evident by the decreasing trend in MAE when more
training data becomes available. We also tested with self-normalization
prior to subset selection and found no significant performance differences.
This may be due to the fact that the DTW distance comparison for
subset selection compares the relative difference in distances between
two time series and picks more or less similar individuals with or without
self-normalisation.

Next, we present the comparison of the proposed approach (GP+SS:MA+SN)
with state-of-the-art approaches presented in section 6.4.1 when
predicting pain values [0 − 100]. Fig. 6.5 shows that the proposed
approach’s performance is best when it comes to early prediction using
only few available data points (until day 100).

The performance becomes comparable (if not better) with the state-of-
the-art approaches (MAP) as more data in time becomes available for a
given individual. On the basis of a paired t-test with equal variances, the
performance differences between the proposed approach and other SOTA
methods are statistically significant at 5% level of significance (until day
50). We discovered no statistically significant difference between the
proposed method and MAP-based polynomial estimate when training
with data for more than 100 days. Given the simplicity of the dataset,
it seems intuitive that when more pain data becomes available, simple
polynomial-based estimating algorithms will perform better.

We also observed that the state-of-the-art approaches (except LSTM)
perform worse than the baseline when the availability of individual
training data is limited (at least until day 50). Remark that the baseline
is simply the previous observed value of pain carried forward for the
prediction of future values. This is due to the difficulty of modelling
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Figure 6.5: Comparison of the proposed approach with state-of-the-art
approaches. When little training data is available (until day 100), the
proposed method beats SOTA, and when more training data becomes
available, it performs comparably or even better.

sparsely sampled time series with few observations. Our proposed
method, on the other hand, overcomes this difficulty by incorporating
the subjective nature of pain experience and modelling information rich
subset selection along with personal data.

6.6 Conclusion

We proposed a novel Gaussian processes estimator and information-
rich preprocessing to model an individual’s workplace-related pain
experiences. When time series data is irregularly sampled, the proposed
approach outperforms state-of-the-art time-series forecasting algorithms
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for early prediction. This can aid in the development of interventions
for managing pain in the workplace, thereby reducing the possibility of
‘pain chronification’.

6.7 Limitations & Future work

A limitation of our approach is the scalability of Gaussian processes as
we believe that considering a large number of subjects (N > 104) will
result in a larger subset (high value of M) of training data, increasing
the computational complexity of our method. Sparse GPs are model
approximation techniques that, when applied to a large number of
subjects, can further reduce complexity [28].

In the future, we hope to broaden the modality of the input data in
order to obtain more objective feedback on pain experiences. Finding an
association of pain with physical activity data measured by a wearable,
for example, can help as another meaningful feature to improve prediction
performance. Similar to the maximum-a-posteriori approach, priors on
the normalisation constants can be generated from training data and
used to adjust the self-normalisation mean and standard deviation.
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Chapter 7

Conclusion

The primary aim of this dissertation was to determine if machine learning
models can attain reliable performance when given with a range of data-
related challenges, notably in the context of time series data in healthcare.
This aim was further sub-categorised into different research questions
and their application specific sub-objectives, as detailed in section 1.3.
Fig. 1.4 outlines the specific applications that address one or more of
these research questions. These research questions are:

RQ1: Can we predict a patient’s health state with limited patient-specific
data?

RQ2: Can we detect infant mortality using structured tabular data with
a very high percentage of missing data?

RQ3: Can we create personalized machine learning models that can adapt
over time to generate accurate predictions using few data points?

RQ4: Can we build machine learning models that can train in a secure
manner while dealing with sensitive raw data without losing
prediction performance?

In this concluding chapter, we will revisit the various research questions
and discuss the conclusions and lessons learned throughout the research
study. The next section is devoted to limitations, which pave the way
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for further research. The final section addresses the valorisation of the
study’s findings.

7.1 Revisiting the research questions

RQ1 : Can we predict a patient’s health state with limited
patient-specific data?

By constructing automated models that can learn patterns from a
subject’s historical data and anticipate future behavior, it is currently
possible to monitor a person whether they are in a hospital or at home.
Healthcare applications, such as those discussed in this dissertation suffer
from challenges such as limited availability of data. These limitations
were described in great detail in the chapter 1.1.1.

We collected and analysed weight gain data from pregnant women
(Chapters 2), multi-modal data related to cognitive decline in alzheimer’s
patients (Chapter 3) and pain levels in an individual in a workplace
(Chapter 6). Chapter 2, 3 and 6 focus on prediction of time-series when
in a small data corpus, the individual data is only available until a certain
day for model creation. In these chapters, the sub-objectives of RQ1
were addressed by conducting experiments in which models were learned
with varying amounts of training data availability until a certain time,
for example, in the pregnancy use case, end-of-pregnancy-weight gain
predictions were made when personal training data was only available
until day 50, 60, · · · , 260. Similar tests were conducted on other use-
cases. We proposed learning of informative priors from the training data
followed by maximum-a-posteriori estimation to get high performance
in forecasting. This prompted us to consider the possibility that the
morphology of the time series might be indicative of similar behaviour
across two or more subjects. Typically, clustering algorithms can be
used to create multiple groups of individuals (subsets), with each group
containing data from subjects with a similar trajectory in their health
state over time, such as similar weight gain trends or cognitive decline.
Therefore, whenever data from a new subject becomes available, it can
be mapped to a subset including subjects with which the new subject
shares similarities. However, it is difficult to create these groups when
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the lengths of two time series are unequal. Additionally, the number of
groups must be determined beforehand. This thesis introduced a novel
method (Chapter 3, 6) that can find a subset of individuals without
requiring a parameter for number of subsets and can also handle time
series with different lengths. The proposed subset selection method not
only aided in dynamically selecting informative training data points,
but it also resulted in better computational complexity of the Gaussian
Processes-based regression technique. A basic schematic of the proposed
approach is shown in Fig. 3.1. This helped us in building models that
can tackle limited time-series data from an individual while still being
able to produce reliable performance.

We were able to accurately model time series data when only a limited
amount of personal data was available by exploiting an informative subset
of the training data to create accurate predictions about the future.
Predicting gestational weight gain, estimating Alzheimer’s patient’s
cognitive decline, and estimating workplace pain were three applications
with similar challenges on which the proposed method was evaluated.
These applications are discussed in Chapters 2, 3, and 6. We tested the
performance of the proposed approach by varying the data availability
in time for each use case which is discussed in the relevant chapters.
The results demonstrate that, when enhanced by an informative subset,
personal data with only a few measurements across time can be modeled
to make accurate predictions, even when the prediction horizon is large.

RQ2 : Can we detect infant mortality using structured tabular
data with a very high percentage of missing data?

Chapter 5 examined the case of tabular healthcare data with a lot of
missing obsevations. We learned the importance of understanding the
underlying mechanisms in which data is missing, as opposed to naively
imputing it prior to feeding it to a machine learning model. A case
study was provided in which blind imputation’s flaws led to findings that
created a misleading impression of a good model. Consequently, it is
essential to identify variables that may be biased or informative in the
manner missing data is observed (or not).

We developed a method to eliminate biased features caused by missing
data.
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RQ3: Can we create personalized machine learning models that
can adapt over time to generate accurate predictions using few
data points?

In Chapters 2, 3 and 4, we discovered that models that incorporated
a global model and were fine-tuned with personal data outperformed
those that were simply learned from personal data or only a general
global model. There was an improvement of around 25% and 31% in
mean absolute error over the best of state-of-the-art for the gestational
weight gain prediction datasets in the Netherlands and China respectively
as stated in chapter 2.6. Similarly, cognitive decline over a period of
eight years at 6-month intervals was predicted by a training model using
personal data spanning thirty months with an improvement of over 20%
over state-of-the-art methods as described in section 3.7.2. Our models,
MAP or subset selection with Gaussian processes outperformed the state-
of-the art in respective use-cases with the ability to personalise with less
training data from an individual. Due to the selection of informative
subsets, intra-subject variability was reduced, resulting in improved
prediction performance.

Moreover, an interesting finding was made while investigating the
Alzheimer’s use case. The individuals enrolled for this investigation
were at various stages of cognitive decline. This necessitated matching
the time series in the training data with respect to their decline rather
than their recruitment time as the initial time point. We proposed a
collective time-series realignment approach that further improved time
series forecasting performance.

Early prediction is also an important aspect that is closely connected to
the challenge of personalising a model in the presence of limited individual
data. Personalisation performance in our techniques improves as more
data becomes available, but essential interventions can be effective
if the model can detect a condition as early as feasible, resulting in
fewer personal data. Therefore, the performance of several algorithms
(proposed or existing) was evaluated based on the availability of target
subject’s data till a specific time.

This thesis also offered a learning scenario in which the federation of
edge devices leads to the formation of a global model via the aggregation
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of personalised local models rather than the transmission of raw data
to a centralised server to create a global model., which is discussed in
detail in Chapter 4.

Model personalisation was achieved by beginning with a general model
and then fine-tuning it using target individual’s data. This allowed us
to develop high-performance time-series forecasting techniques that could
learn an individual’s characteristics from a small number of personal
observations. We also demonstrated that a model’s performance improves
as more personal data becomes available.

RQ4: Can we build machine learning models that can train in
a secure manner while dealing with sensitive raw data without
losing prediction performance?

With the expansion of digital rights protection activities, the need for
AI applications to guarantee privacy while processing personal data
has become critical. For instance, the cross-border transmission of
sensitive data is now subject to multiple reviews to determine if particular
privacy safeguards are implemented to the data, but transmission can
also be sometimes prohibited due to the level of sensitivity of the data.
Additionally, several data minimisation and other data anonymisation
principles are employed to the “data” in order to maintain anonymity of
the users. We presented an additional “model-based” privacy preserving
technique in Chapter 4 that is in line with the Google’s federated learning.
By sharing individual models trained on local data that are aggregated at
the server, we demonstrate that a federation of edge-devices may perform
substantially more effective in personalised time-series forecasting. This
differs from the conventional centralised approach, in which raw data is
transmitted to a central server where the model is trained.

Additionally, we experimented with the cross-border transfer of ML
models from The Netherlands to China rather than raw data, as the
transfer of raw data across borders was prohibited. The results indicate
that the model trained on Dutch data predicted weight gain far more
accurately than the model trained and predicted on solely Chinese
data. This was due to the greater diversity present in the dataset from
Netherlands.

With the proposed method, we were able to train machine learning models
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at the edge devices, where sensitive data pertaining to pregnant women
was not shared, and a global model was generated by the aggregation
of smaller model updates that individuals learned on their private data.
Due to the limitations of cross-border data transfer, we also employed a
transfer learning technique in which trained models rather than raw data
were transferred from one geographical location to another.

7.2 Limitations and Future Work

We would like to address some of the limitations of our proposed approach
and describe how we envision future study in this field and various use-
cases. We examined a number of time series forecasting algorithms for
datasets with limited and/or missing data. We conducted an experiment
in chapter 2 where the underlying principle is to first construct a general
model that is trained using the provided training data. Individual
data can then be used to fine-tune the general model for enhanced
performance in prediction. This was the maximum-a-posteriori approach
for polynomial modelling. We developed subset selection (SS) followed
by gaussian processes regression (GP) based on a similar principle. SS
identifies a subset of individuals whose data is most informative in relation
to the target data. The proposed SS can work with unequal length time
series. The SS approach is non-parametric that determines the size of
the subset automatically based on the relative similarities for a given
target subject. Powerful GP approaches that can model input data with
sparse observations are used to model this selected subset of data and
the target data. The addition of an informative subset improves the
computational cost of the GPs while maintaining a particular level of
prediction performance.

Finding similarities between a target subject and individuals from training
during subset selection proved challenging when there were limited
observations of the target individual. This is due to the fact that the
dissimilarity calculation employing dynamic time warping had only a few
data points sporadically positioned in time to compare two individuals.
This could result in a subset where subjects are similar to the target
individual until the small window of available target data, but the long-
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term behavior of a particular individual might differ significantly from
the selected subset. If the time series is sampled at a high sampling
rate and samples are separated consistently, this inaccuracy in temporal
similarity can be reduced. However, it was difficult to obtain such a time
series in the use-cases that we discuss in this dissertation.

Given huge amounts of data, deep learning models can be a good choice
for learning these tasks. Most of the time-series literature that deals
with time series classification using deep learning is usually supplied
with large databases of time series with very high sampling rate. The
M -competition is a forecasting competiton being organised for the past
40 years that aims at to find strategies to increase forecasting accuracy
by empirically analyzing various forecasting systems and finding the
most accurate one [1]. Multiple recent works [2]–[5] perform multi-step
forecasting using deep neural forecasting models that achieve promising
results on the M5-challenge [1]. Unlike the data considered in the thesis,
this gold standard dataset for time series forecasting algorithms also
consisted of large datasets with uniformly sampled time series data.
Learning on a small dataset with non-uniformly sampled time-series data
is a potential future work that needs to be addressed via deep learning.

Next, we’d like to examine the various use-case-specific limitations listed
below.

7.2.1 Gestational Weight Gain prediction

The current study population is a sample of women from Eindhoven
and Shanghai in the Netherlands and China, respectively. We would
still like to explore if the model can be generalised to different
geographies/ethinicities. For example, physiological, ethnic and cultural
differences in populations may influence the progression of pregnancy,
its accompanying weight gain and the risk severity [6]–[8]. Also, at
the time of recruitment, it is difficult to predict if the individual will
end up being underweight or overweight at the end of their pregnancy.
Inadvertently, only a few women recruited for the study ended up being
underweight at the end of the pregnancy; hence, the dataset is not
completely representative of the population. This issue can be overcome
by gathering more data and recruiting new pregnant women to the
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study. To reliably forecast the weight gain at the end of pregnancy, the
prediction of weight gain still requires data up to the middle of pregnancy.
This is evident from the results shown in Fig. 2.7. This can be improved
by taking more measurements in the early stages of pregnancy, which
could not be done in our study. This is because the enrolled subjects were
at least 10 weeks pregnant and had to have at least one measurement
recorded prior to day 120. However, it is a first step toward pregnancy
weight gain prediction.

In addition, the computational complexity of regression based on
Gaussian processes is significant (O(n3)), which can cause scaling issues
when training for more examples as the dynamic subset selection might
select a large number of subjects. Identifying effective methods for
lowering the computational complexity of Gaussian processes could be
another future objective. For example, incorporating sparse GPs as
model approximation techniques can further reduce complexity [9].

A different strategy that takes into account the similarities between
various curves is to first find K similar curves compared to the test
subjects’ data. Then, create a histogram of weights at the end of
pregnancy from these K similar subjects and identify the weight with
the highest probability within it. In comparison to gaussian processes
that account for the previous history in time of several individuals, this
approach would likely be computationally less expensive, but this remains
to be further researched.

Addition of different features such as pre-pregnancy weight and pre-
pregnancy BMI for pre-processing in chapter 2 enhanced the prediction
performance. Because we incorporate pre-pregnancy information into
the weight gain time-series data, we did not use these characteristics to
condition the priors in the chapter 2. However, the use of these features
in combination with weight gain data to choose a more refined subset
using either clustering methodologies or the proposed subset selection
strategy in chapter 3 needs to be investigated in the future. Various
modalities can be added to the dataset such as the amount of physical
activity using a wearable or body glucose monitoring. Adding these
modalities in addition to the typical self-reported or questionnaire-based
modalities might provide new insights into the gestational health of the
women.
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We discussed the association of inadequate weight gain and its effect on
pregnancy health in section 2.1. For example, authors in [10] show the
effect of gestational weight gain on stress. The consequences of early
weight gain prediction on health outcome may be a future study subject.

In Chapter 4, we proposed a privacy-preserving approach for predicting
gestational weight gain, in the sense, that at no point the individual raw
data is shared at the central server. Individual information is modeled into
the parameters of the local model and might conceal the user’s sensitive
information. However, it does not offer complete privacy protection. For
example, authors in [11] have shown that model inversion or membership
inference can allow a malicious person to derive individual information
from the ML models, if cross-referenced with public databases.

Homomorphic encryption is the process of encoding raw data into a form
that enables users to perform computations on the encoded data. By
adding homomorphic encryption [12] or differential privacy (withholding
individual information and sharing collective patterns) to the learnt
individual updates, more privacy can be added to the system [13]. In
addition, we would like to point out that we created a modest proof-
of-concept to demonstrate the performance with the addition of users,
but we did not examine the complete design considerations from a
functional standpoint to be able to deploy in a real-world scenario. For
instance, a complete functional system design would take into account
the elements like authorization checks, client dependability, system
monitoring, client dropouts at various times, formal privacy guarantees,
costs to communicate parameters between the server and local devices,
as well as the energy consumption necessary for local devices [14].

7.2.2 Alzheimer’s Disease Prediction

The subjects recruited in the study were at different stages of cognitive
decline when they were recruited. We tackle this by performing collective
realignment as described in section 3.5.2. It finds an optimal time-shift
for the time series in training data by comparing (aligning) each one of
them with the target time series. This process of finding an optimal lag is
computationally expensive (O(n2)). This is one limitation of the proposed
approach that can be addressed in the future. The data in this study
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consisted of features extracted from different modalities as described in
Fig. 1.2. These features were part of the publicly accessible database.
Using modern deep learning techniques such as convolutional neural
networks directly on the raw imaging data (MRI, PET) as opposed to
the derived features could result in a performance increase. Such imaging
techniques and their individual effects in predicting cognitive impairment
in Alzheimer’s patients are investigated in [15]–[17]. An ensemble model
that incorporates multiple models learnt from the raw data from distinct
modalities is yet to be investigated.

7.2.3 Infant Mortality Prediction

Healthcare survey data, such as that presented in the case study in
chapter 5 suffers from missing values. We investigated exhaustively the
identification of such features that contribute in a deceptive manner,
primarily because the missing data is dependent on the class labels.
This can also be determined by comprehending the MAR, NMAR, and
MCAR assumptions underlying the missing data. Even though we
investigate the identification of features that are biased due to these
underlying assumptions, we have not proposed imputation techniques
that can fill in these data gaps for improved machine learning model
learning. Recently, authors in [18] have shown that whatever the missing
assumption, jointly optimising the imputer and the classifier can provide
the best performances.

7.2.4 Pain Management at Workplace

In chapter 6, we analyzed participants from several workplaces, with the
majority of workers in the healthcare sector (nurses, caregivers, etc.).
The acquired data’s subjectivity is a significant constraint of pain data
analysis. Pain is a subjective experience that varies from person to
person based on cultural influences, situational perception, and other
psychological factors [19]. There are other approaches available, including
verbal rating scales and numerical rating scales, such as the one utilised
in this study. This complexity of pain data may not always demonstrate
great concordance, but it is the gold standard for delivering the most
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reliable assessment of pain experience to date [20], [21]. Addition of
more objective sources such as affective state detection from face scan,
wearable based bio-physical signals such as Electrocardiogram (ECG), or
galvanic skin response (GSR) could serve as potential future work [22].

Furthermore, at the time of data analysis, the acquisition of physical
activity data utilizing FitBit data was still in progress. Using Fitbit-
based physical activity data to determine the link between increased
physical activity and pain sensation, or vice versa, could be a future
research possibility.

7.3 ML in Healthcare : a Multidisciplinary view

The implementation of ML, particularly in healthcare, is constrained by
a number of legal, economic, ethical, and societal challenges in addition
to the technical difficulties discussed in this thesis. In order to address
these multidisciplinary difficulties, we would like to briefly discuss them
and propose a call for collaborative approaches.

The machine learning approach proposed in this thesis that are enabled
by IoT devices such as smartphone and weighing scale based pregnancy
monitoring pose a threat to users’ security and privacy, especially when
the data of users is shared across multiple applications. This is partially
addressed in chapter 4 where raw private data of a user is not shared at
a central server. However, the proposed approach is still a long way from
being applied in a real-world situation. Similar to this, other use-cases
where the data is accessible to doctors and healthcare professionals, such
as the Alzheimer’s cognitive decline measurement, should be maintained
securely and processed in accordance with ethical and legal requirements
at every stage of data processing. For instance, the General Data
Protection Regulation (GDPR) in Europe upholds the right to the
processing of personal data. This implies that the relevant authorizations
for use must be obtained for the data processing, storage, and training
of ML algorithms [23].

Fairness must be a priority in machine learning development if users are
to use it over the long run and if different stakeholders are to trust it. This
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is true for datasets used to train ML algorithms, where it is important to
guarantee model training and validation to employ prediction algorithms
ethically [24]. For instance, if the datasets used to train ML systems do
not fully reflect the population, they could widen the gap between health
disparities. In chapter 5, we address how bias affects the predictive
power of machine learning models, but the proposed use-case is a case
study on a publically available dataset, hence the findings in this PhD
are more reactive than preventive since most biases emerge during the
data collection process. These biases must be eliminated during the data
collection process by design.

In chapter 2, we looked at a dataset of pregnant women from developed
countries where the level of education and socioeconomic characteristics
were not incorporated in the modelling process. This was as a result of
the study’s restriction to just the women registered with the participating
midwife clinics. The importance of education in predicting food intake
and BMI in pregnant women should not be underestimated, though. The
addition of employment and household income to education improves
the description of socioeconomic inequalities in food and health-related
parameters [25]. Additionally, there was a high correlation between
pre-pregnancy obesity and socioeconomic status, as well as negative
behavioural patterns that can impair the efficacy of the required
therapies [26]. As a result, in order to scale the solution, it will be crucial
to thoroughly research the socioeconomic aspects and the influence of
the proposed models in datasets from emerging nations in the future.

Scientific societies and regulatory agencies must work together to
create best practises in order to prevent such problems. A number
of institutional review bodies, as well as an ethics committee, must
examine whether these requirements are being met [24].

A threat and risk assessment should be performed to ensure that the
complete ML solutions adhere to numerous ethical, security, and privacy
norms. Developers and legal professionals should work together to create
these solutions.



VALORISATION 163

7.4 Valorisation

This dissertation was developed as part of HEART project1. The project
had multiple PhD students working towards interdisciplinary research to
create innovative solutions for applications in healthcare.

In order to solve the technical, legal, and economical issues created by
the digital transformation of the healthcare industry, an action research
approach was developed for the construction and operation of a prototype
of a health-related activity detection platform based on IoT, termed
HEART [23].

The platform is the result of a collaboration founded by a European
project – Horizon 2020 involving partner from healthcare industry, Data
science department & personal health solutions at Philips Research,
Eindhoven and two European universities: faculty of law at the University
of Macerata (UniMC) in Italy, with expertise in privacy and business
aspects of data analytics and market trends; and eMedia lab at the
department of electrical engineering and department of computer sciences
at KU Leuven (KUL), in Belgium, with expertise in developing activity
recognition algorithms for Internet of Things (IoT). The platform
stimulated research at multiple levels, which includes the acquisition of
raw data and the implementation of several security and privacy measures
in accordance with legal policies and application-specific requirements,
followed by data analytics. The data analytics component is at the core
of the HEART platform, around which this dissertation was developed.
It entails extracting relevant information from data using cutting-edge
and novel data analytics and machine learning techniques. These proof-
of-concepts have the potential to become applications for end-users, such
as healthcare professionals or individuals, who will be supported by the
HEART platform. [23]. Thus, most of the challenges and applications
addressed in this thesis are at the intersection of real-life implementation
problems.

This thesis focuses on several use-cases and automating the predictive
analytics component through the application of machine learning. We
envision several applications based on these use-cases as follows,

1http://heart-itn.eu/
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7.4.1 Pregnancy Health Application

Current healthcare practices, such as midwives, require manual data
collection and storage in the patient’s record. These records are
frequently overwritten with the most recent value and do not provide
a comprehensive perspective of a person’s health over time. Pregnant
women at risk must routinely see midwife practices for further health
information. These midwife practices that may provide care for low
to moderate risk pregnant women are one of the target groups for
forming a business. If recognized early, the hazards can be easily
managed by gathering further data/recommending tests. Additionally,
pregnant women may feel comforted by this frequent monitoring of
their pregnancy status. As a potential remedy, a health monitoring
service might be developed to alleviate this industry gap, that can allow
healthcare providers to monitor data over time and not just store it. This
study’s research permits unobtrusive remote monitoring of a pregnant
woman. We anticipate an application that can be used securely by a
pregnant woman and their healthcare provider, including features such as
interpretation and visualization of health data in the home setting. This
research also developed methods to analyse data that does not intrude
the user’s privacy.

It is anticipated that the global market for women health applications
would rise at a compound annual growth rate (CAGR) of greater than
15 percent over the course of the following ten years, from its current
value of US$ 2.3 billion in 2020 [27]–[29]. COVID19 has had a significant
effect on the market landscape. Pregnant women and those undergoing
reproductive treatments had fewer hospital and doctor visits due to the
pandemic. This increased the utilisation of virtual care and self-care
via women’s health applications. Pregnancy apps segment have a major
market share in this global industry with most women in high-income
countries frequently using them. However, developing countries still lack
the relevant penetration due to several cultural and linguistic reasons [30].
Furthermore, because young women and first-time mothers actively seek
information and are inexperienced, they are more vulnerable to less
reputable sources [30]. A coaching/lifestyle-intervention system based
on projected pregnancy health can be incorporated to current apps as a
feature. This system can track the weight gain in pregnant women and
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can also serve as a guidance to healthcare professionals to keep track of
the individual’s gestational health.

To realise this, we also created a proof-of-concept (based on MATLAB
software) that simulated different edge devices that collaborated to learn a
global model to show the potential of privacy-preserving learning applied
to the health-data. We demonstrated this at the ACM SenSyS conference
in New York, United States, and received great response [31]. Fig. 7.1
showcases the snapshot of the application created as a proof-of-concept.

(a) Home screen (b) Weight Gain visualisation

Figure 7.1: Snapshot of the proof-of-concept created in MATLAB to
enable privacy-preserving weight gain management

However, there are several considerations that should be taken into
account,

• The clinical validity of the proposed approach must be established.

• Even though the application has the ability to monitor weight gain,
its business potential needs to be researched.

• Additional capabilities such as lifestyle counseling could be
implemented to provide customers with a comprehensive experience.
However, a pilot study must be done to see whether people will
adopt (especially in developing countries like India) and pay for
such a service.
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We feel that the proposed solution has enormous potential to serve a
large demographic, namely pregnant women, and various stakeholders
involved such as the healthcare professionals.

7.4.2 Alzheimer’s Clinical Trial Design

There is an urgent requirement of disease modifying therapies that can
delay the onset or slow down the progression of Alzheimer’s Disease that
burdens the current healthcare system and society. Despite significant
breakthroughs in our understanding of the biology of Alzheimer’s disease,
no new molecular entity for the prevention or treatment of Alzheimer’s
disease has been approved since the 2003 memantine [32]. One of the
major factors for these failures associated with the drug development
can be late intervention, or poor selection of participants.

The majority of patients with cognitive decline first interact with their
primary caregiver. Due to the absence of available diagnostic tools and
the clinician’s inability to identify a patient at risk for cognitive decline,
patients in need could not enroll in clinical trials [33]. The proposed
method can aid the caregiver in determining whether the individual is a
possible early-onset Alzheimer’s disease patient.

This work sets the path for future research in this area, which is not
yet ready for commercialisation. We anticipate a collaborative research
endeavor between a university with experience in statistical analysis
and a medical institution with expertise in Alzheimer’s disease. A pilot
study must be conducted in which patients are screened based on the
recommendations generated by machine learning. This technique would
differ from a random screening. Randomly selecting participants in a
clinical trial from heterogeneous populations may result in the following
two outcomes:

1. More people with rapid cognitive decline are allocated to the
intervention group than there are in the control group.

2. More people with slow cognitive decline are allocated to the
intervention group than there are in the control group.
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If the former is true, then the described treatment would appear
useless, despite having a considerable influence on individuals with slower
cognitive deterioration. Similarly, if the random selection results in the
second scenario, the claimed treatment efficacy will be overestimated.
Thus, a randomisation based on machine learning predictions can help
in evenly allocating the subjects for an unbiased treatment assignment.

7.4.3 Pain Management Application

This study’s data was obtained using questionaire-based data made
accessible to participants via a mobile application. This study and
application design was done by other PhD students at KU Leuven
in association with IDEWE2, an external service for Prevention and
Protection at Work in Belgium. The mHealth application is available for
iOS and Android users3. Participants are able to monitor their health,
pain, and physical activity with the aid of novel advice and visualization
techniques.

The application functions by gathering questionnaire responses as user
input in ’MyDaily’, a short daily questionnaire of physical activity and
pain experience and daily satisfaction. We anticipate our proposed
method of daily pain prediction to be incorporated into this application.
This can be achieved by

• Monitoring employees with pain and its underlying cause.

• Providing recommendations to lessen the burden of pain on their
daily life.

The pain prediction service could be implemented as (a) a visualization
of personal pain history and anticipated future pain levels, and (b) a
group-based insight, where a user is shown how similar they are to other
users in a similar work-related context and with similar histororical pain
levels. To the best our knowledge such an application does not exist.

2https://www.idewe.be/
3https://www.idewe.be/health-empower
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7.4.4 Societal Impact

The study presented in this thesis focuses on several aspects of predictive
modelling in healthcare. This is demonstrated by studying various use-
cases spanning from in-hospital care to preventive care. We believe that
if the research presented in this thesis is ever implemented in a practical
context, it will have a broad societal impact in the future.

For instance, screening tools for estimating early cognitive deterioration
can be created using the suggested approach. A computerised platform
that offers clinical decision support and care planning can incorporate
the patient’s cognitive status and possible trajectory. This may lower
healthcare expenses in situations where tests are suggested based on
the progression of the disease. Furthermore, Alzheimer’s clinical trial
selection can help reduce the time required to perform efficient clinical
trials. This is enabled by patient group segregation based on detected
severity as described in section 7.4.2.

In addition, by identifying at-risk women and educating them on
healthier lifestyle measures, as well as lowering the burden on
healthcare providers, pregnancy health management can be improved.
The proposed approach allows for real-time weight gain monitoring and
can relieve physicians of regular tasks while increasing engagement
with pregnant moms and their families in a more active and wellness-
driven lifestyle.

The most common cause of chronic incapacity in industrialised nations
is currently musculoskeletal problems, as detailed in chapter 6. They
account for the significant expenditures of repeated treatment, extended
absences from employment, and early retirement. Therefore, the necessity
for developing effective therapies is urgent. Predictive modelling can
improve public health management, such as the prevention of chronic
pain in the workforce and the management of absenteeism at work. Early
identification and intervention can enable people to monitor their health
through digital coaching and adopt a healthier lifestyle. The occupational
health services can create prevention programs for occupations that are
physically challenging.

We believe that employing machine learning in healthcare has enormous
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promise, but it must be human-centered. The multidisciplinary difficulties
covered in the section 7.3, including as legislation, ethics, privacy, and
security concerns, are critical considerations for any developer working
with such powerful and sensitive data as healthcare.
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