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SUMMARY 

Biodiversity is crucial to the well-being of our planet and its inhabitants and has become a 

priority in international treaties and policies. Protecting and restoring this natural capital 

requires collaboration between citizens, scientists and landowners, as well as evidence-based 

research. 

The combination of citizen science data (CSD) and species distribution models (SDMs) can be 

a powerful resource for enhancing biodiversity conservation policy and management. Citizen 

science, which involves engaging citizens in scientific research, is an effective way to monitor 

species in an era of biodiversity informatics and big data. SDMs, on the other hand, are able to 

link species occurrence data and environmental variables to predict the distribution of species 

in space and time. Combining these two approaches creates opportunities to study species and 

areas that are not regularly surveyed. 

Opportunistic CSD contain information on species presence and are collected by volunteers 

without them following specific guidelines. Despite their abundance, their quality is uncertain, 

which can lead to bias and error in SDM predictions. To improve data quality, data cleansing 

can be used as a first step to remove erroneous records from a dataset, for example, based on 

record attributes that provide information on the observation process or post-entry data 

validation. This is called data quality filtering (or also stringent filtering) and while it reduces 

uncertainty, it also reduces sample size, a trade-off that had remained relatively unexplored. 

However, this is an important consideration, as smaller sample sizes often have a negative effect 

on the performance of SDMs. 

This dissertation addresses that knowledge gap, by exploring the combined impact of data 

quality and sample size on model performance (Chapter II). We applied data quality filters 

based on observer experience, record detail and record verification to opportunistic species 

records gathered from the citizen science platform waarnemingen.be. SDM performance was 

assessed before and after filtering while controlling for sample size. Results provided insight 

into the quantity-quality trade-off in data quality filtering but also revealed that species 

responded differently to filtering. A second study (Chapter III) consequently linked several 

species traits to the results of the first study to finetune filtering recommendations (BOX 2: 

Think before you shrink). The goal of the study, taxonomy and multiple species traits 

(especially proneness to misidentification, home range and familiarity) should be considered 
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before choosing an appropriate filter. Caution was needed when filtering reduced sample size 

beyond a certain threshold (e.g. by more than half of the original sample size). 

The research then focuses on a specific conservation case where opportunistic CSD and 

environmental data obtained through remote sensing were combined to support multi-scale 

habitat management in heathlands (Chapter IV). The study found that local vegetation structure, 

habitat heterogeneity and the landscape context impacted the habitat suitability of dry-heathland 

birds, butterflies and grasshoppers and crickets, with differences in small versus large 

heathlands. In large patches, vegetation structure and heathland heterogeneity generally 

benefitted habitat suitability while in small and fragmented patches, edge effects and species 

characteristics interacted more with the results. 

The fifth chapter (Chapter V) provides a summary of the conducted research and discusses 

some important considerations when using the suggested methods for conservation 

applications. Finally, the dissertation elaborates on the application potential of this research in 

biodiversity conservation policy with a focus on Flanders (Chapter VI). Overall, these findings 

contribute to the existing literature on the use of opportunistic citizen science data for ecological 

research and species conservation. It does so by providing evidence-based recommendations 

for increasing data quality and illustrating the application potential in various conservation 

applications.  
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SAMENVATTING 

Biodiversiteit is cruciaal voor het voortbestaan van de planeet en haar bewoners en is een 

prioriteit geworden in internationale verdragen en beleid. De bescherming en het herstel van 

biodiversiteit vereist samenwerking tussen burgers, wetenschappers en landeigenaren, evenals 

evidence-based onderzoek. 

De combinatie van burgerwetenschap en soortverspreidingsmodellen (SDMs) kan een krachtig 

middel zijn om biodiversiteitsbeleid en -beheer te versterken. Burgerwetenschap, waarbij 

burgers worden betrokken bij wetenschappelijk onderzoek, is een effectieve manier om soorten 

te monitoren in tijden van biodiversiteitsinformatica en big data. SDMs daarentegen zijn in 

staat om verspreidingsgegevens van soorten te linken aan omgevingsvariabelen om zo de 

verspreiding van soorten in ruimte en tijd te voorspellen. Het combineren van deze twee 

methoden opent mogelijkheden voor het bestuderen van gebieden en soorten die niet 

systematisch onderzocht werden. 

Opportunistische waarnemingen bevatten informatie over de aanwezigheid van soorten en 

werden verzameld door vrijwilligers zonder dat deze daarbij specifieke richtlijnen volgden. 

Ondanks hun grote aantallen is hun kwaliteit onzeker, wat kan leiden tot slechte voorspellingen 

uit SDMs. Om de kwaliteit van verspreidingsgegevens te verbeteren, worden onzekere 

waarnemingen vaak verwijderd. Datakwaliteitsfilters verwijderen bijvoorbeeld gegevens op 

basis van informatie over het observatie- of validatieproces. Hoewel dit de kwaliteit van de 

gegevens kan verbeteren, vermindert het ook hun aantal, een wisselwerking die relatief weinig 

onderzocht bleef. Dit is nochtans een belangrijke overweging, aangezien kleinere 

steekproefgroottes vaak een negatief effect hebben op de prestatie van SDMs. 

Dit proefschrift onderzoekt daarom de simultane impact van kwaliteit en kwantiteit van 

opportunistische waarnemingen op SDM-prestaties (Hoofdstuk II). Verschillende data-

kwaliteitsfilters werden toegepast op gegevens van het burgerwetenschapsplatform 

waarnemingen.be. Ze waren gebaseerd op de ervaring van waarnemers, op het detail van 

ingevoerde waarnemingen en op hun verificatiestatus. Vervolgens werd het verschil in prestatie 

gemeten tussen SDMs mét en zonder gefilterde gegevens, waarbij gecontroleerd werd voor de 

steekproefgrootte. De resultaten gaven ons inzicht in de wisselwerking tussen kwantiteit en 

kwaliteit bij het gebruik van datakwaliteitsfilters, maar toonden ook verschillen aan tussen de 

onderzochte soorten. Een tweede studie (Hoofdstuk III) koppelde daarom verschillende 

soorteigenschappen aan de resultaten van de eerste studie, waardoor aanbevelingen voor het 
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toepassen van datakwaliteitsfilters werden verfijnd (BOX 2: Think before you shrink). Bij het 

kiezen van een geschikte filter, is er allereerst aandacht nodig voor de taxonomie, verschillende 

soorteigenschappen (voornamelijk de kans op een foutieve identificatie, de grootte van het 

soortverspreidingsgebied en de bekendheid van de soort) en het doel van de studie. Daarnaast 

dient het filteren te gebeuren mits de nodige voorzichtigheid wanneer de steekproefgrootte 

wordt gereduceerd (bv. met meer dan de helft van het aantal aanwezigheden). 

Het proefschrift richt zich vervolgens op een specifiek geval van natuurbehoud, met name het 

beheer van heide op meerdere schaalniveaus (Hoofdstuk IV). Hiertoe werden opportunistische 

waarnemingen gecombineerd met omgevingsvariabelen verkregen uit remote sensing. Uit het 

onderzoek bleek dat lokale vegetatiestructuur, heidetype-heterogeniteit en landschappelijke 

context de habitatgeschiktheid voor heidevogels, -vlinders en -sprinkhanen en krekels 

beïnvloedden, met verschillen in kleine versus grote heidegebieden. In grote gebieden hadden 

vegetatiestructuur en heidetype-heterogeniteit een voornamelijk positieve impact op de 

habitatgeschiktheid, terwijl in kleine en gefragmenteerde gebieden, randeffecten en 

soorteigenschappen belangrijker werden om die impact te verklaren.  

Het vijfde hoofdstuk (Hoofdstuk V) geeft een samenvatting van het onderzoek en bespreekt 

enkele belangrijke overwegingen bij het gebruik van de voorgestelde onderzoeksmethoden. Ten 

slotte gaat de thesis dieper in op mogelijke toepassingen in het biodiversiteitsbeleid in 

Vlaanderen (Hoofdstuk VI). Over het algemeen dragen deze bevindingen bij aan de bestaande 

kennis over het gebruik van opportunistische waarnemingen uit burgerwetenschap voor 

ecologisch onderzoek en het behoud van soorten. Dit doet het door aanbevelingen te formuleren 

om de kwaliteit van opportunistische waarnemingen te verbeteren en door verschillende 

mogelijke toepassingen te suggereren voor het gebruik van deze gegevens voor 

biodiversiteitsbeleid.  
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CHAPTER I. Introduction 

1. Biodiversity conservation 

1.1. A global biodiversity crisis  

Biodiversity is the diversity within species, between species and of ecosystems (United Nations, 

1992) and is essential for human survival and well-being. It provides various ecosystem services 

such as the provision of biomass for food and energy (productive), ecosystem resilience and 

pollination (regulating) and aesthetic value (cultural) (Mace et al., 2012). Over the past 

centuries, the pressures on terrestrial biodiversity have been escalating by land use conversion 

and intensification, climate change, pollution and invasive alien species (Early et al., 2016; 

IPBES, 2019; Leclère et al., 2020; Newbold et al., 2015; Urban et al., 2016). Many populations 

and species are either extinct or on the verge of extinction (Burns et al., 2021; IPBES, 2019). 

This sixth mass species extinction would take millions of years to recover from (Ceballos et al., 

2020), a worrying prospect for citizens, scientists and governments worldwide. They have 

acknowledged the crucial role of biodiversity in sustaining life on this planet and recognized 

the accelerating degradation of biodiversity as a global crisis, which initiated many efforts for 

biodiversity conservation. 

1.2. Biodiversity conservation policy: from global to regional 

The global and European protection of biodiversity is the result of a few key policies and 

initiatives, supported by a growing public awareness of the value of biodiversity. These efforts 

started around the middle of the 20th century with the foundation of organisations, such as the 

International Union for Conservation of Nature (IUCN) in 1946 and the World Wide Fund for 

Nature (WWF) in 1961, the implementation of global treaties, such as the Ramsar Convention 

in 1971 (Navid, 1984) to safeguard waterfowl habitat, and legislations, such as the Birds 

Directive (79/409/EEC) in 1979, which protects wild bird species within the European territory.  

In 1992, the Convention on Biological Diversity (CBD) was drawn up at the Earth Summit in 

Rio de Janeiro and aimed to preserve biodiversity and promote the sustainable use of its 

components (later defined as ecosystem services) (United Nations, 1992). In the same year, the 
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EU (here we mean the European Union and all former structures) adopted the Habitats Directive 

(92/43/EEC) that, together with the Birds Directive, obliged EU member states to delineate 

Special Protection Areas (SPAs) and Special Areas of Conservation (SACs). These areas were 

aimed to protect the most valuable and threatened habitat types, fauna and flora of Europe (De 

Knijf and Paelinckx, 2013) and formed the cornerstone of European biodiversity conservation 

policy: the Natura 2000 network (Decleer, 2007; Sundseth, 2008).  

At the tenth meeting of the governing body of the CBD, the Conference of the Parties, in 

Nagoya in 2010 (UNEP/CBD/COP/10/27), the Aichi Biodiversity Targets were adopted as a 

strategic plan to address the growing biodiversity crisis. In line with these targets, the EU 

designed the European Biodiversity Strategy for 2020 which intended to halt and reverse the 

loss of biodiversity by 2020 and to improve the state of Europe’s natural capital by 2050 

(European Commission, 2011). Unfortunately, by 2020, the Aichi Biodiversity Targets were 

only partially achieved (IPBES, 2019) and also the EU Biodiversity Strategy had insufficiently 

protected and restored nature (European Commission, 2020). The new EU Biodiversity 

Strategy for 2030, adopted in 2020, therefore emphasized the expansion of conservation areas 

(Natura 2000) and stricter implementation of conservation regulations (European Commission, 

2020). By 2030, at least 30% of the European land area must be protected, including 10% 

strictly protected areas. Additionally, the European Commission proposed a Nature Restoration 

Law that intends a full restoration of all degraded ecosystems by 2050 (European Commission, 

2022). Member states are free to choose how to implement and monitor these regulations in 

their respective territories, but also have several international obligations, such as investing in 

green and blue infrastructure across borders (European Commission, 2019; Schneiders et al., 

2016) and reporting on the conservation status of protected habitat types and species to the EU 

(European Commission, 2020). 

1.3. Trends in biodiversity monitoring 

1.3.1. Traditional methods 

To evaluate and adapt biodiversity conservation policy, biodiversity needs proper monitoring 

of its actual state and trends (i.e. distributions, abundances, extinctions and genetic diversity) 

(Pereira et al., 2012) and evidence-based research on the drivers of its loss (Sutherland et al., 

2004).  

Biodiversity monitoring traditionally involved scientists conducting fieldwork or setting up 

small-scale experiments (Sagarin and Pauchard, 2010). However, with the increasing adoption 
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of biodiversity conservation policies, the need arose for more systematic survey methods to 

study trends in species populations and the impact of management decisions. To ensure 

repeatability in space and time and international data sharing, cooperatives were established 

and monitoring schemes were designed. For instance, the Group on Earth Observations’ 

Biodiversity Observation Network (GEO BON) (Scholes et al., 2012) proposed Essential 

Biodiversity Variables (EBVs) (Pereira et al., 2013), which can be implemented globally to 

align methods for, for example, developing biodiversity indicators (Pettorelli et al., 2016; 

Vihervaara et al., 2015) and Red Lists (IUCN Standards and Petitions Committee, 2022; Maes 

et al., 2019b). More recently, technological advancements have opened up new possibilities for 

biodiversity monitoring, such as satellite-based remote sensing, drones, acoustic recording 

devices, and environmental DNA (Stephenson, 2020). 

While this variety of methods has an indisputable value for biodiversity monitoring, it also have 

drawbacks. Field surveys are labour-intensive and provide very localised information on 

species. Systematic surveys might upscale monitoring, but they remain labour-intensive and 

contain large gaps in their spatial and temporal extent (Bradter et al., 2018). Trained volunteers 

are often engaged by professionals to reduce the workload, but the coordination and 

implementation of these projects requires regular funding and it remains difficult to obtain a 

large spatial and temporal coverage (Maes et al., 2015b). Furthermore, modern methods still 

have questionable efficiency and cost-effectiveness and need better standardisation for them to 

be widely used (Stephenson, 2020). In response to these limitations, scientists have been 

looking for ways to effectively monitor biodiversity across large extents while reducing both 

effort and costs. 

1.3.2. State-of-the-art 

Three major trends that are particularly interesting for biodiversity monitoring and policy 

support are species distribution models (Guisan and Zimmermann, 2000), citizen science data 

(Dickinson et al., 2010; Dobson et al., 2020; Theobald et al., 2015) and remote sensing (He et 

al., 2015; Leitão and Santos, 2019; Nagendra, 2001; Randin et al., 2020). Their performance 

and applicability have advanced rapidly in the 21st century while often being readily available 

in large amounts and over large spatial and temporal extents. Moreover, they are usually 

supported by open-source software and numerous studies that constantly attempt to increase 

the quality of their output. 
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a) Species distribution models 

Scientists have been looking for ways to fill the spatial and temporal gaps in information on 

species occurrence for decennia. Species distribution models (SDMs) (Guisan and 

Zimmermann, 2000) have now become a widely accepted method to study the mechanisms 

underlying biodiversity change, reflected in the publication of numerous studies and the uptake 

of SDMs into biodiversity conservation applications (Guisan et al., 2013; Guisan and Thuiller, 

2005; Maes et al., 2019d; Urban et al., 2016). They usually predict the suitability of a location 

based on ecological principles supported by expert knowledge (i.e. mechanistic SDMs) 

(Kearney and Porter, 2009) or based on statistical techniques that correlate species occurrence 

data with environmental variables (i.e. correlative SDMs) (Elith and Leathwick, 2009). The 

main difference between mechanistic and correlative SDMs is that the first do not require actual 

information on species occurrence and are by consequence a discrete indication of potential 

habitat based on decision rules, while the latter can estimate a (relative) probability of 

occurrence based on statistic principles. In this dissertation, correlative SDMs were used 

(section 3.1), but it should be noted that they can also be combined with mechanistic models 

when feasible (Kearney and Porter, 2009; Maes et al., 2019d, 2016). 

b) The era of citizen science 

Species occurrence data used in correlative SDMs are ideally obtained through systematic 

surveys, performed by trained observers and with a clear description of both data collection and 

project objectives (Kosmala et al., 2016). Such highly structured data, however, is rarely 

available for extensive geographical areas or periods, nor for a wide range of species (Isaac et 

al., 2014; Urban et al., 2016). In response, bulky occurrence data with lower information content 

that are often collected by volunteers participating in citizen science initiatives have been 

explored (Guisan et al., 2013; Schmeller et al., 2008; Theobald et al., 2015). A major advantage 

of these citizen science data (CSD) is they contain a multiplicity of species records at broad 

spatial and recent temporal scales and they have, consequently, become an important source of 

information for ecologists worldwide. 

The increasing availability of species data collected in online data platforms has opened up a 

wide range of possibilities for supporting biodiversity conservation. Citizens have been 

participating in ecological studies for centuries (Silvertown, 2009), but biodiversity informatics, 

i.e. new information technologies such as the internet, smartphones and image recognition, have 

changed how these data are collected and used (Anderson et al., 2020; Peterson et al., 2015). 
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Both historical data, such as records from museums and herbaria, and new data are now 

centralised in large online data platforms such as iRecord in the United Kingdom 

(https://www.brc.ac.uk/irecord/), Artportalen in Sweden (https://www.artportalen.se/), 

waarnemingen.be in Flanders (northern Belgium; https://www.waarnemingen.be) (BOX 1) or 

eBird (https://ebird.org/), iNaturalist (https://www.inaturalist.org/) and GBIF 

(https://www.gbif.org) worldwide. Some of these platforms are targeted at data aggregation 

(e.g. GBIF; but see Anderson et al. (2020) for planned efforts towards more interactive data 

use), while others are more interactive: from record verification and feedback by experts to 

organised collaborations (e.g. eBird, waarnemingen.be, Artportalen) (Dobson et al., 2020).  

c) Remote sensing 

Remote sensing involves the use of sensors to collect data about the Earth's surface and 

atmosphere from a distance and has been widely adopted as a method for biodiversity 

monitoring in international conservation strategies and initiatives such as the Aichi Biodiversity 

Targets and EBVs (Arenas-Castro et al., 2018; Pereira et al., 2013; Pettorelli et al., 2016). It 

can be used to map and monitor ecosystems and wildlife populations (Reif and Theel, 2017; 

Wachendorf et al., 2018), assess habitat quality (Schmidt et al., 2018) and support conservation 

planning and management (Besnard et al., 2015; Vila-Viçosa et al., 2020). 

Different sensors provide different possibilities, depending on the data they collect and the 

spatial and temporal resolution they can deliver (He et al., 2015; Leitão and Santos, 2019). 

Sensors that provide information on natural land cover with the highest application potential 

for biodiversity monitoring are optical sensors (multispectral or hyperspectral depending on the 

number of spectral bands they can measure) and Light Detection And Ranging (LiDAR) sensors 

(Wehr and Lohr, 1999). Multispectral sensors (e.g. MODIS, Landsat, Sentinel-2) are often used 

for land cover classification or quantitative assessments of vegetation such as time series 

analysis for phenology, vegetation indices for vegetation health (Leitão and Santos, 2019), or 

image texture analysis for vegetation structure (Farwell et al., 2021, 2020). Hyperspectral 

sensors (e.g. Hyperion, PRISMA) can deliver additional information on vegetation chemistry 

such as canopy or leaf water content or species diversity (He et al., 2015). LiDAR sensors are 

commonly used to assess the 3D structure of land cover, such as topography, vegetation height 

or stem density (Bergen et al., 2009). 
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BOX 1: WAARNEMINGEN.BE 

Waarnemingen.be is the largest citizen science platform for species records in Belgium1 

managed by Natuurpunt Studie, Natagora and Stichting Natuurinformatie. The platform was 

designed to collect, share and store biodiversity data in Belgium (Herremans et al., 2018; 

Swinnen et al., 2018). Records can be entered on the website or via the mobile applications 

ObsIdentify, ObsMapp (Android) and iObs (iOS). Observers must provide default information 

on the observation (date and time, species, number of individuals, location and geographical 

precision) and are free to add more detailed information such as life stage, sex, behaviour, notes, 

photographs or sound fragments. Incoming records are verified in a semi-automated validation 

system (Swinnen et al., 2018) (Figure 1). 

 
Figure 1: Semi-automated validation system in waarnemingen.be (adapted from Vanreusel et al., 2018). 

The database currently holds one of the densest collections of species records in Europe: > 51 

million species records of > 26,500 species by > 113,000 observers2. The majority of records 

are unstructured data (94%) but every year an increasing amount of semi-structured data3 is 

submitted (Figure 2). 

  
Figure 2: Cumulative number of observations and taxonomic representation in waarnemingen.be, with 

percentages of the taxonomic groups used in this study 2.   

 
1 https://www.waarnemingen.be in Flanders and https://www.observations.be in Wallonia 
2 Database query from situation on September 30th 2022 
3 i.e. checklists, point and transect counts, project observations such as moth traps and surveys from different research 

institutions and standardized monitoring schemes 
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Remotes sensing can provide direct measures of biodiversity, such as categorical land cover 

maps, species diversity and individual species. Land cover maps have been produced since the 

first remote sensing data became readily available in the 1970s. They are a valuable tool for 

assessing large-scale habitat loss and land use change, for example for restoration monitoring 

(Reif and Theel, 2017). Through spectral, temporal and textural features of multispectral 

images, broad classes of vegetation cover (e.g. CORINE land cover4) or vegetation 

communities (Thoonen et al., 2013) can be distinguished, but information on individual species 

or fine-scale habitat differences is often missed (Nagendra et al., 2013). Moreover, the 

aggregation of quantitative features into classes induces errors, is labour-intensive and might 

miss essential information on habitat requirements (Oeser et al., 2020).  

Measures of species diversity are based on the habitat heterogeneity hypothesis which states 

that habitat heterogeneity benefits species diversity by increasing niche availability and 

diversifying environmental resources (MacArthur and Wilson, 1967). As habitat heterogeneity 

can be measured by the spatial variation in the remotely sensed signal, this is also known as the 

Spectral Variation Hypothesis (Palmer et al., 2002; Rocchini et al., 2007). 

To detect individual species, high-resolution sensors such as hyperspectral and LiDAR sensors 

on drones or high-resolution satellite imagery combined with field observations are often 

necessary but are usually expensive and labour-intensive. Moreover, only a limited set of 

species can be monitored with remote sensing, often defined by their size (e.g. large vertebrates 

versus invertebrates or tree versus grass species) or spectral properties (e.g. invasive species 

detection (Sladonja and Damijanić, 2021) or crop monitoring (Wu et al., 2022)). As a result, 

information on individual species is typically obtained indirectly, such as by using remotely-

sensed quantitative measures of habitat quality. The increasing spatial and temporal resolution, 

the availability of long-term time series, and the fine resolutions at which data can be obtained 

in an accessible and cost-effective manner (e.g. through Google Earth Engine) are promising 

advances for the use of remote sensing data as a source of environmental predictors in SDMs 

(Randin et al., 2020). Examples of remotely sensed predictors in SDMs are fractional land cover 

(Milanesi et al., 2017), landscape heterogeneity (Amici et al., 2015), spectral bands (Hubert-

Moy et al., 2022), vegetation indices (Evens et al., 2021; Parviainen et al., 2013; Sheeren et al., 

2014), ecosystem functioning attributes (EFAs) (Regos et al., 2020) and vegetation structure 

(Bellis et al., 2008; de Vries et al., 2021; Farwell et al., 2021; Wood et al., 2013). 

 
4 Retrievable from https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 
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2. Quality of citizen science data 

2.1. The trade-off between data quantity and data quality 

Citizen science data (CSD) vary in quantity (i.e. the number of species records) and quality (i.e. 

the information content), depending on the underlying structure with which they were collected 

(Dobson et al., 2020). CSD with higher information content can produce more reliable scientific 

results but this is usually at the expense of limited data quantity (Bird et al., 2014; Figure 3). 

Unstructured data are voluntarily collected by individuals with different levels of expertise and 

in an unstandardized manner, resulting in large amounts of data with low information content 

hence uncertain data quality. In this dissertation, we consider all opportunistically collected 

data as unstructured, even when such data can also include some basic additional information 

on the observation (e.g. date, time, precision) or individual (e.g. sex, life stage) (cf. Kelling et 

al., 2019). Semi-structured CSD are collected by volunteers that follow some basic instructions 

and include checklist data, where users check observed species from a list that usually includes 

all the species from a particular taxonomic group. Users can indicate whether they looked for 

all listed species (complete checklists) or not (incomplete checklists). Structured CSD usually 

have the highest information content as they are collected in systematic surveys, where trained 

volunteers collect detailed information on species occurrence by following rigorous protocols 

designed by specialists, such as MEETNETTEN in Flanders (Westra et al., 2016) or the United 

Kingdom Butterfly Monitoring Scheme (Brereton et al., 2019).  

The variation in data quality and quantity has different implications for using CSD in SDMs. 

Structured protocols are designed to reduce uncertainties and improve statistical inference. The 

collected data can give additional information on the observers (e.g. level of expertise), the 

observation process (e.g. checklist duration to quantify search effort) or the species (e.g. 

absences derived from transect surveys or complete checklists to estimate detectability). 

Moreover, more structured data are more likely to include information on both species 

presences and absences (presence-absence data) or species abundance (count data), while 

unstructured data are generally opportunistic records of species presences (presence-only data). 

Additionally, independent structured data is preferred for model evaluation (i.e. checking the 

performance of the SDM by comparing model predictions with real presence and absence 

locations; see section 3.3) given their high reliability.  
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Figure 3: The trade-off between data quality and data quantity in citizen science data (CSD) (adapted from 

Isaac and Pocock (2015)). Unstructured CSD have lower information content but are usually available in 

large amounts. However, they are more likely to contain error and bias (e.g. imperfect detection or 

sampling bias – see section 2.2) which can cause misleading inferences on species distributions and 

diversity. Structured data are less available but contain more information. They include presences and 

absences (PA) and/or counts, while unstructured data contain information on presences only (PO). Semi-

structured data can contain both PA and PO, depending on the protocol.  

Despite their high quality, structured data have limited applicability as response data in large-

scale SDM studies due to their restricted availability for a wide range of species and over 

extensive geographical areas (Urban et al., 2016). However, note for instance eBird, a citizen 

science initiative that collects bird observations, mostly in the form of checklist data. Their 

efforts to motivate users to provide semi-structured data have paid off and illustrate that long-

term and large-scale citizen science projects can deliver high-quality data with relatively low 

effort (Johnston et al., 2018; Kelling et al., 2019, 2018). Also in other databases, the submission 

of checklists is promoted and semi-structured data are growing, for example in Artportalen 

(Henckel et al., 2020) or waarnemingen.be (BOX 1). Nevertheless, unstructured opportunistic 

CSD remain the largest data source and their high unparalleled spatial, temporal and taxonomic 

coverage makes them a promising tool for SDMs (Kosmala et al., 2016). To increase the 

application potential of opportunistic CSD in SDMs for biodiversity conservation, however, it 

is crucial to understand the various types of bias and error inherent to opportunistic CSD and 

to identify methods to reduce and mitigate them. Failure to address these issues may result in 

the misestimation of species distributions, leading to inadequate conservation measures 

(Guillera-Arroita et al., 2015; Vantieghem et al., 2017). 
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2.2. Quality issues in opportunistic citizen science data 

Opportunistic CSD have high uncertainty about their completeness, correctness, and precision, 

leading to potentially biased and erroneous predictions (Isaac and Pocock, 2015). Literature on 

the different types of bias in CSD is abundant, and definitions are sometimes confused, yet two 

types are highly relevant for SDM studies, i.e. sampling bias and detection bias.  

Sampling bias results from an uneven sampling of observations across space (spatial bias) or 

time (temporal of phenological bias), for example, due to differences in location accessibility 

(e.g. near hiking trails versus remote locations) or general observer activity (e.g. in summer 

versus winter). Oversampling of particular locations is more common in opportunistic CSD and 

might lead to residual spatial autocorrelation. Spatial autocorrelation is inherent to most species 

occurrence data and arises when the values of environmental variables at nearby locations are 

correlated. This is a natural process because species tend to occupy areas with similar 

environmental conditions and their distributions are constrained by biological factors like 

dispersal and competition (Dormann et al., 2007). Residual spatial autocorrelation occurs when 

the correlation between observations is not fully explained by the model, resulting in biased 

parameter estimates, higher risk of type I errors (i.e. assuming an effect when there is none) 

(Dormann et al., 2007) and inflated model accuracy (Segurado et al., 2006; Veloz, 2009). 

Detection bias is either the result of imperfect detection (i.e. false negatives) or observation 

errors (i.e. false positives). Imperfect detection occurs when observers visit locations but fail or 

consciously choose not to record a species while it is present, for example, caused by 

environmental circumstances (e.g. low visibility), taxonomic differences (e.g. species 

phenology) or human differences (e.g. observer preferences or experience) (Kéry and Schmidt, 

2008). This leads to underestimations of the true probability of occurrence, a commonly 

observed bias in opportunistic presence-only data (Lahoz-monfort et al., 2014). Imperfect 

detection generally does not impact the ranking of locations on habitat suitability, but attention 

should be paid to situations where detectability is negatively correlated with occupancy or with 

the predictors used to estimate occupancy (Guillera-Arroita et al., 2015; Lahoz-monfort et al., 

2014). Observation errors, on the other hand, may be caused by low expertise or experience of 

observers (Fitzpatrick et al., 2009; Ratnieks et al., 2016) or phylogenetic relatedness of species 

(Vantieghem et al., 2017). False positives can cause both over-predictions and under-

predictions of the probability of occurrence (Costa et al., 2015).  
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3. Opportunistic data in species distribution models: best practices 

3.1. Presence-only species distribution models 

Correlative SDMs have gained popularity with the emergence of online citizen science 

platforms. As these platforms largely provide opportunistic presence-only data, there has been 

an increase in research on methods that can effectively deal with them, such as logistic 

regression, machine-learning methods and point process models (Dorazio, 2014; Elith et al., 

2006; Liu et al., 2013; Phillips et al., 2009, 2006; Renner et al., 2015; Valavi et al., 2022). When 

pseudo-absences can be inferred from the data (or absences are available), logistic regression 

is a natural choice for modelling species occurrence data. However, as information on absences 

is usually not available, presence-only SDMs typically contrast the environmental conditions 

at locations where species are present with the available environmental conditions in the study 

area (i.e. the background) (Elith et al., 2010), which is why presence-only data are also called 

presence-background data (Wang and Stone, 2019). Note that by presence-only SDMs, we do 

not mean methods that only consider presences such as climatic envelopes (e.g. BIOCLIM; 

Busby (1991)).  

The selection of an appropriate SDM method should not only consider the type of data (e.g. 

presence-absence or presence-only) but also take into account the quality of the data and the 

requirements of its users (section 2.2; Guillera-Arroita et al., 2015). The challenge is to find a 

trade-off between the complexity and interpretability of the model and the bias reduction in its 

predictions (Elith and Leathwick, 2009). In our case, for example, semi-structured data were 

only poorly represented within the waarnemingen.be database at the start of this project in 2018. 

Meanwhile, there was a remarkable surge in the growth of extensive opportunistic data 

platforms, leading to an amplified demand for understanding how to effectively handle these 

vast amounts of largely unstructured records. Our objective was, therefore, to explore the 

potential applications of opportunistic CSD when structured data were unavailable instead of 

combining data with different information content (i.e. data-integration methods; see sections 

3.2.3 and 23.1). Moreover, using relatively simple methods benefitted the application potential 

of our research, for example for users possessing basic statistical and programming skills, as 

well as for regions with limited IT infrastructure where it is preferable to avoid high 

computational demands and the associated costs.  
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The next sections briefly discuss potential SDM methods for presence-only data and motivate 

our choice for the methods used in this dissertation (i.e. Maxent in Chapters II, III and VI and 

Gibbs Point Process Models with a Geyer interaction process in Chapter IV).  

3.1.1. Logistic regression 

Logistic regression methods include Generalised Linear Models (GLMs), which parametrically 

fit linear, quadratic and/or cubic terms, Generalised Additive Models (GAMs), which non-

parametrically fit non-linear terms (i.e. smoothers) (Guisan et al., 2002) and Multivariate 

Adaptive Regression Splines (MARS), which are similar to GAMs but use piecewise linear 

basis functions instead of smoothers (Elith and Leathwick, 2007). Using traditional approaches 

such as GLMs and GAMs in a presence-background setting is possible yet requires careful 

implementation of methods to avoid overfitting and minimize the impacts of class imbalance 

(i.e. a disproportionate number of presences versus background samples). Such methods, for 

example, include the selection of the locations and number of background points. 

Recommendations for that selection, however, can be confusing as they highly depend on 

external factors such as spatial scale and model algorithm (Barbet-Massin et al., 2012; Renner 

et al., 2015).  

3.1.2. Machine-learning methods  

Machine-learning methods can fit complex species-environment relationships and are 

extremely suited when high predictive performance is desired (Elith and Leathwick, 2009). In 

comparative studies on presence-only SDM performance, Boosted Regression Trees (Elith et 

al., 2008), down-sampled Random Forests (Chen et al., 2004) and Maxent (Elith et al., 2010; 

Phillips et al., 2006) outperformed most other methods (Elith et al., 2006; Valavi et al., 2022). 

Note, however, that tuning individual presence-only models in an ensemble approach might 

deliver even better results (Valavi et al., 2022).  

Boosted Regression Trees (BRT) and Random Forests (RF) are ensembles of single non-linear 

regression trees which are selected in a stagewise (BRT) or bootstrap (RF) approach. Boosting 

increases model accuracy (Elith et al., 2008) and down-sampling deals with class imbalance in 

RF and is therefore preferred to regular RF in presence-background settings (Valavi et al., 

2022). In general, the issues of class imbalance and class overlap (i.e. when background points 

are sampled at presence locations) for RF and computational time for BRT (Valavi et al., 2022) 

make these methods more challenging to implement as a presence-only method. 
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Maxent uses maximum entropy methods, which means that the algorithm will try to find the 

closest fit to a prior distribution (i.e. the predictor values at background locations) considering 

some restraints (i.e. the predictor values at presence locations) (Merow et al., 2013). It does so 

using features, i.e. mathematical transformations of the predictors, and regularization, i.e. 

optimizing model fit while avoiding over-fitting (Phillips et al., 2006). The algorithm predicts 

a relative occurrence rate under the assumption of spatial independence, i.e. no sampling bias 

(Phillips et al., 2017; also see section 3.1.3). 

We decided to use Maxent, as it is still considered one of the best-performing presence-only 

methods and has relatively low computational power (Elith et al., 2006; Valavi et al., 2022). 

This was an advantage for the extensive (i.e. many repetitions) and large-scale assessment of 

the combined impact of data quality and sample size on model performance in Chapters II and 

III. For ecological studies at finer scales and when the goal is to study the impact of 

environmental covariates on species occurrence (e.g. Chapter IV), other methods such as point 

process models will be more suited. 

3.1.3. Point process models and their equivalence to Maxent 

Point Process Models (PPMs) have regained attention as presence-only SDMs due to their 

statistical agreement with Maxent (Renner et al., 2015; Warton and Shepherd, 2010). Maxent 

can be interpreted as an Inhomogeneous Poisson Point Process (IPP) (Phillips et al., 2017; 

Renner and Warton, 2013), i.e. a point process where the intensity depends on the underlying 

spatial environment. 

Suppose a region D with surface A with m presence records at a set of locations ux = {u1, u2, 

…, um}. In the case of an IPP, the intensity λ(u) of this point pattern (i.e. the expected number 

of presence records per unit area) is a log-linear function of a vector of real-valued covariates 

Z(u): 

λ(u) = exp(α + βZ(u))     Equation 1 

where α is a normalizing constant to ensure that ∫D λ(u)du equals the total number of occurrence 

records and β is the vector for covariate effects. The mean abundance in that region can then be 

estimated as follows: 

Predicted mean abundance = cp A exp(α + βZ(u))  Equation 2 
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Note the unknown constant cp, which basically implies that the estimated abundance will always 

be a relative estimate. In the absence of spatial dependence, the probability of presence can be 

derived by a link function, i.e. the complementary log-log (cloglog) link (Phillips et al., 2017), 

as follows: 

Probability of presence = 1 – exp(-cp A exp(α + βZ(u)))   Equation 3 

This is the default output of Maxent and allows for an intuitive interpretation of model 

predictions. However, Maxent assumes spatial independence, an important consideration when 

choosing a presence-only SDM method (Renner and Warton, 2013; Yackulic et al., 2013). 

Opposed to Maxent, PPMs can incorporate spatial dependence by adding a random intensity 

function (i.e. Cox models) or a spatial interaction term (i.e. Gibbs models). Gibbs models 

explicitly postulate that spatial dependence is due to interactions between points (i.e. attraction 

or repulsion), while Cox models merely assume spatial dependence due to clustering defined 

by some random process (i.e. an unobserved external factor) (Renner et al., 2015). Both 

methods are feasible, yet we decided to use a Gibbs model following De Solan et al. (2019), 

where the spatial interaction term can be tuned and bias covariates are used to mitigate sampling 

bias (section 3.2.3). 

In the case of Gibbs models, the intensity becomes a conditional intensity λ(u|x) at a location u 

given a pattern of presences x and the maximum likelihood becomes a maximum 

pseudolikelihood, which is an approximation to reduce computational effort (Baddeley and 

Turner, 2000). The conditional intensity consists of a first-order term β (the trend or covariate 

effects) and a higher-order term γ (the interaction parameter). The main idea to incorporate 

spatial dependence is based on the following expression: 

λ(u|x) = β(u)γν(x,r,s)      Equation 4 

The higher-order term can take many forms, of which the Geyer saturation process is an 

interesting choice for modelling species occurrence data. Here, the estimated intensity (i.e. 

relative abundance) λ(u|x) at a location will depend on the underlying environmental conditions 

(β(u) in Equation 4) and the configuration of the surrounding points (γν(x,r,s) in Equation 4). The 

exponent ν(x,r,s) can be interpreted as a weighting function that is defined by the configuration 

of the points x within a radius r from a point u. A saturation parameter s ensures that the 

conditional intensity cannot take arbitrarily large values in the case where γ > 1, which implies 

that points exhibit clustering (while γ < 1 suggests inhibition and s = 0 suggests a Poisson point 

process with no spatial interaction). Clustering increases λ(u|x) and can be tuned by choosing r 
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as the distance at which spatial dependence occurs and s as an indicator of the strength of the 

spatial dependence. For a detailed statistical explanation of the Geyer process or Gibbs PPMs 

in general, see Chapter 13 in Baddeley et al. (2015). 

3.2. Dealing with bias and error 

Ideally, sources of bias and error are removed from the data before modelling. Quantifying bias 

can, for example, improve the sampling design or dirige sampling at locations where species 

occurrence data is under-represented (Araújo and Guisan, 2006; Ruete, 2015). However, to take 

full advantage of the readily available high quantity of opportunistic presence-only records, one 

of the priorities in SDM research has been finding ways to deal with bias and error, resulting in 

different methods and recommendations (Bird et al., 2014; Isaac et al., 2014). Removing 

erroneous observations and accounting for bias improves both model calibration and predictive 

performance (e.g. Boria et al., 2014; Johnston et al., 2018; Merow et al., 2017; Steen et al., 

2019). 

3.2.1. Data cleansing 

Data are expected to be cleansed in preparation for an SDM study (Zurell et al., 2020), which 

includes the removal of spatial and temporal outliers, duplicates, and records with low precision 

(Serra-Diaz et al., 2017). When dealing with opportunistic data, cleansing usually also implies 

stringent filtering, where data are filtered based on record attributes that hold information on 

the observation process or post-entry data verification (Steen et al., 2019; Vantieghem et al., 

2017). The main goal is to remove uncertainty, for example by only allowing observations 

verified by semi-automatic verification systems (Vantieghem et al., 2017) or observations from 

species experts (Steen et al., 2019). 

3.2.2. Bias reduction 

Pre-modelling methods for reducing sampling bias either subsample the data or manipulate the 

background. Probably the most implemented method for dealing with sampling bias (and spatial 

autocorrelation) is the subsampling or spatial (and temporal) filtering of occurrence records 

(Boria et al., 2014). Spatial filtering or spatial thinning aggregates records within a predefined 

distance, but this method must be implemented with care as the distance used for spatial filtering 

automatically also defines the spatial resolution (or grain) at which the model can be interpreted 

and reduces sample size. This might lead to losses of information on species occurrence (El-

Gabbas and Dormann, 2017), biological processes such as dispersal mechanisms (McPherson 
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and Jetz, 2007) and impacts of fine-scaled environmental conditions (Connor et al., 2017). To 

account for imperfect detection, temporal aggregation of opportunistic records can be useful, 

as a species is more likely to be detected in repeated visits (MacKenzie et al., 2006). 

Environmental filtering is another subsampling technique to reduce sampling bias, where 

records with similar environmental conditions are aggregated to reduce the impact of an 

oversampled environmental situation (Varela et al., 2014). However, this method should be 

implemented with consideration of species prevalence and its response to environmental 

gradients and with similar considerations regarding sample size reduction as with spatial 

filtering (Gábor et al., 2020). Another approach to reducing sampling bias is background 

manipulation, such as target-group background selection (Phillips et al., 2009) or background 

thickening (Vollering et al., 2019), which can be used to avoid coarse models or extremely low 

sample sizes.  

3.2.3. Bias mitigation  

Apart from pre-model bias reduction, there are several in-model techniques for bias mitigation. 

All SDMs are designed to fill gaps in space and time, yet different statistical techniques have 

been explored to better tackle different types of bias, such as bias covariates, spatial interaction 

terms (see section 3.1.3) and data-integration methods. The use of bias covariates is a relatively 

easy in-model method to mitigate bias with a large application potential in presence-only 

SDMs. Here, known sources of bias can be used to account for their impact on model 

predictions. Bias covariates are used in presence-only SDMs to train the model and are 

consequently kept constant for model predictions (Warton et al., 2013). Examples include 

measures (or combinations) of search effort (e.g. relative intensity of species observations in its 

taxonomic group or the number of unique sampling dates), accessibility (e.g. distance to roads 

or urban areas and road density) or detection probability (e.g. date or weather conditions) (e.g. 

De Solan et al., 2019; El-Gabbas and Dormann, 2018; Fletcher et al., 2019; Simmonds et al., 

2020; Warton et al., 2013).  

Data-integration methods mitigate bias by combining information from one or more datasets 

(Fletcher et al., 2019; Isaac et al., 2020). Occupancy-detection models (MacKenzie et al., 2006), 

for example, retain information on occurrence and detectability by modelling data from 

repeated visits in a hierarchical structure. This method allows us to account for different sources 

of imperfect detection, such as differences in observer expertise (Johnston et al., 2018; Yu et 

al., 2010). When both opportunistic presence-only data and structured survey data are available, 
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integrated SDMs can be used to mitigate bias (Miller et al., 2019). The idea behind the method 

is that bias can be quantified by assessing the difference between unstructured and structured 

data while keeping the strengths of both data types (Isaac et al., 2020). We chose to focus on 

methods that deal with opportunistic presence-only data only (this was motivated in section 

3.1). 

3.3. Model calibration, prediction and evaluation 

This section focuses on the modelling step (Figure 4, page 22, presents an overview of the 

different steps and methods in this study). Maxent was chosen to model species occurrence at 

coarse resolutions and when the objective was to assess the predictive performance of the model 

based on an independent dataset (Chapters II and III). PPMs with a Geyer saturation process 

were chosen to assess the impact of fine-scaled environmental variables on species occurrence 

(Chapter IV).  

In an SDM study, models are usually first calibrated and, depending on the goal of the study, 

then used for predictions. Model calibration is improving the agreement between the species 

occurrence data and the model predictors. This includes the selection of a modelling method 

and predictors (Guisan and Zimmermann, 2000). Model prediction is using the fitted model to 

predict a probability of occurrence, for example in regions where no data on species occurrence 

was collected. It is important to know that presence-only SDMs have a couple of limitations 

because species prevalence is unknown due to imperfect detection. First, they are unable to 

estimate the intercept (i.e. the average prevalence of the species) due to the lack of information 

on species absences (Fithian and Hastie, 2013; Warton and Shepherd, 2010). Predictions from 

presence-only SDMs will thus always be a measure of relative abundance (or intensity) or 

relative probability of presence (Phillips et al., 2017). Second, when imperfect detection is not 

accounted for, only a ranking of the relative occurrence probability (or habitat suitability) can 

be obtained. This might not be proportional to the true probability of occurrence (Guillera-

Arroita et al., 2015). Finally, presence-only SDMs cannot be used to study populations or trends 

(Guillera-Arroita et al., 2015; Kamp et al., 2016; Lee‐Yaw et al., 2022).  

The performance of an SDM can be assessed for calibration and prediction. In regression 

modelling, calibration performance is assessed by “goodness-of-fit” measures based on the 

deviance, i.e. the difference between observed and fitted values. Common examples are the 

pseudo R², which measures the proportion of variance explained by the predictors, and the AIC 

(Akaike’s Information Criterion), which does the same but penalizes for the number of 
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parameters (Burnham et al., 2011). However, those common maximum-likelihood-based 

methods do not apply to Gibbs point process models because the assumption of spatial 

independence is violated (Baddeley et al., 2015). Instead, one can rely on simulation envelopes 

of summary functions and related tests, such as the Diggle-Cressie-Loosmore-Ford test 

(Baddeley et al., 2014). For Maxent, although model calibration is incorporated in the algorithm 

(section 3.1.2), additional information on calibration performance can be obtained by evaluating 

the model on the training data (Phillips, 2017). Note that when sampling bias or imperfect 

detection are not accounted for, calibration performance is limited (Guillera-Arroita et al., 2015; 

Pearce and Ferrier, 2000) and covariate effects might be affected (Lahoz-monfort et al., 2014). 

Assessing a model’s predictive performance (i.e. model evaluation) is preferably done by 

measuring the ability of the model to predict independent data (Fielding and Bell, 1997). As 

such independent data are not always available, a common approach in SDM studies is to 

perform a repeated cross-validation on subsets of the training data which were set aside for 

model calibration (Guisan and Zimmermann, 2000). The results of such ‘internal’ cross-

validation should always be interpreted with care as they are susceptible to different sources of 

bias (Roberts et al., 2017) and cannot be compared between species (Lobo et al., 2008). 

Additional bias mitigation methods (to the ones in section 3.2.3) are spatial block cross-

validation or checkerboard cross-validation for model selection, which can reduce the impact 

of spatial autocorrelation and consequent inflated model predictive performance (Roberts et al., 

2017).  

4. Towards evidence-based biodiversity conservation policy 

Biodiversity monitoring has seen significant advancements in recent years, particularly in the 

form of species distribution models (SDMs), citizen science data (CSD), and remote sensing 

(as introduced in section 1.3.2). These trends have been exciting governing bodies and 

conservation practitioners as they allow them to strengthen biodiversity policy measures and 

management decisions with evidence-based research (Sutherland et al., 2020). Evidence-based 

research on species distributions and the drivers of their change is important to assess the 

ecological feasibility of conservation measures (Dicks et al., 2014; Downey et al., 2021), 

allocate funding (Parks et al., 2022) and ease acceptance by policymakers and land owners 

(Sutherland and Worldley, 2018).  
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Opportunistic CSD can be used in multiple ways to support biodiversity conservation policy. 

They can give direct information on the current distributions or status of species, or be used as 

input for SDMs. SDMs can be implemented for individual or multiple species, for example by 

stacking their predictions to indicate species richness or biodiversity hotspots (Demolder et al., 

2014; Dubuis et al., 2011; Vila-Viçosa et al., 2020) or by modelling biodiversity directly 

(Dorazio et al., 2006; Pollock et al., 2014).  

4.1. Opportunistic citizen science data as a complementary information source 

Opportunistic CSD can support biodiversity monitoring and conservation and might even 

deliver the same information as structured surveys when enough data is available (Callaghan et 

al., 2020). However, different biases make this unlikely for most taxonomic groups, as these 

data usually lack the necessary information to provide direct measures of species distributions 

or population trends. They can, however, complement structured survey data for IUCN Red 

List assessments (Maes et al., 2015, 2018) and estimates of species richness (Soroye et al., 

2018). Additionally, opportunistic CSD can support the design of monitoring protocols (Westra 

et al., 2016) or provide information on current distributions to refine maps of potential habitat 

suitability created with mechanistic models (Maes et al., 2016). 

4.2. Opportunistic citizen science data as input for species distribution models  

A quick literature query5 indicated that 7176 studies mentioned presence-only SDMs (Maxent 

or PPMs specifically) with possible management applications. Of those, only 164 studies (2%) 

mentioned opportunistic or citizen science data, of which only 36 studies were published at the 

start of this research in January 2018. These numbers illustrate the multitude of studies that use 

presence-only SDMs for conservation applications but the limited adoption of opportunistic 

CSD to support them, although numbers have been increasing over the past four years.  

Management recommendations are often still based on SDMs built with systematic survey data 

(Demolder et al., 2014; Evens et al., 2021; Seavy et al., 2009; van den Berg et al., 2001), which 

is the better option when such data are sufficiently available (Simmonds et al., 2020; Suhaimi 

et al., 2021). When structured data are limited, which is usually the case, they are ideally 

combined with unstructured data (also see sections 3.2.3 and 23.1). Unfortunately, structured 

 
5 A query was conducted on the 21st of March 2023 on https://kuleuven.limo.libis.be/ with the following search terms: 

species distribution model, ecological niche model or habitat model; presence-only or presence-background; Maxent or 

PPM; application or management; (opportunistic and citizen science). 
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data are unavailable for a majority of species and regions. Other studies have compared the 

effectiveness of using structured versus opportunistic data in SDMs. Results have been 

contradictory, depending largely on the adopted methods. Not accounting for sampling bias in 

opportunistic CSD gave misleading insights into species-environment relationships (Broman et 

al., 2014). For estimating relative habitat suitability, logistic regression methods based on 

opportunistic data with inferred absences outperformed presence-only methods like Maxent 

(Bradter et al., 2018) and even systematic survey data for rare species (Henckel et al., 2020). 

By further reducing the uncertainty surrounding the use of opportunistic CSD in SDMs, through 

quality improvement and case studies, our research will make valuable contributions to 

biodiversity conservation. 

We distinguish three main conservation applications of SDMs that can also integrate 

opportunistic citizen science data: 

(i) the delineation and prioritization of areas for biodiversity conservation and 

monitoring, 

(ii) risk assessments under future long-term scenarios of land conversion and climate 

change, 

(iii) and habitat management. 

SDMs can produce habitat suitability maps that aid in the delineation and prioritization of areas 

for biodiversity conservation and monitoring. These maps indicate areas with suitable 

environmental conditions, whether they are currently occupied or could be in the future, and 

provide guidance for conservation efforts. For example, SDMs can prioritize areas with high 

conservation value or so-called ‘hotspots’ (Prendergast et al., 1993), identify ecological 

corridors to facilitate spontaneous migration (Vanden Broeck et al., 2017) or guide the 

reintroduction (Cianfrani et al., 2013; Maes et al., 2019c; Miranda et al., 2019) or translocation 

of species (Eyre et al., 2022). SDMs have also proven useful in guiding field surveys for species 

monitoring (Carvalho et al., 2016), even for critically endangered species (Eyre et al., 2022). In 

addition, model-based stratifications can help target areas where additional sampling effort is 

needed to build better SDMs (Araújo and Guisan, 2006; Ferrier et al., 2004; Guisan et al., 2006). 

SDM predictions can also be used for risk assessments under future long-term scenarios of land 

conversion and climate change (Elith and Leathwick, 2009; Maes et al., 2010; Urban et al., 

2016). Such assessments can, for example, include studies on the impact of habitat 

fragmentation on species distributions in human-dominated landscapes (Rutten et al., 2019), 

the impact of climate change on species with low dispersal ability (Sanczuk et al., 2022), the 

colonisation risk of invasive species (Bradley and Mustard, 2006; Truong et al., 2017) or 
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human-wildlife conflicts (Rutten et al., 2019; Swinnen et al., 2017). Furthermore, extrapolating 

SDM predictions or running SDMs in different climatic regions can predict species responses 

to extreme weather conditions and support assisted migration (Sanczuk et al., 2022; Van Daele 

et al., 2021). While climate SDMs are beyond the scope of this dissertation, improving the 

quality of CSD and illustrating their application potential for addressing other ecological and 

conservation challenges will also support their use for climate-related research. 

Finally, SDMs can support habitat management, by providing new insights or scientific 

evidence that underpins the ecological principles of species-environment relationships. For 

example, they can assess the impact of habitat heterogeneity at large extents and different scales 

(de Vries et al., 2021 (butterflies); Seavy et al., 2009; Van den Berg et al., 2001 (birds); Sillero 

and Gonçalves-Seco, 2014 (reptiles)) or the impact of nitrogen pollution on invertebrates 

(Nijssen et al., 2017; Vantieghem et al., 2017). SDMs can also support habitat management 

outside designated conservation areas, such as for designing agri-environment schemes 

(Sullivan et al., 2017). 

5. Research focus 

The main objective of this research is to reduce the uncertainty surrounding opportunistic 

citizen science data (CSD) and to promote their uptake in biodiversity conservation 

management and policy. Opportunistic CSD might be a valuable source of information given 

its high quantities, yet its value for conservation applications has not been fully explored due to 

its uncertain quality (Dobson et al., 2020; Guillera-Arroita et al., 2015). Stakeholders that might 

profit from the results and methods presented in this dissertation include policymakers, 

conservation practitioners, educators, environmental organisations, database managers and 

citizen scientists. Although our research has various stakeholders, the applications in this 

dissertation will largely focus on conservation policy as there is a strong need for evidence-

based action plans for conservation management (IPBES, 2019; Kadykalo et al., 2021; Louette 

et al., 2015; Maes et al., 2017a; Sutherland et al., 2004; Wood et al., 2018). These needs will 

be tackled in two main parts, with part 1 focussing on data quality and part 2 focussing on using 

novel predictors for conservation applications (Figure 4).  

Exploring cheap, transparent and accessible ways to scientifically support biodiversity 

conservation is extremely important as it will enable the new generation of conservation 

practitioners and policymakers to make informed decisions (Downey et al., 2021; Parker et al., 
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2016; Sutherland et al., 2020). However, this dissertation does not wish to diminish the value 

of field experience nor does it claim that biodiversity conservation can be supported merely by 

interpreting the results of statistical models that integrate state-of-the-art methods such as big 

data analysis and remote sensing. Best practices for conservation management depend on many 

additional factors, such as local socioeconomic or ecological restrictions. 

 

 

Figure 4: Overview. The first part of the dissertation will focus on formulating recommendations for data 

quality filtering of opportunistic presence-only citizen science data (CSD) retrieved from the 

waarnemingen.be (BOX 1) database. More specifically, Chapter II will explore the data quantity-quality 

trade-off by applying different data quality filters to opportunistic records while controlling for sample 

size. Maxent predictions will be evaluated to assess the impact of data quality filtering on species 

distribution model (SDM) performance. Chapter III will assess how species traits impact the results from 

Chapter II. The second part of the dissertation (Chapter IV) will integrate CSD and remote sensing data to 

formulate recommendations for habitat management. Point Process Models (PPMs) with a spatial 

interaction term and bias covariates will be used to mitigate sampling bias (section 3.2.3). The results of 

both parts are discussed in Chapter V, including important considerations and suggestions for future 

research. Chapter VI will elaborate on potential applications in biodiversity conservation policy and 

management. The figure is based on figures in Guisan and Zimmermann (2000) and Zurell et al. (2020), 

adapted for the methodology in this research. 



 

23 

 

5.1. (part 1) Chapter II: The data quality-quantity trade-off in stringent filtering 

Knowledge gap – While much is known about the separate impact of sample size and data 

quality on the performance of SDMs, the simultaneous impact of both increasing data quality 

and reducing sample size on model performance has remained relatively unexplored. 

Objective – The first specific objective of the dissertation was to test the impact of stringent 

filters on the data quality of opportunistic CSD when these are used as input for a presence-

only SDMs. In addition, the study aimed to determine the threshold of sample size at which the 

trade-off between data quality and data quantity becomes unfavourable. Based on these results, 

recommendations for data quality filtering will be formulated and feedback on data quality 

management can be given to data collectors (i.e. database managers and citizen scientists).  

RQ – How can SDM performance be increased by quality filtering of opportunistic CSD when 

both data quality and data quantity are taken into account?  

5.2. (part 1) Chapter III: Insight into the drivers of data quality with species profiles 

Knowledge gap – While stringent filtering is common practice when using opportunistic CSD 

in SDMs, filtering recommendations have remained relatively general and associations between 

species traits and filtering recommendations are sparse.  

Objective – The second specific objective of the dissertation was to group species into species 

profiles based on their traits and their response to data quality filtering. The recommendations 

for data quality filtering from the first study will be improved with novel insights. 

RQ – How can recommendations for data quality filtering be fine-tuned using species 

characteristics? 

5.3. (part 2) Chapter IV: Integrating citizen science and remote sensing data for 

habitat management 

Knowledge gap – Biodiversity conservation often requires habitat management, especially in 

landscapes that have been impacted by human activities. However, developing effective habitat 

management strategies for fragmented landscapes under anthropogenic pressures can be 

challenging, particularly at multiple scales. Traditional approaches have been relying on small-

scale experiments and personal experiences, making it difficult to generalize best practices 



 

24 

 

across different regions and ecosystems. In addition, habitat management efforts often focus 

primarily on vegetation, and animal species are sometimes neglected.  

Objective – The third specific objective of the dissertation was to illustrate how integrating 

citizen science and multispectral satellite data can support habitat management at multiple 

scales. Based on these results, recommendations will be formulated to support management 

decisions in heathlands in fragmented and anthropogenic regions. 

RQ – Can opportunistic CSD and remote sensing data be integrated for supporting biodiversity 

conservation practices at multiple spatial scales? 

6. Overview  

Chapter II explores the quality-quantity trade-off in stringent filtering. Three data quality filters 

were applied to opportunistically collected species records, by labelling them according to 

attributes that were derived from the waarnemingen.be database (BOX 1). For a selection of 

species from four well-studied taxonomic groups (birds, butterflies, plants and dragonflies), 

Maxent SDM performance was measured by evaluating model predictions on an independent 

high-quality presence-absence testing set. The difference in model performance between 

models based on filtered and unfiltered data of different sample sizes was assessed to 

disentangle the impact of data quality filtering on model performance.  

Chapter III aims to gain more insight into the drivers of quality. We hypothesized that data 

quality-related species traits could influence the recording of species observations by 

volunteers. Therefore, we first assessed the impact of these traits from 91 species from three 

taxonomic groups (birds, butterflies and dragonflies) on the results of the first study, i.e. the 

difference in model performance caused by filtering for different degrees of sample size 

reduction. Second, a principal component and clustering analysis were performed to define five 

species profiles for which filtering recommendations could be formulated.  

Chapter IV combines citizen science data with remote sensing data for a conservation 

application. We used a second-order texture metric (Haralick, 1979) derived from multispectral 

Sentinel-2 data to quantify small-scaled vegetation structure in heathlands in the Campine 

(northeastern) region of Belgium. Point process models were run to assess the impact of 

vegetation structure, together with heathland size and heathland heterogeneity, on the habitat 
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suitability of typical dry-heathland fauna. Heathlands were divided into areas surrounded by 

open, closed or anthropogenic features to assess the impact of the landscape context on the 

relationship between vegetation structure, heathland heterogeneity, heathland size and species 

occurrence. 

Chapter V discusses the findings in both parts of the dissertation in an integrated manner and 

highlights some important considerations when interpreting our results. It also gives future 

perspectives on the use of opportunistic CSD in presence-only SDMs to support biodiversity 

conservation policy by suggesting new research.  

Chapter VI discusses the general application potential of our results specifically and elaborately 

illustrates the application potential in Flemish conservation policy. Applications in both nature 

conservation areas (e.g. Natura 2000) and areas of intensified land use (e.g. agri-environment 

schemes) will be considered and two case studies with results from a preliminary analysis will 

be presented. 
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ABSTRACT 

Opportunistic citizen science data are often used for species distribution models (SDMs) when 

high-quality data collected through standardized recording protocols are unavailable. While 

opportunistic data are abundant, uncertainty is usually high, e.g. due to observer effects or a 

lack of metadata. To increase data quality and improve model performance, we filtered species 

records based on record attributes that provide information on the observation process or post-

entry data validation. Data filtering does not only increase the quality of species records, it 

simultaneously reduces sample size, a trade-off that remains relatively unexplored. By 

controlling for sample size in a dataset of 255 species, we were able to assess the combined 

impact of data quality and sample size on model performance. We applied three data quality 

filters based on observers’ activity, the validation status of a record in the database and the 

detail of a submitted record, and analysed changes in AUC, sensitivity and specificity using 

Maxent with and without filtering. The impact of stringent filtering on model performance 

depended on (1) the quality of the filtered data: records validated as correct and more detailed 

records lead to higher model performance, (2) the proportional reduction in sample size caused 

by filtering and the remaining absolute sample size: filters causing small reductions that lead to 

sample sizes of more than 100 presences generally benefitted model performance and (3) the 

taxonomic group: plant and dragonfly models benefitted more from data quality filtering 

compared to bird and butterfly models. Our results also indicate that recommendations for 

quality filtering depend on the goal of the study, e.g. increasing sensitivity and/or specificity. 

Further research must identify what drives species’ sensitivity to data quality. Nonetheless, our 

study confirms that large quantities of volunteer-generated and opportunistically collected data 

can make a valuable contribution to ecological research and species conservation.  
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7. Introduction 

Appropriate conservation measures must mitigate the alarming declines in biodiversity caused 

by global pressures such as climate change (Urban et al., 2016), invasive species (Early et al., 

2016) and intensifying land use (Newbold et al., 2015). Choosing proper conservation measures 

requires evidence of the state of biodiversity and species distributions. Ideally, such evidence 

is gathered through standardised protocols, performed by trained observers and with a clear 

description of both data collection and project objectives (Kosmala et al., 2016). Such highly 

structured data, however, is rarely available for a wide range of species, nor for extensive 

periods or geographical areas (Urban et al., 2016). 

In response, less structured but bulky occurrence data with varying information content, often 

collected by volunteers participating in citizen science initiatives (Theobald et al., 2015), are 

being explored for biodiversity conservation purposes (Guisan et al., 2013). The value of data 

with information on detectability or information on absences is indisputable and their 

applications are abundant, e.g. for species distribution models (SDMs) (Guisan and 

Zimmermann, 2000; Van Strien et al., 2013; Wood et al., 2018) or Red List compilations (e.g. 

Maes et al., 2015). In contrast, the value of data with little information on the observation 

process is uncertain and conservation applications are limited (Dobson et al., 2020; Guillera-

Arroita et al., 2015). When such unstructured occurrence data consist of occasional 

observations of species presences, they are termed opportunistic presence-only data (Giraud et 

al., 2016) or presence-background data (Wang and Stone, 2019). They are generally used in 

SDMs (e.g. Maxent (Phillips et al., 2006) or point process models (Renner et al., 2015)) that 

contrast available environmental conditions in the study area (the background), with the 

conditions at locations where the species was observed (Elith et al., 2010). 

Using opportunistic presence-only data for SDMs has both advantages and disadvantages. The 

main advantage is the abundance of available data, because easy data collection leads to the 

coverage of a large number of species over large geographical areas, at a fine scale and over 

potentially long periods (Kosmala et al., 2016). Online platforms and smartphone applications 

facilitate an easy recording of species for a volunteer observer, and the number of active 

observers on data platforms such as iRecord in the United Kingdom 

(https://www.brc.ac.uk/irecord/), waarnemingen.be in Flanders (northern Belgium; 

https://waarnemingen.be/) or iNaturalist worldwide (https://www.inaturalist.org/) is indeed 

growing by the hundreds (e.g. waarnemingen.be) or even thousands (e.g. iNaturalist) every 
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year. Since the quantity and extent of this data can never be reached by standardised monitoring 

schemes, opportunistic data can make a valuable contribution to science if processed correctly 

(Giraud et al., 2016; Soroye et al., 2018). Two major disadvantages of opportunistic presence-

only data limiting their application potential (Dobson et al., 2020; Guillera-Arroita et al., 2015), 

however, are the incapability of delivering probabilistic model outputs (Guillera-Arroita et al., 

2015) and a high risk of bias and error (Bird et al., 2014; Isaac and Pocock, 2015). The 

awareness of these uncertainties reflects in the scepticism towards data quality of opportunistic 

observations or citizen science data in general (Burgess et al., 2017), because when disregarded 

in the modelling or decision-making process, these disadvantages can lead to misguided 

conservation measures (Isaac et al., 2014).  

Different strategies are applied to increase the quality of opportunistic datasets. A first strategy 

is rather bottom-up, where the underlying protocol of a citizen science project is changed 

(Kosmala et al., 2016). This requires a regime shift and takes time, but can be fruitful (e.g. 

eBird; Sullivan et al., 2014). A second and promising strategy is data integration (Miller et al., 

2019), where multiple sources of opportunistic presence-only data are combined (Lin et al., 

2017) or presence-only data is treated as complementary to structured presence-absence data 

(Robinson et al., 2019). A third strategy, integrated into many national citizen science 

databases, is data validation, where the identification of the species is verified, often together 

with the spatial and temporal plausibility of a record. It is common practice in, for example, 

eBird (Sullivan et al., 2009), waarnemingen.be (Swinnen et al., 2018) and iRecord 

(https://www.brc.ac.uk/irecord/records-verified). However, even with the best experts and 

state-of-the-art methods (e.g. image recognition), it is challenging to verify thousands of records 

entering data repositories every day, particularly those without corroborating picture evidence. 

As a result, many researchers apply a fourth strategy, where data reliability is maximised by 

data cleansing. This can be done by error detection (e.g. Serra-Diaz et al., 2017), outlier removal 

(e.g. Kallimanis et al., 2017), filtering in geographic or environmental space (e.g. Varela et al., 

2014), or deleting species records based on data attributes (e.g. Rutten et al., 2019), so-called 

“stringent filtering” (Steen et al., 2019). 

The desired effect of stringent filtering is an increase in quality, by reducing bias and error 

(Steen et al., 2019). However, sample size is inevitably reduced by filtering, which impacts 

model performance (Gábor et al., 2020; Wisz et al., 2008) and leads to a trade-off between data 

quality and sample size. To our knowledge, the combined impact of data quality and sample 

size in stringent filtering on the performance of SDMs remains underexplored. Studies that 



 

31 

 

explored the impact of stringent data filters found a negligible effect on bird occurrence 

predictions when retaining only structured survey data (Kamp et al., 2016) or data from 

observers with higher expertise (Steen et al., 2019). On the other hand, predictions were more 

accurate when using only records validated as correct for a butterfly genus prone to 

misidentification (Vantieghem et al., 2017), or by using only eBird checklists of observers who 

travelled larger distances to make their observations (Steen et al., 2019).  

In this chapter, we will expand on previous findings by applying different quality filters on a 

regional species occurrence database waarnemingen.be (BOX 1). The database consists of both 

structured and unstructured recordings in Flanders since 2008 and currently holds more than 51 

million species records6 and one of the densest collections of species records in Europe 

(Herremans et al., 2018). We aim to identify which quality filters increase the discrimination 

accuracy of Maxent and to formulate recommendations based on taxonomic group and data 

characteristics. Every citizen science database is unique and while the considered taxonomic 

groups in waarnemingen.be are blessed with a relatively high proportion of quality data, this 

might not be the case in all data repositories. The properties of waarnemingen.be allowed us to 

evaluate the impact on model performance of different changes in data quality, for a wide range 

of changes in sample size. This not only provides more insight into the trade-off between data 

quality and sample size in stringent filtering but also ensures the transferability of our results to 

datasets of lower quality and/or record density.  

8. Materials and methods 

8.1. Dataset and quality filters 

We assessed the impact of data quality filtering on opportunistic citizen science data gathered 

in the Flemish species occurrence database waarnemingen.be (BOX 1). The dataset contained 

both “structured data” or observations supported by guidelines or a protocol (varying from 

standardized monitoring schemes to small project observations), and “unstructured data” or 

incidental observations. For a detailed description of the data selection and model testing 

procedure in this chapter, see section 8.2 and Appendix A. Structured records were separated 

for model testing (n = 161,782) to measure the performance of the species distribution models 

(see sections 8.3 and 8.4) and unstructured records were used for model training (n = 

 
6 Database query from situation on September 30 th 2022 
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5,547,750). We adopted the ODMAP protocol (v1.0, Zurell et al., 2020) and describe the 

different steps (Overview, Data, Model, Assessment and Prediction) in Appendix B. 

We selected three dichotomous filters as a measure for data quality, based on available metadata 

(Table A.1). The first filter “ACTIVITY” refers to the annual average number of active 

recording days of an observer, in the study period. We calculated the individual activity rate of 

observers, including the observers with the highest number of records first and stopped when 

we reached the observers that cumulatively collected 80% of the data. The threshold for a high 

activity rate was set to the first quartile of the activity rate of this group, i.e. 92 recording days 

in one year. We considered this a proxy for observer experience, presumably leading to lower 

rates of both false-negative and false-positive errors (Farmer et al., 2012; Kallimanis et al., 

2017; Kelling et al., 2015). The second filter “DETAIL” reflects whether observers provide 

information beyond the default date, location and species name, such as species behaviour, 

photographs or additional comments. Records submitted with more effort are of higher quality 

when effort is defined by the ‘distance travelled for a checklist’ (Steen et al., 2019). Because 

we applied filters to unstructured data only, we used ‘record detail’ as a measure of effort 

instead. The third filter “VALSTAT” is based on the status of a record in the internal validation 

system of the database, indicating if it was evaluated as correct or as uncertain. Records marked 

as correct are meant to contain no misidentification errors (e.g. Vantieghem et al., 2017), even 

though an occasional human or software error might occur. Records marked as uncertain have 

either not been validated or were hard to judge correctly, due to a lack of additional information 

(Swinnen et al., 2018). 

8.2. Data selection 

All species records from four well-studied taxonomic groups in Flanders, i.e. birds, butterflies, 

dragonflies and plants were subjected to some initial data restrictions: (1) records were limited 

to our study area, the Flemish region of Belgium, (2) observations dated from January 2014 to 

September 2019, (3) we included only records with sufficient precise geographical location (≤ 

500 metres), (4) for birds, only birds that breed in Flanders were used (Vermeersch et al., 2020), 

and (5) we removed absences (zero-counts) and entries validated as incorrect. 

After the initial selection, we divided the data into records for model training and model testing 

(also see Appendix A and Figure A.1). Structured data were used solely for model testing and 

never for model training, and were further reduced to high-quality testing records. This was 

done by selecting only structured records that were validated as correct and from observers with 
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a high activity rate. The model training records consisted of unstructured presence-only data, a 

data type found in many large-scale datasets of opportunistic species records (e.g. GBIF; 

https://www.gbif.org). Model training records were subjected to the three quality filters and 

their combinations, resulting in seven filtered datasets (Figure A.2). 

Per species, records from each set (training or testing) were aggregated in a 1x1 km grid, a 

frequently used resolution in Flemish biodiversity research (e.g. Demolder et al., 2014; Rutten 

et al., 2019; Vantieghem et al., 2017), resulting in one presence per grid cell per species. This 

aggregation of records is also known as ‘spatial thinning’ or ‘spatial filtering’, a common 

technique to reduce spatial bias (Kramer-Schadt et al., 2013) and improve model performance 

(Boria et al., 2014). The high-quality presences of the model testing set were complemented 

with absences derived from grid cells with high search effort for the associated taxonomic 

group, but where the target species was not observed. We kept only species with at least 50 

presences in the testing set, and at least one filtered training set with at least 100 presences. This 

resulted in a dataset of 255 species in four taxonomic groups (full list in Table C.1). 

8.3. Species distribution model 

We evaluated the impact of stringent filtering on the performance of Maxent (software version 

3.4.1, implemented in the R package ´dismo` v1.1-4 (Hijmans et al., 2017)). Maxent is a 

commonly used presence-only algorithm (Elith et al., 2010; Phillips et al., 2006), which models 

a relative probability of occurrence based on a species’ presence records and background points. 

Background points are used to define the contrast between what is available in the environment 

and what is used by the species (Elith et al., 2010). We included all of the 13552 cells in our 

study area as background and did not adjust the background selection to correct for sampling 

bias (e.g. Phillips et al., 2009; Vollering et al., 2019) to ensure comparability of our models 

(Merow et al., 2013). Comparability was further supported by allowing only linear, quadratic 

and product features for every model, by setting a minimum sample size of 100, ensuring that 

the regularization coefficient was kept to 0.05, and by using identical predictors in all Maxent 

models. 

The predictor set represented a range of environmental conditions in our study area and 

comprised twelve continuous predictors and two factor variables (see Table C.2 for a summary). 

We aggregated the land use in Flanders into eleven classes: agriculture, forest, semi-natural 

grassland, scrub, heathland, saltmarshes, wetlands, dunes, urban areas, water and other green 

areas (i.e. green areas outside the urban area that are not mapped as agricultural or natural land 
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use) (Poelmans and Van Daele, 2014). The area of these classes in each 1x1 km cell was 

calculated and cells were removed if the cumulative area of land use was less than 50% of the 

total area (i.e. cells close to regional borders). We removed one class “agriculture” from the set 

because of the relatively high collinearity with other classes and because of the problem with 

perfect multicollinearity in compositional data (Aichison, 2003). The ten other land use classes 

were used to describe the variation in the extremely fragmented landscape in Flanders (Antrop, 

2004). Two additional continuous predictors were the mean annual temperature and mean 

annual precipitation, BIO1 and BIO12 from WorldClim2 respectively (Fick and Hijmans, 

2017). The first factor variable was a grid cell’s dominant soil texture class (Maréchal and 

Tavernier, 1974), a direct or indirect influencer of a species’ microclimate (Titeux et al., 2009). 

The second was ‘Ecoregion’ (Couvreur et al., 2004), which is a region with similar biotic and 

abiotic conditions. Since Flanders has limited geographical and environmental gradients (e.g. 

240 km across, 0 to 288 m elevation and relatively uniform climatic conditions) and species use 

similar biotopes throughout the region, we assumed that the environmental response of a species 

was similar across the entire study area (Chen et al., 2020). 

8.4. Model evaluation 

Model calibration is incorporated in the Maxent algorithm (section 3.1.2). For evaluating model 

predictive performance, we chose three metrics: the Area Under the Receiver Operating Curve 

(AUC), sensitivity (i.e. true positive rate) and specificity (i.e. true negative rate) (Fielding and 

Bell, 1997), based on three rationales. First, using AUC alone as a summary metric of the ROC 

curve would lead to a loss of information about model performance (Jiménez-Valverde, 2012). 

Second, these metrics are measures of model discrimination and are independent of species 

prevalence which is unknown in presence-background situations (Lawson et al., 2014). Third, 

we evaluated our models on an external testing test that contained both presences and absences, 

enabling a reasonable calculation of the two threshold-dependent metrics (sensitivity and 

specificity) and justifying the use of these metrics for model evaluation (Jiménez-Valverde, 

2012; Jiménez and Soberón, 2020). Sensitivity and specificity were calculated by transforming 

the continuous model predictions into a binary response. The threshold was set to the value that 

maximized the sum of sensitivity and specificity calculated on the species’ testing set, thereby 

minimizing misclassification errors (Kaivanto, 2008). The difference in model performance (∆ 

AUC, ∆ sensitivity and ∆ specificity) was used to evaluate the impact of data quality filtering. 

Four choices facilitated the comparison of evaluation metrics within one species (Elith et al., 

2010; Lobo et al., 2008; Merow et al., 2013): (1) an identical testing set, (2) identical Maxent 



 

35 

 

settings (features and regularization coefficient), (3) identical background selection and (4) 

identical predictors.  

8.5. The impact of data quality on model performance  

We repeatedly (20 times) selected a random sample from the unfiltered and filtered training 

sets, at six predefined levels of 100, 250, 500, 1000, 2000 and 4000 presences (also see Figure 

A.3). Model evaluation metrics were compared between training sets of constant fixed sample 

size but with different quality, resulting from the application of the different filters.  

For the evaluation of data quality, species were divided into one of the six sample size levels. 

Species were classified at the highest level possible, based on the number of presences in the 

training set formed by the 3-filter combination ACTIVITY-DETAIL-VALSTAT (ADV). This 

way, all filters could be compared per species and sample size was kept as close as possible to 

the number of recorded presences in the database. This way we prevented large differences 

between the original and the filtered (fixed) sample size impacted model performance 

(Hanberry et al., 2012). 

8.6. The impact of absolute sample size on model performance 

For the evaluation of absolute sample size, we included models from different fixed sample 

sizes per species. We kept data quality constant by comparing results per filter and not between 

filters. Per filter, species were grouped in one out of six intervals of sample size that indicate 

the sample size of the original training sets: [100, 250[ or [250, 500[ or [500, 1000[ or [2000, 

4000[ or ≥ 4000. Species were thus constant across absolute sample sizes but not across filters 

or intervals. 

8.7. The combined impact of data quality and sample size on model performance 

The impact on model performance of a change in data quality and a change in sample size will 

occur simultaneously. To evaluate this combined impact, we analysed 30,724 combinations of 

unfiltered and filtered training sets, with different changes in quality and sample size. We used 

all training sets of fixed sample size (at the six predefined levels) that we could obtain for each 

species, together with the original training sets, with sample size equal to the number of 

aggregated presences from the dataset. 
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Model performance was averaged across the 20 repetitions for the fixed sample sizes (i.e. per 

species, filter type and sample size level) and we looked at the mean differences in model 

performance (∆ AUC, ∆ sensitivity, ∆ specificity) between models of an unfiltered training set 

and the filtered training sets. To fully capture the impact of the change in sample size, we 

assessed two ‘sample size variables’: the remaining sample size after filtering and the 

proportional reduction in sample size. The latter is defined as the proportion of presences 

removed from an unfiltered training set by applying a single filter or a combination of filters. 

See Figure A.3 for an example of how many different datasets we could extract for one species 

and filter.  

The combined impact of data quality and sample size on the difference in model performance 

was assessed using Generalized Additive Mixed Models (GAMMs) with species as a random 

effect, implemented in the ́ mgcv` R package v1.8-31 (Wood, 2017). To account for the doubly-

bounded character of our response variable, we rescaled ∆ AUC, ∆ sensitivity and ∆ specificity 

to fall between 0 and 1 and used the ‘betareg’ family with logit-link. Smoothing functions were 

used to fit both sample size variables, with cubic spline method and k = 5 to reduce overfitting. 

We included interactions by allowing different smoothers per filter and by including the product 

of the remaining sample size and proportional reduction in the equation. Per taxonomic group, 

the model which best explained the difference in model performance while keeping model 

complexity low was selected, by comparing the Akaike’s Information Criterion (AIC) 

(Burnham et al., 2011) of multiple a priori GAMMs (full list in Appendix F) in the R package 

´MuMIn` v1.43.17 (Barton, 2019). The relative importance of data quality (filter type) and 

sample size (sample size after filtering and proportional reduction) was assessed by comparing 

the proportion of explained deviance of those variables in the best model identified by our 

model selection. 

We performed all analyses for the three evaluation metrics (AUC, sensitivity and specificity) 

across all species and within species groups and show the main results for AUC in the main 

text. All other results can be found in Appendices D through H. Models and statistical analyses 

were run in R v4.0.1 (R Core Team, 2021). 
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9. Results  

Throughout the results section, the filters will be referred to as ACTIVITY (A): retaining 

records collected by observers with a high activity rate, DETAIL (D): retaining records that 

were submitted with information beyond the default date, location and species name, and 

VALSTAT (V): retaining records marked as ‘correct’ in the data platform’s validation system. 

9.1. The impact of data quality on model performance  

Figure 5 shows that for all species, filtered data could deliver higher AUCs than unfiltered data, 

but with differences among sample size levels. Smaller sample sizes of filtered data were more 

likely to result in higher AUCs compared to large sample sizes of filtered data. At 100 

presences, all filters could result in a higher AUC, while at 250 and 500 presences VALSTAT 

and DETAIL could deliver positive results. For larger sample sizes, VALSTAT and its 

combinations (at 1000 presences) or no filters at all (at 2000 and 4000 presences) benefitted 

model performance. 

Plants were most sensitive to data quality, where DETAIL and VALSTAT, and also 

ACTIVITY at 100 presences, resulted in higher AUCs throughout. Birds were sensitive to data 

quality at the low and intermediate sample sizes, where the best option was VALSTAT. At 500 

and 1000 presences, VALSTAT alone already increased AUC. At 100 and 250 presences, 

VALSTAT had to be combined with at least one other filter. For butterflies, AUCs increased 

when using ACTIVITY: alone or in combination with one or two other filters at 4000 presences, 

or in combination with VALSTAT at 1000 presences. For dragonflies, single filters were not 

powerful enough to increase AUC. Combining DETAIL with VALSTAT at 500 presences or 

with ACTIVITY at 1000 presences did deliver higher AUCs. 

Similar results to AUC were found for specificity, but mostly for plants at small sample sizes 

of 100 presences (all filters increased specificity) and 250 presences (DETAIL, VALSTAT, 

A+D and A+V increased specificity). At 500 presences, we noted increases in specificity for 

dragonflies (A+D and A+D+V) and decreases in specificity for plants (DETAIL, A+D and 

D+V). At larger sample sizes of 1000 presences or more, a higher specificity was found only 

for birds (filter combinations). Data quality did not impact specificity for butterflies (Figure 

D.2).  
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Results for sensitivity showed more negative impacts of using filtered data compared to AUC 

and specificity, yet also increases in sensitivity were noted for plants at 250 presences (DETAIL 

and its combinations) and 500 presences (all filters except ACTIVITY and A+V), and for 

butterflies at 4000 presences (ACTIVITY and its combinations). A lower sensitivity was found 

for plants at 100 presences (VALSTAT and its combinations), for dragonflies at 500 presences 

A+D and A+D+V) and for birds at 100 presences (A+D), 2000 presences (ACTIVITY and 

combinations with VALSTAT) and 4000 presences (DETAIL and its combinations) (Figure 

D.1).

 

Figure 5: The impact of data quality on AUC for all species and per taxonomic group, when absolute 

sample size is constant at six levels: 100, 250, 500, 1000, 2000 and 4000 presences. Per level, species were 

limited to those that could be modelled with all filters at the considered level, including the 3-filter 

combination ACTIVITY-DETAIL-VALSTAT. Species were subsequently classified at the highest level 

possible, meaning that AUC results cannot be compared between sample size levels, because species are 

different. The number of species in each comparison is presented in the top left corner of the graphic areas. 

Not all levels could be assessed for all taxonomic groups, because for example for butterflies there were 

no species with less than 500 presences in our dataset, so all species were classified at level 500 or higher. 

Boxplots represent medians, upper and lower quartiles with whiskers extending to the minimum and 

maximum values. Asterisks show significant differences in AUC compared to the unfiltered data, tested by 

a multiple comparison test with Benjamini & Hochberg (1995) correction (*** p<0.001, ** p<0.01, * 

p<0.05). Colours indicate only positive changes (green) for AUC. Results for the impact of data quality on 

sensitivity and specificity are found in Figure D.1 and D.2 respectively. 
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9.2. The impact of absolute sample size on model performance 

Figure 6 shows that reducing absolute sample size beyond a certain level always impacted 

AUCs negatively. This level depended more on the original sample size than on the applied 

filter. At lower original sample sizes (< 2000 presences), reducing sample size by 50% did not 

cause significant decreases in AUC for most filters, with exceptions for DETAIL, VALSTAT, 

A+D and A+V at 500 to 1000 presences. At larger original sample sizes (> 2000 presences), 

sample size could be reduced by 75% for most filters, with exceptions for VALSTAT and D+V 

at 2000 to 4000 presences. Reducing sample size to 100 presences, no matter what the original 

sample size was, always resulted in lower model performance. For birds and butterflies, the 

impact of sample size on AUC was similar to that of all species (Figures E.3 and E.4). Dragonfly 

and plant models appeared less sensitive to sample size (Figures E.5 and E.6).  

Similar to AUC, the impact of smaller sample sizes on specificity was generally negative across 

all species with a higher tolerance for larger reductions when original sample sizes were high, 

yet with more variation among filters (Figure E.2). Specificity of butterfly and plant models 

(Figures E.12 and E.14) appeared more sensitive to smaller sample sizes compared to bird and 

dragonfly models (Figures E.11 and E.13). 

In contrast with results for AUC and specificity, the impact of smaller sample sizes on 

sensitivity is generally positive. Significant increases in sensitivity were more likely to occur 

for higher quality data (filter combinations) at lower original sample sizes and for lower quality 

data (unfiltered data and single filters) at higher original sample sizes (Figure E.1). For 

butterflies, dragonflies and plants, sensitivity generally increased (Figures E.8, E.9 and E.10) 

when specificity decreased (Figures E.12, E.13 and E.14). For birds, this contrast was less 

pronounced and we even noted more decreases in sensitivity than increases when sample size 

was reduced (Figure E.7). 
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Figure 6: The impact of absolute sample size on AUC for all species when data quality is constant. Per 

filter, species were grouped in one of the six specified intervals of sample size (left) that indicate the 

available sample sizes of the original training sets. AUCs were compared between models resulting from a 

repeated and random selection of different fixed sample sizes. Because species differ, results can only be 

compared within the graphic areas, i.e. between fixed sample sizes, but not between filters (horizontal) or 

intervals (vertical). The number of species in each comparison is presented in the top left corner of the 

graphic areas. Boxplots represent medians, upper and lower quartiles with whiskers extending to the 

minimum and maximum values. Asterisks show significant differences in AUC compared to the highest 

sample size, tested by a multiple comparison test with Benjamini & Hochberg (1995) correction (*** 

p<0.001, ** p<0.01, * p<0.05). Colours indicate only negative changes (red) for AUC (∆ AUC < 0). 

Results for the impact of absolute sample size on sensitivity and specificity are found in Figures E.1 and 

E.2 respectively. 

9.3. The combined impact of data quality and sample size on model performance 

Up to this point, the absolute sample size of unfiltered and filtered data remained identical. In 

reality, however, sample size usually decreases when applying quality filters. Therefore, the 

impact of sample size was quantified with two variables in this section: the ‘proportional 

reduction in sample size’ and the ‘sample size after filtering’ (also called ‘remaining sample 

size’). A detailed summary per species of all the filters and their impact on model performance 

showed that model performance mostly increased after filtering (depending on the applied filter, 

for 55 to 80% of the species for AUC, 49 to 55% for sensitivity and 51 to 58% for specificity), 
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but that various filter-species combinations also show a negative impact on model performance 

(Supplementary Information 27).  

Per taxonomic group, we selected the ‘best’ GAMM (Appendix F), i.e. the model with the least 

parameters and a small difference in AIC (∆ AIC < 1) compared to the top model, to evaluate 

the combined impact of data quality and sample size on the change in model performance 

caused by filtering. Figure 7 shows the relative importance of the variables in the GAMM for 

∆ AUC.  

 

Figure 7: The relative variable importance for the impact of data quality and sample size on ∆ AUC, based 

on the proportion of the percentage of deviance explained (%DE) by the different explanatory variables in 

the best GAMM (Generalized Additive Mixed Model) per taxonomic group (orange dots), and the relative 

variable importance across species, in the GAMs (Generalized Additive Models) where the random species 

effect was excluded (boxplots). The proportional %DE is the decrease in %DE between the full model and 

the model where the variable was excluded (but with identical smoothing parameters), relative to the %DE 

of the full model to summarize effects across n species. Species of which the full model could not be 

estimated due to convergence issues were excluded from the summary. The relative variable importance 

for the impact on ∆ sensitivity and ∆ specificity are found in Figures G.1 and G.2 respectively. 

 
7 File available at: https://www.sciencedirect.com/science/article/pii/S0304380021000260 
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Considering the averages across species (boxplots), the change in quality (the filter type) 

explained most of the variation in ∆ AUC for plants and dragonflies, yet with high variability 

in percentage deviance explained (%DE) among species. The interaction between proportional 

reduction and sample size after filtering explained the most variation in ∆ AUC for bird and 

butterfly models and is also important for dragonfly models. For plants, however, more 

variation in ∆ AUC was explained by the interaction between quality and sample size after 

filtering. This interaction was also more important when considering the variation in ∆ 

sensitivity and ∆ specificity, and the differences between the proportional %DE for the variables 

‘filter’, ‘interaction RxS’ and ‘interaction SxF’ became smaller. The filter type remained the 

most important variable for plants for predicting both ∆ sensitivity and ∆ specificity yet with 

less variability among species compared to AUC (Figures G.1 and G.2). 

The predictions for ∆ AUC of the best GAMM are presented in Figure 8, along a continuous 

scale of proportional reduction and for three sample sizes after filtering, that we chose based on 

data availability: 100, 500 and 1000 presences. Predictions for ∆ Sensitivity and ∆ Specificity 

are found in Appendix H. The combined impact of filtering varies among taxonomic groups 

and we find the highest impacts for plant models (AUC and Sensitivity) and dragonfly models 

(Sensitivity), with the largest differences in model performance among filters. The predictions 

for birds and plants in Figure 8 show that the best filters (i.e. the filters leading to increases in 

AUC) can differ between remaining sample sizes, confirmed by the relatively higher 

importance of the interaction between filter and sample size after filtering (Figure 7). For plants, 

for example, the best filter was A+D+V at small, but D+V at large remaining sample sizes. 

Similar patterns were detected for Sensitivity (birds, dragonflies and plants in Figures G.1 and 

H.1) and for Specificity (all groups in Figures G.2 and H.2). In general, filters that resulted in 

high-quality data usually increased model performance (Figures 1, D.1 and D.2). The 

proportional reduction in sample size could also be higher for those filters before a negative 

impact on model performance was detected.  

Overall, filtering increased AUCs and sensitivity for plants (i.e. ∆ > 0) and decreased sensitivity 

for birds (i.e. ∆ < 0), while in other cases, both increases and decreases in model performance 

were noted. Different trends described the impact of proportional reduction on model 

performance. The shape of the trend depended on the remaining sample size, with different 

trend slopes for all taxonomic groups and even different trend directions for birds (sensitivity), 

butterflies (AUC), dragonflies (sensitivity and specificity) and plants (sensitivity).  
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Figure 8: The combined impact of data quality and sample size on ∆ AUC per taxonomic group. The full 

lines are the predictions for ∆ AUC (AUCfiltered data – AUCunfiltered data) from the ‘best’ GAMM (Generalized 

Additive Mixed Model) along a continuous scale of proportional reduction in sample size and for three 

sample sizes after filtering that we chose based on data availability: 100, 500 and 1000 presences. Colours 

represent the different filters (data quality). The red dotted line equals a ∆ AUC of 0, i.e. filtering did not 

impact model performance. We used the REML-method (restricted maximum likelihood) in the ‘gam’ 

function of the ´mgcv’ R package v 1.8-31 (Wood, 2017) to model our data. Filter type was modelled as 

factor variable and species as random effect. Smoothing functions were used to fit both sample size 

variables (proportional reduction and sample size after filtering), with cubic spline method and k = 5. ∆ 

AUC was rescaled to fall between 0 and 1, so that we could use the ‘betareg’ family with logit-link, because 

of the double-bounded character of the response variable (∆ AUC). The combined impact of data quality 

and sample size on ∆ sensitivity and ∆ specificity are shown in Figures H.1 and H.2 respectively. 

For AUC and specificity, trends at small remaining sample sizes of 100 presences were 

negative, and filtering decreased model performance (i.e. ∆ < 0) beyond a certain maximal 

threshold of proportional reduction. Depending on the filter, maximum reductions in sample 

size could range from 0-35% (AUC) for birds, 20-60% (AUC) or 10-30% (specificity) for 
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butterflies, 55-85% (AUC) or 35-65% (specificity) for dragonflies and 5-85% (specificity) for 

plants. For sensitivity, trends at a remaining sample size of 100 presences were positive, except 

for birds. Depending on the filter, reductions had to be at least 0-10% for butterflies and 35-

70% for dragonflies before an increase in model performance was noted.  

For larger remaining sample sizes of 500 and 1000 presences, trends in the impact of 

proportional reduction on ∆ AUC and ∆ specificity remained negative for birds. For butterflies, 

trends for ∆ AUC flattened with increasing sample size after filtering and ∆ AUCs became 

largely positive, except for DETAIL, VALSTAT and D+V at reductions above 45%. We even 

saw a positive trend when reductions above 70% resulted in larger sample sizes of 1000 

presences. For dragonflies, trends were flattened for AUC and specificity at larger remaining 

sample sizes and, except in the case of specificity and VALSTAT, model performance generally 

increased after filtering. Trends even became positive for specificity at larger remaining sample 

sizes of 1000 presences and reductions above 20%. For sensitivity, however, trends became 

more negative for dragonflies at higher remaining sample sizes and only VALSTAT, at 500 

presences and reductions below 70%, led to increases in model performance. 

10. Discussion 

We applied three dichotomous filters to opportunistic species records of citizen scientists as 

single filters and in combinations to test their impact on species distribution model performance. 

We retained records from more active observers (ACTIVITY), detailed records, i.e. submitted 

with information beyond the default date, location and species name (DETAIL) and validated 

records, i.e. marked as ‘correct’ in the data platform’s validation system (VALSTAT). Results 

indicated that the impact of stringent filtering on model performance (measured by changes in 

AUC, sensitivity and specificity) depended on the quality of the filtered data, both the 

proportional reduction in sample size caused by filtering and the remaining absolute sample 

size, and the taxonomic group. To illustrate how filtering can impact relative occurrence maps, 

Appendix H shows model predictions based on the unfiltered data and three situations of 

reduced sample size when using the best filter (i.e. the filter that caused the largest positive 

difference in AUC). We did this for one species per taxonomic group, i.e. the species where the 

highest positive change in AUC was observed (Figures H.3 to H. 6). 
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A recurring pattern was that specificity results (true negative rates) generally agreed more with 

AUC results than sensitivity results (true positive rates). Moreover, specificity usually increased 

when sensitivity decreased and vice versa, which happens when evaluating model predictions 

on an external data set (Jiménez-Valverde, 2012). In the discussion that follows, we will focus 

on AUC results and we refer to the different results for specificity and sensitivity in the results 

section and Supplementary Information (Appendices D to H). The reader must keep in mind 

that the choice of an optimal threshold for threshold-dependent metrics depends on the 

characteristics of the SDM study (e.g. the goal of the study or the availability of information on 

species prevalence) (Jiménez-Valverde and Lobo, 2007) and that this choice might influence 

the recommendations for the most suited approach for quality filtering.  

The quality of validated and detailed records was generally higher than the quality of records 

from more active observers. Luckily, validation of occurrence data entering large repositories, 

by synergies between human experts and computer intelligence, has been common practice (e.g. 

in eBird; Kelling et al., 2013). The main benefits for data quality of such an internal validation 

system are (i) the quick and relatively easy identification and correction of false-positive errors, 

as they can impact model performance negatively (Costa et al., 2015), and (ii) an increased 

observer skill by the interaction between data managers and users (Sullivan et al., 2009).  

Metadata cannot only hold important information to improve SDMs by overcoming problems 

with imperfect detection (e.g. Kéry et al., 2009) or other types of systematic bias (e.g. Johnston 

et al., 2017), but our results also indicate that the very act of supplying additional information 

can benefit data quality. We, therefore, agree that observer dedication and effort (linked to 

DETAIL) are more fit measures of data quality than observer experience and recording rates 

(linked to ACTIVITY) (Henckel et al., 2020; Steen et al., 2019). Like in several other studies 

on data quality, it remains tough to detect changes in model performance due to observer-related 

measures of quality (e.g. observer skill and reporting consistency in Henckel et al. (2020) or 

observer expertise in Steen et al. (2019)). Combining multiple observer characteristics in 

observer profiles (Boakes et al., 2016; Isaac and Pocock, 2015) might be of added value here. 

Nonetheless, selecting data from active observers did significantly increase data quality for 

eight butterfly species that were among the most observed species in our dataset. We 

hypothesize that these common species are susceptible to misidentification by the 

inexperienced observer (Farmer et al., 2012), because of their highly familiar names in Dutch 

(Aglais io L., Gonepteryx rhamni L. and Vanessa atalanta L.) or because they are hard to 



 

46 

 

distinguish from congeners (Pieris rapae L., Maniola jurtina L. and Pararge aegeria L.) 

(Vantieghem et al., 2017). 

When deciding whether or not to filter, it is not only important to consider the obtained data 

quality, but also both the proportional reduction in sample size and the remaining absolute 

sample size after filtering. Large reductions or small remaining sample sizes do not always 

cause lower model performance, and while we agree that small sample sizes generally lead to 

worse models (Jiménez-Valverde et al., 2009; Liu et al., 2019), the relative change in sample 

size must not be ignored (Hanberry et al., 2012). Both measures of sample size co-define which 

filters are suited for model performance improvement. They have a limited impact on the 

selection of the best or worst filters based on AUC results, as the relative impact on AUC of the 

different filters remained largely constant across different changes in sample size. However, 

here we must mention that when the goal is to increase sensitivity or specificity, the remaining 

sample size after filtering does need to be considered (Appendix G). 

The different drivers of model performance make the interpretation complex but also highlight 

the importance of analysing multiple aspects of data manipulation together (Gábor et al., 2020). 

We add data quality to the list of drivers that can notably impact model performance, such as 

species characteristics, modelling technique and sample size (Gábor et al., 2020; Tessarolo et 

al., 2014). Compared to these factors, previous studies found marginal importance of the impact 

of sampling bias (Gábor et al., 2020; Tessarolo et al., 2014) and we have no reason to contest 

this finding based on our results (but note that we partially controlled for sampling bias by 

presence thinning (Kramer-Schadt et al., 2013)). Disentangling the different drivers of model 

performance in stringent filtering could be more feasible in a virtual species setting (Hirzel et 

al., 2001; Meynard et al., 2019), however, we argue that the simulation of filtered data of 

different quality is not trivial. This would require a more profound understanding of how data 

quality is impacted by data and species characteristics.  

We can recommend stringent filtering for taxonomic groups where model performance is more 

impacted by data quality and less by sample size, such as the plants and dragonflies in this 

chapter. For plant models, we even observed that an increase in quality can mitigate the negative 

impact on AUC of reducing sample size to 100 presences (Figures 8 and E.6). For the other 

taxonomic groups, this is only true below certain proportional reductions. Models from species 

with specific habitat conditions, such as dragonflies, are less sensitive to sample size and also 

profit from data quality increase. Such species have a more distinct link with their habitat and 
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are easier to model compared to species with a broader niche (Hernandez et al., 2006). On the 

other hand, mobile species that have large home ranges, such as most studied birds and 

butterflies, are more difficult to model. It might be that this issue cannot be resolved by data 

quality filtering alone. Nevertheless, caution is needed, because the impact of data quality on 

model performance shows large variation among plant and dragonfly species (Figure 7) and is 

different when considering other evaluation metrics (Appendix E).  

For taxonomic groups where model performance is more impacted by sample size and less by 

data quality, such as the birds and butterflies in this chapter, we advise being more careful. We 

observed that filtering is less beneficial for these groups, probably because their abundant data 

already leads to relatively high model performance. Especially for birds, unfiltered data 

appeared very suited for modelling and filtering did not improve AUCs, certainly when less 

than 50% of the sample size remained. For these groups, even filters that do not cause large 

reductions nor lead to a small sample size could cause model performance to decrease. 

Nonetheless, choosing the right filter can mitigate the negative impact of sample size if the 

obtained quality is high enough (e.g. extracting data from active observers for butterflies or 

combining validated and detailed records for birds).  

In this chapter, we focussed on the combined impact of data quality and sample size in stringent 

filtering, but we acknowledge that other factors, such as environmental filtering (Gabor et al., 

2019), scale (Connor et al., 2017; Gottschalk et al., 2011), species traits (Hernandez et al., 2006; 

McPherson and Jetz, 2007) and SDM technique (Liu et al., 2019) will probably impact the 

sensitivity of a dataset to stringent filtering as well. For example, the proportion of high-quality 

data in a model training set is scale-dependent, because a coarse resolution gives a higher 

chance that at least one high-quality observation falls in a grid cell. Presence thinning is 

therefore not only a way to remove spatial bias (Boria et al., 2014) but also to reduce other 

sources of uncertainty (Kramer-Schadt et al., 2013), such as the presence of data with uncertain 

quality. We also detected variation among species, and as taxonomic groups still show plenty 

of variation in species traits (Maes et al., 2019a), it might be more efficient to formulate 

recommendations for stringent filtering based on species traits rather than on taxonomy. Species 

prone to misidentification, for example, can benefit from retaining only records validated as 

correct based on photos supplied by the observer (Vantieghem et al., 2017) and we have 

indications that, for example, habitat-specificity, mobility and popularity impact the sensitivity 

of a species to data quality filtering as well. That aspect of data quality filtering will be further 

investigated in the next chapter. Our recommendations are limited to the discrimination 
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accuracy of Maxent. As Maxent usually comes out as a relatively more robust SDM technique 

(Thibaud et al., 2014), our conclusions are likely to be conservative. We, therefore, expect at 

least a similar, if not a larger, impact of data quality filtering for other SDM techniques. 

11. Conclusions 

We conclude that data quality filtering has the potential to improve predictions of species 

distributions, especially for species where SDMs are less sensitive to decreases in sample sizes. 

However, data quality should not be pursued at any cost, because filtering can also impact 

model performance negatively, e.g. for species with abundant data or when filtering leads to 

low sample sizes or causes high sample size reductions. We encourage the further development 

and adoption of techniques that can increase the availability of high-quality data, to be able to 

fully profit from the benefits of opportunistic citizen science data. The value of a database-

integrated validation system demonstrates the potential of bulky datasets from platforms and 

applications where the focus is on the identification and validation of species observations, such 

as iNaturalist (https://www.inaturalist.org/), Pl@ntnet (https://www.plantnet.org) or 

ObsIdentify (Hogeweg et al., 2019). We advise to always ‘Think before you shrink’ because 

volunteer-generated data can make valuable contributions to science if processed correctly.   
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ABSTRACT 

Opportunistic citizen science data are commonly filtered in an attempt to improve their 

applicability for relating species occurrences with environmental variables. Recommendations 

on when and how to filter, however, have remained relatively general and associations between 

species traits and filtering recommendations are sparse. We collected six traits (body size, 

detectability, classification error rate, familiarity, reporting probability and range size) of 52 

birds, 25 butterflies and 14 dragonflies. Both absolute (values not rescaled) and relative traits 

(values rescaled per taxonomic group) were linked to filter effects, i.e. the impact on three 

different measures of species distribution model performance caused by applying three different 

quality filters, for different degrees of sample size reduction. First, we applied multiple 

regressions that predicted the filter effects by either absolute (including taxonomic group) or 

relative traits. Second, a principal component and clustering analysis was performed to define 

five species profiles based on species traits that were retained after a multiple regression model 

selection. The analysis of the profiles indicated the relative importance of species traits and 

revealed new insights into the association of species traits with changes in model performance 

after data quality filtering. Both taxonomic group (more than absolute traits) and relative species 

traits (mainly classification error rate, range size and familiarity) defined the impact of data 

quality filtering on model performance and we discourage the selection of a quality filtering 

strategy based on one single species trait. Results further confirmed the importance of 

considering the goal of the study (i.e. increasing model discrimination capacity, sensitivity or 

specificity) as well as the change in sample size caused by stringent filtering. The general 

species knowledge among citizen scientists (importance of observer experience), together with 

the mechanism of record verification in an opportunistic data platform (importance of verifiable 

metadata) have the largest potential for enhancing the quality of opportunistic records.  
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12. Introduction 

Chapter II highlighted the importance of considering both the type of filter and the resulting 

change in sample size, yet variation among species in their response to data quality filtering 

remained large. Grouping species according to their taxonomy revealed that filtering benefitted 

some groups (i.e. plants and dragonflies) more than others (i.e. butterflies and birds). In this 

chapter, we aim to verify whether grouping species according to a-priori-selected life history 

and/or ecological traits could better substantiate recommendations for data quality filtering. 

Species traits have been linked extensively to SDM performance and those that cause the most 

variation can usually (but not exhaustively) be compiled into the following three: (1) traits that 

define the species-environment relationship (e.g. range size, niche breadth (Brotons et al., 2007; 

Stockwell and Peterson, 2002) and habitat association (Chefaoui et al., 2011)), (2) traits that 

impact the detectability of the species in space and time (e.g. conspicuousness (Seoane et al., 

2005), migratory behaviour (Carrascal et al., 2006) and lifespan (Hanspach et al., 2010)), and 

(3) traits that influence the proneness to misidentification (e.g. phylogenetic relatedness 

(Vantieghem et al., 2017)).  

Notwithstanding the vast amount of proof of the link between species traits and absolute SDM 

performance, few studies have successfully linked species traits to the change in SDM 

performance caused by stringent filtering of species occurrence records (but see e.g. Steen et 

al., 2019, where models of more restricted species performed better when using data collected 

with lower effort). This could be due to the higher quality of the unfiltered data in most of these 

studies (e.g. semi-structured data in Steen et al. (2019)) or due to the conflicting character of 

the simultaneous impact of data quality filtering, i.e. an increase in data quality and a decrease 

in sample size (Chapter II). By assessing this twofold effect on an extensive dataset of 

opportunistic records, waarnemingen.be, we will aid the optimisation of the data cleansing 

process that is essential for high-quality SDMs (Zurell et al., 2020).  

13. Materials and methods 

13.1. Species data and impact of quality filtering 

We used the results of the analysis in Chapter II (see sections 8.1 and 8.2 and Appendix A for 

a description of the data quality filters and data selection). The three filters were: ‘ACTIVITY’, 

based on an observer’s average annual activity rate, where the filter consists in removing 
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records from less active observers; ‘DETAIL’, based on the presence of metadata beyond 

default requirements (i.e. species name, location, date and observer id), where the filter consists 

in removing records that were submitted without any additional information (e.g. sex, count, 

behaviour); and ‘VALSTAT’, based on the validation status of a record in the data platform, 

where the filter consists in removing doubtful and unevaluated records (Table 1). These are all 

records that could not be verified by species experts because key information was missing or 

because the record was not assessed yet by an expert at the moment the dataset was extracted. 

For the analysis in this study, we extracted the change in model performance (i.e. Δ AUC, Δ 

sensitivity and Δ specificity) (Table 1), after using the three single filters (ACTIVITY, DETAIL 

and VALSTAT) for 52 birds, 25 butterflies and 14 dragonflies. Plant observations were not 

used in the present analysis because their traits are not directly comparable to animal species 

traits. For a summary per species of the data used for model testing and model training 

(unfiltered and filtered data) and of the impact on model performance, we refer to Table C.1 

and Supplementary Information 28 respectively. 

13.1. Species traits 

We used six species traits that can be related to data quality in opportunistic citizen science data 

based on literature review and expert opinion: body size, detectability, classification error rate, 

familiarity, reporting probability and range size (Table 1). Abundance was not considered 

because the largely unstructured waarnemingen.be database contains unreliable count data that 

are mostly without a clear reference to time and space. All trait values can be found in Table 

I.1. 

Body size equals the wing length for birds (Storchová and Hořák, 2018) and butterflies (Bink, 

1992) and head-to-tail length for dragonflies (https://www.vlinderstichting.nl/libellen/).  

The classification error rate reflects how likely it is for an average observer to wrongly 

identify a species. This was quantified by the number of erroneous photo records (i.e. 

observations accompanied by a photograph) of a species in the waarnemingen.be data portal, 

relative to its total number of photo records. The portal keeps track of changes in the 

identification of a species, and we considered only the changes at the species level as erroneous 

(and for example not the changes from family or genus to species level). Auto-corrections made 

by the observer were excluded.   

 
8 File available at: https://www.sciencedirect.com/science/article/pii/S0304380021000260  
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Table 1: Overview and definitions of the used variables. 

Data quality filters   

 description: based on: 

ACTIVITY removes records from less active observers an observer’s average annual activity rate 

DETAIL removes records that were submitted without 

any additional information 

the presence of metadata beyond default 

requirements 

VALSTAT removes doubtful and unevaluated records  the validation status of a record in the data 

platform 

Species traits   

 description: source: 

Body size wing length (birds and butterflies) or head-to-

tail length (dragonflies) 

Bink (1992); Storchová and Hořák (2018), 

https://www.vlinderstichting.nl/libellen/  

Classification error rate the number of erroneous photo records (i.e. 

observations accompanied by a photograph) 

relative to the total number of photo records. 

the waarnemingen.be data portal during the 

study period 

Detectability the probability of detecting a species on the 

condition that it is present 

quantified by applying site occupancy models 

to complete checklist data, retrieved from the 

waarnemingen.be data portal 

Familiarity reflects how well-known a species is by the 

average observer 

the number of Belgian websites (searched on 

Google) with the Dutch name of the species in 

the title (Żmihorski et al., 2013) 

Reporting probability the likelihood that a species is reported by an 

average observer, on the condition that it is 

present and that the taxonomic group it 

belongs to is surveyed 

a species’ relative (per taxonomic group) 

average reporting rate divided by its 

detectability, retrieved from the 

waarnemingen.be data portal 

Range size the distribution range size  the total number of grid cells (km²) in which a 

species has been recorded during the study 

period, retrieved from the waarnemingen.be 

data portal 

 description:  

Absolute traits unscaled trait values as retrieved by the different methods described 

Relative traits scaled trait values; using the following transformation per taxonomic group: 

𝑦 =
x −min(x)

max(𝑥) − min(𝑥)
 

Impact on model performance 

Δ AUC  change in the area under the receiver operating characteristic 

Δ sensitivity change in the true positive rate (TPR) after data quality filtering 

𝑇𝑃𝑅 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Δ specificity change in the true negative rate (TNR) after data quality filtering 

𝑇𝑁𝑅 =
𝑡𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Filter effects 

All combinations of data quality 

filters and impact on model 

performance 

the impact of data quality filtering (Δ AUC, Δ sensitivity and Δ specificity) by the 

three filters ACTIVITY, DETAIL and VALSTAT 

Sample size situations 

actual reduction the actual reduction in the number of presences after data quality filtering 

50% reduction a relative reduction in the number of presences after data quality filtering of more than 

50% 

reduction to 100 presences a reduction to 100 presences after data quality filtering 
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Detectability is the probability of detecting a species on the condition that it is present 

(MacKenzie et al., 2017). Species detectability was retrieved from applying site occupancy 

models to complete semi-structured checklist data extracted from waarnemingen.be, following 

Johnston et al. (2021). Detection histories consisted of five to ten repeated visits to a specific 

site (a 1 km grid cell) by the same observer in a period of closure (i.e. a period with no supposed 

changes in occupancy). A period of closure was defined as 20 consecutive days in the peak 

active season of a species. The peak active season was defined as every 10 days with an 

observation count above the average count of all observations in a year, excluding egg, larva, 

pupa and caterpillar observations. Covariates used to describe the detection process were: 

checklist duration (in minutes), starting time of the checklist, search effort (i.e. the number of 

species recorded at a specific location, based on the principle of species accumulation curves 

(Colwell et al., 2004)), and open habitat (grasslands, wetland, marshes and water) versus closed 

habitat (forest and woodland), because of an increased detectability (visually and, for birds, also 

auditory) in open habitat types (Johnston et al., 2014; Morton, 1975). Detection probabilities 

were predicted for all grids with covariate values and averaged to attain one value per species. 

Familiarity refers to how well-known a species is by the average observer and was quantified 

by the number of Belgian websites with the Dutch name of the species in the title, retrieved 

from the Google search engine (Żmihorski et al., 2013). We added two extra search terms that 

specified the taxonomic group (in Dutch) and excluded the waarnemingen.be website to avoid 

counting individual observations on the used data platform, e.g. "Bruinrode Heidelibel" site:.be 

libel -waarnemingen.be. An Incognito window was used to unlink search results from the used 

Google account. 

Range size is the distribution range size of the species during the entire study period 2014-2019 

in the study area and was quantified as the total number of grid cells (km²) in which a species 

has been recorded (McPherson et al., 2004). 

Reporting probability is the likelihood that a species is reported by an average observer, on 

the condition that it is present and that the taxonomic group it belongs to is surveyed. To meet 

these requirements, we looked at the peak of the active season and calculated the relative 

number of species observations to the number of observations for a taxonomic group. This was 

averaged across locations and observers. We subsequently divided this number by the average 

detectability across locations where the species was present to correct for the impact of 

detectability on reporting rate. 
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13.2. The impact of data quality filtering 

To build recommendations for data quality filtering based on species traits, we first analysed 

the multivariate relationship between species traits and the filter effects. Consequently, species 

were grouped in species profiles characterised by the most highly associated traits to assess if 

such groups presented a similar response to data quality filtering. By filter effect, we mean the 

impact of data quality filtering by the three filters ACTIVITY (only observations from active 

observers), DETAIL (only detailed observations) and VALSTAT (only approved observations) 

on three evaluation metrics: AUC, sensitivity and specificity. All analyses were conducted in 

R (R Core Team, 2021). 

13.2.1. Multi-trait analysis 

Relationships between species traits and filter effects were examined using multiple (multi-

trait) regressions. The data were modelled in beta-regressions (betareg package v3.1-4, Cribari-

Neto & Zeileis, 2010), because of the bound character of the response variable (Δ AUC, Δ 

sensitivity and Δ specificity theoretically range from -1 to 1). Filter effect values were rescaled 

to fall between 0 and 1 with the following transformation: 𝑦 =
x−min(x)

max(𝑥)−min(𝑥)
.To reduce the 

impact of outliers, data points with a cook’s distance of more than four times the mean cook’s 

distance of all data points were removed (Ferrari and Cribari-Neto, 2004). As trait values 

showed taxonomic differences (Figure 9), continuous values (absolute traits) were rescaled per 

taxonomic group (relative traits), using the aforementioned transformation (Table 1). The 

relative values can be informative for patterns across taxonomic groups that would go unnoticed 

otherwise (e.g. birds are always larger than butterflies, but similar impacts from filtering might 

be observed for large birds as well as large butterflies).  

First, multi-trait regressions were performed using the log-transformed absolute trait values as 

continuous variables and the taxonomic group as a factor variable. Second, relative traits were 

regressed against the filter effects. Trait values were standardised and multicollinearity was 

reduced by retaining only those variables with a Variance Inflation Factor (VIF) below 5 

(Menard, 2001). We modelled the absolute and relative traits separately because of high 

pairwise correlations among most of these variables (Figure I.1). We also quantified variable 

importance by leaving out each trait one by one and calculating the decrease in pseudo-R² 

compared to the full model. Finally, we performed a model selection based on three conditions 

to obtain parsimonious models for each filter effect: (1) the increase in the Akaike’s Information 

Criterion (AIC) had to be smaller than (a conservative) five (Burnham et al., 2011), (2) the 
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model should at least contain the most important variable and (3) the simplest model was 

selected (i.e. the model with the least parameters). 

 

Figure 9: Summary of the species traits per taxonomic group after value transformation and 

standardisation. Absolute traits (top row) were rescaled to relative traits (bottom row) per taxonomic group 

to assess patterns across taxonomic groups. Stars indicate differences in the medians of the trait values 

between taxonomic groups (*** = p < 0.001, * = p < 0.05). 

13.2.2. Species profiles 

To test whether species with similar traits can improve recommendations for data quality 

filtering, we clustered species into groups with similar traits using the ‘FactoMiner’ package 

v1.34 (Le et al., 2008). The package allows using a principal component analysis (PCA) as a 

pre-processing method for hierarchical clustering (Husson et al., 2010). The PCA was 

performed on the active variables, i.e. the species traits that contributed most to the change in 

model performance across filters, resulting from the multi-trait regression model selection. All 

species can be described by the resulting principal components (PCs). All PCs, or a selection 

of PCs that explain the most variance in the active variables, can consequently be used in an 

agglomerative hierarchical clustering. The resulting clusters were defined as species profiles. 

Supplementary variables were added to characterise the clusters further, without impacting the 

clustering itself, and comprised: the remaining traits and the impact of filtering on model 

performance per filter (quantitative), and the taxonomic group (qualitative). 
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We delineated the profiles based on four conditions. First, traits used were those remaining after 

model selection (see section 13.3.1) in at least one multi-trait regression. Second, the number 

of clusters was chosen based on the increase of inertia between two consecutive aggregation 

steps in the hierarchical tree (Husson et al., 2010). Third, profiles were ideally associated with 

one or more distinctive filter effects: (1) an increase in AUC, (2) a decrease in AUC, (3) an 

increase in sensitivity and/or decrease in specificity or (4) an increase in specificity and/or 

decrease in sensitivity. Fourth, profiles should be ecologically meaningful, where we relied on 

species experts to evaluate the profiles’ species composition. To this end, we built the final 

profiles by experimentally excluding the PCs that explained the lowest percentages of the total 

variance and by choosing different heights in the hierarchical tree to change the number of 

clusters. 

13.2.3. Impact of sample size  

The role of sample size in the relationship between species traits and filter effects was assessed 

by adding two sample size situations based on previous recommendations in Chapter II, where 

filtering was not advised when sample size was reduced by more than 50% or when the resulting 

sample size was 100 presences. We looked at (1) the actual reduction, i.e. the filter effects when 

sample size after filtering was not altered (sample size was reduced by an amount that depended 

on the applied filter), (2) the 50 % reduction, i.e. the filter effects when sample size was reduced 

by 50% or more and (3) the reduction to 100 presences, i.e. the filter effects when sample size 

was reduced to 100 presences. Adding these two situations could aid interpretation and simulate 

situations occurring in datasets of lower quality (i.e. where fewer presences are kept after 

stringent filtering). 

14. Results 

14.1. Multi-trait analysis 

Figure 10 shows that the relative importance of the different traits in their association with the 

filter effects varies among filters and model evaluation metrics. Considering the absolute traits 

(Figure 10a), the taxonomic group was the most important variable in five out of nine cases. 

When the goal was to increase AUC, it was best to use data from active observers or approved 

observations for butterflies and dragonflies, or detailed observations for dragonflies. Specificity 

could be increased for dragonflies by using detailed observations. No other significant 
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differences (p < 0.05) between taxonomic groups were detected in the multiple regressions. 

AUC of models from large-bodied species could best be increased by using data from active 

observers, AUC of models from species with a low error rate by using detailed observations 

and AUC of models from species with a restricted range size by using approved observations. 

Sensitivity of models from unfamiliar species benefitted from using detailed observations, as 

did specificity of models from species with restricted range sizes. Specificity of models from 

small-bodied species benefitted from using approved observations.  

Considering the relative traits (Figure 10b), using observations from active observers worked 

best for large-bodied species (to increase AUC), for species with low reporting probability (to 

increase sensitivity) or for species with high reporting probability (to increase specificity). 

Using detailed observations most benefitted familiar species (to increase AUC), species with 

high reporting probability (to increase sensitivity) or species with a restricted range size (to 

increase specificity). Using approved observations was most valuable for species with a 

restricted range size (to increase AUC), for species with a low classification error rate (to 

increase sensitivity) or for species with a high classification error rate (to increase specificity).  

Multicollinearity among absolute and relative traits was negligible (VIF < 5), so all traits were 

included in the multi-trait regressions. Neither absolute nor relative detectability was retained 

after model selection as these traits explained less variation compared to others. We did observe 

that detectability was negatively correlated with familiarity (r = -0.38, p < 0.001), which can be 

explained by the taxonomic differences found in both traits (Figure 9 and Figure I.1). 

Detectability was also negatively correlated with reporting probability (r = -0.62 and r = -0.65 

for absolute and relative traits respectively, p < 0.001), which can be explained by their inverse 

dependence (Figure I.1 and section 13.2).  
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Figure 10: Variable importance in the multi-trait regressions for absolute (a) and relative (b) species traits 

per filter (ACTIVITY, DETAIL and VALSTAT) and change in model evaluation metric (Δ AUC, Δ sensitivity, 

Δ specificity). Variable importance is expressed as the square root of the change in pseudo-R² when leaving 

out one variable at a time from the full model. Colours indicate a positive (green) or negative (red) impact 

of the trait on the filter effect, factor variables have a grey (n/a) colour. Square brackets indicate the 

variables kept after model selection (i.e. the simplest model with an increase in the Akaike’s Information 

Criterion (AIC) of less than 5 compared to the best model where at least the most important variable was 

included). Asterisks indicate significant model coefficients (*** = p < 0.001, ** = p < 0.01, * = p < 0.05). 
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14.2. Species profiles 

The active variables that we used in the PCA and clustering analysis were the continuous 

variables kept after model selection in the multi-trait analysis: i.e. body size, relative body size, 

classification error rate, relative classification error rate, familiarity, relative familiarity, relative 

reporting probability, range size and relative range size. In the experimental phase, three 

clusters (i.e. profiles) based on six PCA dimensions provided the best separation of species and 

captured 96 % of the variation in species traits. However, the impact on model performance 

still showed large variations within profiles. Ecologically, these three profiles also separated 

species into quite general groups and we cross-checked the inclusion of more dimensions and 

the clustering of the species into four or more profiles with species experts. Eventually, we 

selected all PCA dimensions and five clusters appeared as the best outcome while keeping 

cluster size at a reasonable level (minimum cluster size equalled 7 species) (Table 2). Note that 

using all dimensions for clustering is similar to performing a clustering without the pre-

processing PCA step (Husson et al., 2010). However, the PCA and clustering method prosed 

by Husson et al. (2010) enriches the descriptive analysis and gives a framework for data 

visualization. We found that the package was extremely useful to characterize groups of 

individuals using multiple variables in the case where some variables (i.e. the active variables) 

are more important than others (i.e. the supplementary variables). The results of the PCA and 

clustering analysis with the resulting five clusters are presented in Appendix J (Table J.1 and 

Figure J.1). 

 

Table 2: Recommendations for data quality filtering for the five species profiles, described by five relative 

traits (body size, classification error rate, familiarity, reporting probability and range size) and four 

absolute traits (body size, classification error rate, familiarity and range size). Recommendations are 

positive (green – all values in the 90% confidence interval are positive), cautious (blue - the average filter 

effect is positive but the 90% confidence interval also includes negative values), alarming (orange - the 

average filter effect is negative but the 90% confidence interval also includes positive values) or negative 

(red - all values in the 90% confidence interval are negative). The taxonomic distribution of the species is 

given, as well as the most characterising species per profile (in bold are the species closest to the cluster 

centre and in italic are the species furthest away from the other cluster centres). The asterisks indicate the 

significance level at which traits, filter effects or taxonomic groups are associated with a profile (*** = 

.001, ** = 0.01, * = 0.05). For taxonomic groups, (+) and (-) indicate whether the group is significantly 

more or less represented in a profile.
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 PROFILE 1 PROFILE 2 PROFILE 3 PROFILE 4 PROFILE 5 

Relative Traits High error rate *** 

Widespread *** 

Small body size *** 

Restricted range size ** 

Low error rate * 

Unfamiliar * 

Large body size *** 

Restricted range size ** 

Unfamiliar * 

Familiar *** 

Widespread *** 

Large body size ** 

Low error rate * 

Familiar *** 

High reporting probability *** 

Low error rate * 

AUC 

recommendations  

ACTIVITY ** > VALSTAT > 

DETAIL 
 VALSTAT ACTIVITY ** > DETAIL  

 VALSTAT > DETAIL DETAIL  VALSTAT > DETAIL 

  ACTIVITY VALSTAT ACTIVITY * 

 ACTIVITY **    

sensitivity 

recommendations 

 VALSTAT 
DETAIL > VALSTAT > 

ACTIVITY 

ACTIVITY > DETAIL > 

VALSTAT 
DETAIL > VALSTAT 

ACTIVITY < VALSTAT < 

DETAIL 
ACTIVITY < DETAIL   ACTIVITY 

specificity 

recommendations 

ACTIVITY > VALSTAT > 

DETAIL 
ACTIVITY > DETAIL  DETAIL ACTIVITY 

 VALSTAT 
DETAIL < VALSTAT < 

ACTIVITY 
VALSTAT < ACTIVITY DETAIL < VALSTAT 

Taxonomic group 20 species 

4 birds *** (-) 

6 butterflies 

10 dragonflies *** (+) 

35 species 

20 birds 

11 butterfly 

4 dragonflies 

17 species 

17 birds *** (+) 

12 species 

4 birds 

8 butterflies ** (+) 

7 species 

7 birds * (+) 

Absolute traits High error rate ***  

Unfamiliar ** 

Restricted range size ***  

Small body size ***  

Low error rate * 

Large body size ***  

Low error rate * 

Widespread ***  

Low error rate * 

Familiar ***  

Low error rate * 

Characterising 

species 

Pieris napi 

Sympetrum striolatum 

Sympetrum sanguineum  

Aeshna cyanea  

Maniola jurtina  

Pieris brassicae  

Pieris rapae  

Enallagma cyathigerum  

Larus canus 

Oenanthe oenanthe  

Turdus pilaris  

Tachybaptus ruficollis  

Delichon urbicum  

Rallus aquaticus  

Platycnemis pennipes  

Colias crocea  

Calopteryx splendens  

Pyrrhosoma nymphula  

Motacilla alba 

Tadorna tadorna  

Circus aeruginosus  

Numenius arquata  

Egretta garzetta  

Branta leucopsis  

Cygnus olor  

Branta canadensis  

Anser anser  

Ardea alba  

Corvus frugilegus 

Vanessa cardui  

Polygonia c.album  

Gonepteryx rhamni  

Vanessa atalanta  

Falco tinnunculus  

Buteo buteo  

Aglais io  

Papilio machaon 

Cuculus canorus  

Alcedo atthis  

Perdix perdix  

Carduelis carduelis  

Athene noctua  

Ciconia ciconia  

Alopochen aegyptiaca 
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Positive (green) or negative (red) recommendations were only noted when the goal was to 

increase AUC. When the goal was to increase sensitivity or specificity, recommendations were 

either cautious (blue) or alarming (orange) and in most cases, filter recommendations for 

increasing sensitivity and specificity were opposite to each other. Similar impacts between 

profiles on one evaluation metric might have a different impact on other metrics (e.g. similar 

impact on AUC but a different impact on sensitivity and specificity in profiles 1 and 4). 

Absolute traits appeared highly associated with the most represented taxonomic group for four 

out of five profiles (Table 2 and Figure 9). Profile 1 contained more dragonflies, indeed species 

with a higher classification error rate that are less familiar. Profile 4 contained more butterflies, 

species with a large range size, yet not necessarily a lower error rate. Profile 3 contained birds 

only, which have larger body sizes and lower error rates. There is a difference with profile 5 

though, also containing only birds, where higher familiarity and lower error rates are 

characterising traits. Profile 2 is not associated with one of the three taxonomic groups, but 

species in this profile are mostly small, with a restricted range size and a lower error rate, which 

are also relative traits that characterise this profile.  

Recommendations based on relative traits were mostly similar to the results in the multi-trait 

analysis, with a few exceptions (Table 2 and Figure 10). Model AUC for large species increased 

when using observations from active observers, confirmed by negative and positive 

recommendations in profiles 2 and 4 respectively. In profile 3, however, body size seemed 

subordinate to the taxonomic group. Higher reporting probability was associated with a higher 

Δ sensitivity when using detailed observations and with a lower Δ sensitivity when using 

observations from active observers, confirmed in profile 5. Familiarity had a positive impact 

on Δ AUC when using detailed observations (DETAIL), confirmed by positive and cautious 

recommendations in profiles 4 and 5, yet only as the second-best option. Using DETAIL did 

not necessarily worsen model AUC for unfamiliar species (profiles 2 and 3), but not all species 

in these profiles were unfamiliar (indicated by the weak significance level). For using only 

approved observations, range size was a good indicator of a change in AUC (profiles 2, 3 and 

4), except for the widespread species in profile 1 where range size seemed to be subordinate to 

error rate. For using only detailed observations, however, range size did not seem to drive filter 

recommendations when the goal was to increase model specificity, except for the cautious 

recommendation for species with a restricted range size in profile 2. Finally, the association 

between error rate and model sensitivity and specificity supported filter recommendations when 

using only approved observations (profiles 1, 2, 4 and 5). 
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14.3. Impact of sample size 

Reducing sample size further (beyond the already occurring decrease in sample size after data 

quality filtering) impacted filter effects both positively and negatively (Figure 11). The impact 

on AUC was generally negative, but the impact on sensitivity and specificity could in a few 

cases also be positive. It, therefore, depends on the goal of the study whether reducing sample 

size further might have a desirable effect. When predicting suitable presence locations is the 

main interest, like for the delineation of conservation areas, a high sensitivity is desired (few 

omission errors, i.e. predicting absences when the species is actually present) (Lobo et al., 2008; 

Thomaes et al., 2008). However, for assisted monitoring, like for invasive species, a high 

specificity is desired (few commission errors, i.e. predicting a presence when the species is 

actually absent) (Guillera-Arroita et al., 2015). Note that there is usually a trade-off between 

sensitivity and specificity (when sensitivity increases, specificity usually decreases and the 

other way around) (Jiménez-Valverde, 2012). Variability in the impact on model performance 

also increased with decreasing sample size, except for species with a restricted range size 

(profiles 2 and 3). 

 

Figure 11: Recommendations for data quality filtering for the five species profiles in the three situations of 

reduced sample size. Dots and error bars are the means and 90% confidence intervals for the filter effects. 

Reducing sample size further mostly worsened model performance, especially when sample 

size was reduced to 100 presences, where recommendations became alarming or negative in 

most cases. In our dataset, this meant that sample size was reduced by at least 77% (the lowest 

unfiltered sample size equalled 432 presences). There were a few exceptions where reducing 
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sample size further did have a positive impact on model performance. For example, 

recommendations for increasing sensitivity could change from alarming to cautious when 

reducing sample size by over 50% for profile 2 (using observations from active observers or 

detailed observations) and up till sample size reached 100 presences for profile 1 (all filters). 

Results also showed that model sensitivity was more (and specificity was less) impacted by 

sample size reduction for profiles with birds only (profiles 3 and 5) compared to profiles with 

more dragonflies and butterflies (profiles 1 and 4). 

14.4. Recommendations for data quality filtering 

Recommendations for data quality filtering were built on the various results presented in this 

article. In general, users of opportunistic records should always pay attention when filtering 

reduces sample size by more than half of its original size, leading to small sample sizes, and we 

generally advise against filtering when sample size is reduced by more than 75%. We further 

interpreted the filtering recommendations of the PCA and clustering analysis (Table 2) together 

with the results of the multi-trait analysis (Figure 10). In the following paragraphs, 

recommendations are formulated with the aim to increase AUC unless specified otherwise. 

Results showed that taxonomic group (more than absolute traits) and relative traits formed the 

best basis for filtering recommendations and when we discuss traits in the following paragraphs, 

we mean the relative values unless specified otherwise. We recommend using only data from 

active observers when filtering opportunistic records of large or widespread butterfly and 

dragonfly species (profiles 1 and 4) and approved observations when filtering bird records 

unless they are very familiar and widespread (profile 4). In the cases where absolute traits were 

retained after model selection (Figure 10), it was the relative rather than the absolute trait that 

was causing the filter effect. For example, dragonflies and butterflies benefitted more from 

using observations from active observers (ACTIVITY) compared to birds, yet a higher absolute 

body size also impacted this effect positively. This meant that dragonflies and butterflies with 

a higher (relative) body size benefitted most from using the ACTIVITY filter. Keeping bird 

observations from more active observers only was generally not recommended, except for 

widespread species with a high classification error rate (profile 1).  

Recommendations based on the taxonomic group seemed to overrule the impact of body size 

(profile 3) and we advise against using body size as a motivator for filtering bird species data. 

Recommendations based on the taxonomic group were also superior to the impact of familiarity 

(profiles 4 and 5), yet we still recommend using more detailed observations (DETAIL) for 
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familiar species, especially when they have high reporting probability and an increase in 

sensitivity is desired. It must be said that recommendations for using the filter DETAIL showed 

more inconsistencies compared to the other filters and this filter effect could less clearly be 

linked to species traits.  

We recommend using approved observations for species with a restricted range size, especially 

for large birds. One noted exception was for the widespread species with a high classification 

error rate (profile 1), where approved observations did impact model AUC positively. 

When model AUC increased after filtering, sensitivity mostly increased and specificity 

decreased, with two exceptions noted. First, species in profiles 1 and 2 were generally more 

difficult to identify, reflected by either a high classification error rate (profile 1) or because they 

were small-bodied and unfamiliar to an average observer (profile 2). For these profiles, we see 

that an increase in data quality by using either filter could reduce the impact of false positives 

on model performance (i.e. increase specificity), except for using approved observations for 

widespread species in profile 2. A side-effect was that sensitivity had a greater potential to 

increase when sample size was reduced beyond the actual reduction, even at high reductions 

(Figure 11). A second exception, where specificity increased after filtering, was noted for 

familiar species when using more detailed observations (profile 4) or data from active observers 

(profile 5). While the positive impact of using only data from active observers on Δ specificity 

could be linked to higher reporting probability (profile 5), the positive impact of using only 

detailed observations for familiar and widespread species contradicted the negative association 

of Δ specificity with range size (Figure 10).  

15. Discussion 

In this study, we built recommendations for data quality filtering of opportunistic citizen science 

data when used as input in species distribution models (SDMs), based on a set of a priori-

defined species traits. Traits associated with a change in model performance after filtering were: 

body size, classification error rate, familiarity, reporting probability and range size. Based on 

these traits, it was possible to generate ecologically meaningful species profiles and make 

filtering recommendations (section 14.4). The analysis of the species profiles (section 14.2) 

mostly agreed with the results of a regression analysis (section 14.1) but also gave new insights 

on the relative importance of the different traits and trait combinations that lead to specific 

filtering recommendations.  
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One of the main results was that, when choosing a quality filter, the taxonomic group a species 

belongs to should be considered. This confirms the findings in Chapter II and makes sense as 

taxonomic groups by default present differences in most of the considered species traits due to 

differences in appearance, appeal, distribution etc. In an attempt to simplify the results 

presented in this chapter, we have tested different approaches to generate the species profiles: 

considering relative traits only, clustering of species for each taxonomic group separately and 

including filter effects as active variables. Unfortunately, none of these approaches lead to 

profiles that were ecologically more meaningful compared to the profiles suggested here (Table 

2 and Table I.1; evaluated by species experts). Moreover, they lead to less consistent results 

(sections 14.1 and 14.2) or less explicit filtering recommendations (i.e. larger confidence 

intervals in Figure 11). This confirms previous expectations that filtering recommendations can 

differ between taxonomic groups, but that there might also be common traits among these 

groups that can refine them (Chapter II). The selected approach indeed revealed that it is 

possible to formulate recommendations based on taxonomic group and relative traits only 

(Table 2 and section 14.4). Absolute traits did not directly support recommendations but aided 

the formation and interpretation of the species profiles as they either characterized the most 

represented taxonomic group(s) or confirmed a profile’s association with relative traits.  

The taxonomic bias towards bird species in citizen science data could explain some results, as 

it indicates greater knowledge by the general public of this species group versus other groups 

such as butterflies and dragonflies (Troudet et al., 2017; https://waarnemingen.be/stats/). As 

increased observer activity can lead to higher experience and expertise (Johnston et al., 2017), 

this can explain why observer activity mattered more for the less-known taxonomic groups in 

this study (i.e. butterflies and dragonflies). For example, experienced observers were better at 

detecting individuals of low-density insect populations (Fitzpatrick et al., 2009) and increasing 

volunteer performance through training could reduce false positive observations for pollinating 

insects (Ratnieks et al., 2016). These results can also be generalised to other well-known 

taxonomic groups such as plants. Observer experience, for example, did not increase volunteer 

performance in identifying an invasive plant species (Crall et al., 2011). Here, observers’ self-

identified comfort level was a better predictor of volunteer success.  

The positive impact of using approved observations for birds, and especially for species with a 

restricted range size, can be linked to the mechanism of record verification in the database 

(Swinnen et al., 2018), whereby records that can be verified by photograph or sound play an 

important role. The verification procedure consists of two main steps: (1) automated record 
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validation by either image recognition or both spatial and temporal proximity of new records to 

existing approved records and (2) manual expert verification (when there is uncertainty in step 

1) (BOX 1, Figure 1). A decent photograph or sound record can thus easily lead to multiple 

approved records and, as consequence, high photo or sound rates have more chance of leading 

to approved (filtered) datasets of higher quality. Photo rates were, for example, generally higher 

for bird and butterfly species with restricted range sizes (Table I.1), which can explain why they 

benefitted from using approved records. High photo or sound rates can also reduce the negative 

impact of locational errors on model performance, especially for small sample sizes (Mitchell 

et al., 2017). Photographs are often made from a closer distance, especially with the available 

easy-to-use identification apps (e.g. ObsIdentify), leading to observations with lower locational 

uncertainty. When they are made from larger distances, mostly for larger species (i.e. birds in 

this study), smartphone cameras will not suffice and an observer needs a stronger camera lens. 

We believe that this is a pastime largely practised by more experienced birders that are more 

likely to correctly register an individual’s exact location compared to an inexperienced 

observer. As for the importance of sound fragments, bird song usually indicates territorial 

behaviour (Catchpole and Slater, 2008), hence observations made by sound are usually made 

in birds’ respective habitats. Additionally, the prevalence of locational errors in opportunistic 

bird data will be larger compared to invertebrate species because of their high mobility (Maes 

et al., 2019a), even at a scale of 1 km², which was the resolution used in this study. 

Large range size is associated with lower model performance because wide-ranged species 

usually occupy a broad environmental niche and have less distinctive links with their habitat 

compared to species with a restricted range size that usually have a narrow niche (e.g. 

Hernandez et al., 2006; Stockwell & Peterson, 2002). While increasing model performance for 

more widespread species through statistical methods or survey design has been observed to be 

difficult (Brotons et al., 2007; Tessarolo et al., 2014), we observed that using filtered data, 

especially from more active observers, had a positive impact on model performance for 

widespread species. We argue, however, that range size in those cases is subordinate to either 

classification error rate or the taxonomic group. Firstly, improving data quality is always 

important for any species with a high misidentification risk (Table 2, profile 1). 

Misidentification errors can distort estimates of species distributions (Costa et al., 2015; 

Cruickshank et al., 2019; Miller et al., 2011), even though such errors were reduced by spatial 

aggregation of records (section 3.2.3; Kramer-Schadt et al., 2013). Misidentification risk has 

been found higher for species with similar physical appearance, for example, because they are 

genetically related (Vantieghem et al., 2017) or have mimicking congeners (Ratnieks et al., 
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2016). Secondly, widespread species in profile 4 are mostly large butterflies and, as previously 

discussed, this taxonomic group might benefit more from using data from active observers. 

Moreover, based on the relative traits only (i.e. not considering the taxonomic group) one would 

intuitively assume that data quality filtering does not have such a pronounced positive impact 

in profile 4 because these widespread species were also more familiar and had lower error rates. 

While retaining observations from active observers or approved observations showed clear 

associations with taxonomic groups or relative species traits, retaining detailed observations 

showed more inconsistencies, except for the positive impact on model performance for familiar 

species. Familiarity might reflect the level of detail at which a species’ ecology is known, hence 

data quality can be increased by retaining more detailed observations for species that are 

familiar to an average citizen scientist. Because retaining only detailed observations on average 

had the largest impact on sample size (Figure A.2), the impact of sample size may be overruling 

the effect of the increase in data quality. Reducing the sample size of presences generally 

impacts presence-only SDMs negatively as model performance decreases, especially at low 

sample sizes, and performance variability increases (Hernandez et al., 2006; Liu et al., 2019; 

van Proosdij et al., 2016). An increase in variability was mostly noted for widespread species, 

as these species are more sensitive to small sample sizes (Liu et al., 2019). While large 

reductions in sample size require attention, it remains important to realise that filtering 

simultaneously increases data quality and thus model performance can also increase, especially 

when less than half of the presences in a dataset are removed (sections 9.3 and 10).  

Detectability did not appear to be an important trait in this study, while it has repeatedly been 

proven to impact model performance positively (e.g. Pöyry et al., 2008; Seoane et al., 2005), 

and variation in detectability is directly linked to the problem of imperfect detection in 

opportunistic presence-only data (Dorazio, 2014; section 2.2). Species traits that are associated 

with increased detectability are, for example, high abundance (Mccarthy et al., 2013), high 

singing rates (Sólymos et al., 2018), large body size (Johnston et al., 2014; Pöyry et al., 2008), 

long lifespan and migratory behaviour (Carrascal et al., 2006). However, we did not find proof 

that any of these traits were confounded with detectability in our analysis. One trait that could 

have influenced the outcome for detectability was reporting probability because the way we 

calculated reporting probability caused a moderate negative correlation between relative 

reporting probability and relative detectability (Figure I.1). However, reporting probability 

characterised only one profile and thus implications for filtering recommendations would 

remain marginal.  
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While the highly fragmented (Antrop, 2004) and easily accessible landscape in our study 

region, Flanders, has many benefits for studying species distributions, it was also one of the 

limitations. The largest benefit was the consequent high spatial and temporal density of records 

in the waarnemingen.be database (Herremans et al., 2018). On the other hand, because of the 

high density, the low importance of detectability in our study could be an underestimation when 

studying regions with less fragmented and larger conservation areas. 

Another limitation was the insufficient availability of structured data for external model 

validation in the original dataset (Figure 2; Figure A.2), leading to two restrictive features. First, 

data consisted of relatively common species (minimum sample size was 432 presences). Rare 

habitat specialists from habitats with restricted distribution ranges in Flanders (e.g. heathlands) 

were thereby excluded from this analysis. Since these are often targeted species in national and 

international biodiversity policy (De Ro et al., 2021; Vanden Broeck et al., 2017), it would be 

useful to adjust the model validation strategy used in the previous chapter (section 8.4; 

Appendix A) for those species to be able to formulate generic recommendations. Based on the 

findings in this chapter, building SDMs with validated data (for species with a restricted range 

size) or with data from more active observers (for conspicuous invertebrates) could deliver the 

best results. Second, the data showed sub-optimal representativeness of the taxonomic groups 

by the studied species. We argue, however, that this imbalance in species representation is often 

inherent to opportunistic datasets (e.g. over-representation of large birds in Callaghan et al. 

(2021)).  

Finally, some filter effects might have been impacted by the temporal and spatial aggregation 

of records over the period 2014-2019 and in grid cells of 1x1 km. While a 1 km² resolution is a 

standard resolution in Flemish biodiversity studies (e.g. Demolder et al., 2014; Rutten et al., 

2019; Vantieghem et al., 2017), performing the analysis at different scales might reveal higher 

or lower impacts of some traits.  

16. Conclusions 

Many have attempted to disentangle the relationships between species ecology and model 

performance, and this chapter adds to that knowledge with recommendations for data quality 

filtering for three commonly studied taxonomic groups. Clustering species into species profiles 

based on traits that resulted from a multiple regression analysis both highlighted the relative 

importance of species traits and revealed new insights, and it is important to realise that one 
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single trait does not necessarily predict a species’ response to filtering. We found that both the 

taxonomic group (more than absolute traits) and relative species traits (rescaled values that can 

be compared among taxonomic groups) defined the impact of data quality filtering on model 

performance. Our findings were largely based on (1) the general species knowledge among 

citizen scientists, with a high importance of data quality for widespread and familiar species in 

general and, more specifically, a high importance of observer experience for less known 

taxonomic groups, and (2) the mechanism of record verification in an opportunistic data 

platform, with a high importance of submitting observations that can easily be verified, 

especially for species with restricted range sizes. We encourage the further improvement of 

general species knowledge and optimisation of record verification protocols in large citizen 

science projects. While adopting these recommendations, it is always important to keep the goal 

of the study in mind (i.e. increasing AUC, sensitivity and/or specificity) and to keep an eye on 

the change in sample size caused by stringent filtering.  
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CHAPTER IV. Integrating Citizen Science 

and Remote Sensing Data for Habitat 

Management 
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ABSTRACT 

Habitat management is necessary for the conservation of threatened species, yet best practices 

in fragmented human-dominated landscapes have remained difficult to generalise. We show 

that multi-scale vegetation management decisions in heathlands can be supported by integrating 

opportunistic citizen science data and multispectral satellite data.  

Opportunistic observations were gathered from ten typical, mostly threatened animal species of 

dry heathlands in Flanders as point records with specified precision. We considered vegetation 

structure at the local scale, quantified by image texture within 0.25 hectares derived from 

multispectral satellite data, and heathland heterogeneity at the habitat scale, quantified by the 

diversity in heathland vegetation communities within 50 hectares. Additionally, locations inside 

heathlands were attributed to an open, closed or anthropogenic landscape context. Point process 

models were used to test the impact of heathland size, vegetation structure and heathland 

heterogeneity on the habitat suitability of the studied species. 

We found that (1) heathland vegetation management can benefit habitat suitability in 

fragmented heathlands, but with a different approach for local management of vegetation 

structure in small versus large heathlands (e.g. due to micro-fragmentation effects), (2) the 

landscape induces positive and negative edge effects (e.g. due to a high versus low resource 

availability), especially in small heathlands and (3) habitat suitability is driven by both 

vegetation structure and heathland heterogeneity but with a different relative importance for 

birds, butterflies and grasshoppers (e.g. due to differences in mobility).  
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17. Introduction 

Dry heathlands are human-shaped habitats prioritised in Annex I of the European Habitats 

Directive (92/43/EEC). They can provide a variety of ecosystem services, such as food and 

water supply, landscape and biodiversity conservation, carbon sequestration and 

aesthetic/recreational value. They are, however, threatened by land conversion and 

privatisation, recreation and soil eutrophication from intensive agriculture that causes moss, 

grass and tree encroachment (Fagúndez, 2013; Webb, 1998). These pressures have led to the 

fragmentation and reduced habitat quality of heathlands, and an ever-increasing proportion of 

heathland fauna appearing on national red lists (Maes et al., 2019b). Conservation of species 

that rely on habitats under anthropogenic pressures remains challenging and is in strong need 

of evidence-based action plans (Maes et al., 2022; Olmeda et al., 2020). In European dry 

heathlands, conservation management is traditionally designed from a flora perspective with a 

focus on preserving typical successional heathland vegetation (De Blust, 2022; Webb, 1998). 

Typical management schemes are designed to prevent nutrient accumulation and natural 

succession to forest, for example by sod-cutting, burning or grazing (De Blust, 2022; Fagúndez, 

2013). It has become generally accepted, however, that heathland fauna profits from 

management that includes exposure of bare soil, diversifies vegetation communities and 

increases structure complexity (Byriel et al., 2023; De Blust, 2022; de Vries et al., 2021; 

Schirmel et al., 2011; van den Berg et al., 2001), yet evidence-based action plans in 

conservation policy remain scarce. 

Habitat quality can be increased for animal species of conservation interest by providing a broad 

range of environmental resources (for example for shelter, nesting space and foraging) through 

vegetation management that increases habitat heterogeneity (MacArthur and Wilson, 1967; 

Tews et al., 2004). Habitat quality is also impacted by the landscape context, which can provide 

opportunities for habitat connectivity (Gibson et al., 2004; Haddad and Baum, 1999) or induce 

positive or negative edge effects (Dupont and Overgaard Nielsen, 2006; Fagúndez, 2013; 

Neilan et al., 2019; Pfeifer et al., 2017). While the impact of edge effects on heathland 

vegetation is spatially confined (for example, eutrophication effects on heathland vegetation 

and soil were detected up to ca. 8 metres into the patch according to Piessens et al. (2006)), the 

impact on heathland fauna might reach further (e.g. Pfeifer et al., 2017). Additionally, the 

potential habitat quality of small and isolated patches should not be neglected (Wintle et al., 

2019). 
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Heathland vegetation management can be implemented at different spatial scales, of which we 

distinguish two in this chapter: heathland heterogeneity at the larger habitat-type scale and 

vegetation structure at the smaller local scale. Heathland heterogeneity is the horizontal 

variation of vegetation communities (i.e. habitat subtypes such as wet and dry heathlands, 

peatlands or Nardus grasslands), with high heterogeneity leading to higher habitat suitability 

for species that need complementary resources and higher species richness (see reviews of Stein 

et al., 2014; Tews et al., 2004). Vegetation structure is the structural complexity of vegetation 

within a habitat (Bergen et al., 2009) and a crucial determinant of species' habitats (Bergen et 

al., 2009; Randin et al., 2020). It has, for example, been positively evaluated as a predictor for 

the habitat suitability of birds in forests (Farrell et al., 2013; Goetz et al., 2010; Graf et al., 2009; 

Huber et al., 2016; Seavy et al., 2009) and grasslands (Bellis et al., 2008), butterflies in 

grasslands and woodlands (de Vries et al., 2021) and lizards in a river valley (Sillero and 

Gonçalves-Seco, 2014).  

Heathland heterogeneity and the landscape context can easily be quantified by a landscape 

analysis, for example by using landscape metrics (Gustafson, 1998; Hesselbarth et al., 2019). 

Vegetation structure is less trivial to capture because of its different components and the most 

appropriate method depends on the intended use. For modelling habitat suitability, Sentinel-2-

derived image texture (Haralick, 1979) has recently been proposed as a proxy for vegetation 

structure (Farwell et al., 2021) and has several advantages over image texture derived from 

other satellite sensors and over more traditional methods, such as field campaigns and Light 

Detection and Ranging (LiDAR) data (Wehr and Lohr, 1999). First, Sentinel-2 data deliver 

finer resolution data (10 metres) compared to other satellite sensors such as Landsat (30 metres) 

or MODIS (100 metres) and are thus especially suited to investigate fine-scaled drivers of 

species distributions. Second, Sentinel-2 data have higher temporal coverage than LiDAR data. 

Surely, LiDAR data deliver fine-resolution data and in some regions have high spatial coverage, 

yet they usually have limited temporal coverage (Moudrý et al., 2022) that can cause an 

undesired temporal mismatch between environmental data and species occurrence data (Randin 

et al., 2020). Moreover, when LiDAR images are taken in the leaf-off season, they fail to capture 

several structural habitat characteristics in low-stature habitats (e.g. in grasslands; de Vries et 

al., 2021). Third, texture measures can capture both vertical and horizontal components of 

vegetation structure (Farwell et al., 2021) and Sentinel-2 outperformed other satellite sensors 

and field measurements in quantifying both LiDAR-derived metrics as well as with field-based 

metrics of vegetation structure (Farwell et al., 2021; Wood et al., 2012). Finally, Sentinel-2 data 
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are freely accessible, with many regions having had free access to 10-metre resolution images 

every 5 to 10 days since April 2017, while LiDAR and field campaigns are often expensive. 

Both the availability of multispectral Sentinel-2 data for over five years now and the increasing 

quantity and density of species occurrence data through large citizen science initiatives, such 

as waarnemingen.be in Flanders (https://www.waarnemingen.be) and observation.org 

(https://observation.org/) or iNaturalist (https://www.inaturalist.org/) worldwide, facilitate the 

use of fine-grained habitat suitability models. The availability of fine-resolution continuous 

measures of vegetation cover over large spatial extents is a promising advance in the field of 

species distribution modelling (Milanesi et al., 2017; Randin et al., 2020) as categorical land 

cover maps contain errors, are labour-intensive to develop and might miss essential information 

on habitat requirements (Oeser et al., 2020). Popular measures are, for example, vegetation 

indices that quantify vegetation health or greenness, such as the Normalized Difference 

Vegetation Index (NDVI) (Pettorelli et al., 2005) and the Enhanced Vegetation Index (EVI) 

(Huete et al., 2002), and image texture that quantifies spatial heterogeneity in vegetation cover 

(Wood et al., 2012). Fine-grained remote sensing products are especially suited when using 

point process models (Renner et al., 2015), where presence-only data are treated as point events 

and the intensity of species occurrence is modelled. Here, environmental data can be extracted 

for each event at various and small spatial extents, which is the strength of this method. 

This chapter will test the possibility of integrating opportunistic citizen science data and 

multispectral satellite data to support multiscale management decisions for the conservation of 

animal species in anthropogenic regions (Maes et al., 2022). More specifically, we will analyse 

whether the habitat suitability of dry heathland specialists across different taxonomic groups is 

driven by vegetation structure and/or heathland heterogeneity and whether this relationship 

depends on the heathland size and landscape context. We hypothesize that heathland 

management can benefit habitat suitability for species of conservation interest, even in small 

heathlands (Gábor et al., 2022; Wintle et al., 2019), that it should consider the landscape matrix 

due to positive and negative edge effects (Fahrig, 2003) and that it requires an integrated 

multispecies approach (Bonari et al., 2017; Maes and Van Dyck, 2005). We will use Gibbs 

point process models models with a Geyer saturation process (Baddeley et al., 2015) to account 

for spatial dependence in the species occurrence data and add bias covariates to account for 

known sources of sampling bias (Renner et al., 2015; Warton et al., 2013). Vegetation structure 

will be quantified by a second-order texture measure (Haralick et al., 1973), using a 10-metre 

Sentinel-2 pixel image of the Enhanced Vegetation Index (EVI; Liu and Huete, 1995) as this 
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has been evaluated as a good proxy for vegetation structure by Farwell et al. (2021). Heathland 

size and heterogeneity and the landscape context will be quantified based on the Biological 

Valuation map, a detailed inventory of the land cover in Flanders (De Saeger et al., 2017).  

18. Materials and methods 

18.1. Study area 

The study region was the Campine region in Flanders in the northeast of Belgium (Figure 12a), 

holding about 13,000 hectares of heathland (De Saeger et al., 2020) and characterised by sandy 

soils (Couvreur et al., 2004). We limited our study area to heathland patches with more than 40 

per cent classified heathland on the 2020 Biological Valuation Map (BVM) (De Saeger et al., 

2020) which is a database for land cover in Flanders that includes a map of habitat classes (De 

Saeger et al., 2017). We omitted three military domains (Figure 12a), because of a strong 

negative observation bias due to their inaccessibility, and patches with urban elements. 

 

 

 

Figure 12: a) Study area and studied heathlands (inaccessible military domains were excluded); b) 

Environmental covariates used to predict the relative habitat suitability of dry-heathland species of 

conservation interest at an example location. The landscape context was the dominant surrounding land 

cover class in a one-kilometre radius around points on a regular grid of 50 metres. Heathland size and 

heathland heterogeneity were calculated by calculating the mean heathland size and the Shannon diversity 

in heathland subtypes (such as dry and wet heathlands and heathlands with and without trees), respectively, 

within a 400-metre radius around points on a regular grid of 50 metres. Vegetation structure is the inverse 

of the homogeneity (a gray-level co-occurrence matrix (GLCM) second-order texture metric) calculated at 

a resolution of 10 metres, supplemented with the average homogeneity in a 50-metre radius around points 

on a regular grid of 50 metres in the patch edges with missing values; c) An example of low and high 

vegetation structure. The location with a high vegetation structure is characterised (from left to right) by 

plantings of Scots pine (Pinus sylvestris L.) with undergrowth of shrubs and trees, a woody edge of broom 

thicket (Cytisus scoparius L.) and dry heather vegetation (Calluna vulgaris L.) with shrub or tree stands. 

The location with low vegetation structure is characterised by dry heather vegetation communities (Calluna 

– Genista) with an occasional tree or shrub (De Saeger et al., 2020). 
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18.1. Species observations 

We considered dry-heathland fauna of conservation interest in Flanders, meaning that they are 

either species of regional conservation interest (Annex II or IV of the Habitats Directive 

(92/43/EEC) or Annex I of the Birds Directive (79/409/EEC)) (Paelinckx et al., 2009), Flemish 

Priority Species (De Knijf et al., 2014; Herremans et al., 2014) or habitat-specific species 

(Habitats Directive habitat types 2310, 2330, 4030) (De Knijf and Paelinckx, 2013) (Tables 4 

and K.1). Critically endangered species were excluded (e.g. Northern wheatear is almost extinct 

in Flanders (Vermeersch et al., 2020)). Observations from eighteen species from four 

taxonomic groups (i.e. four birds, five butterflies, seven grasshoppers and two reptiles) were 

extracted from the data portal waarnemingen.be (Herremans et al., 2018; 

https://www.waarnemingen.be). They were point observations with specified geographical 

precision for the study region and study period 2017-2021. Only the months from April to 

August were considered as this period provided a good overlap between the growing season in 

Flanders and the reproductive seasons for the species under study. The data was cleansed, 

checking for wrong coordinates, removing incorrect observations and keeping only 

observations with a precision of fewer than 50 metres.  

To construct the model training sets, we extracted opportunistic/unstructured records and first 

applied data quality filtering according to previous recommendations made by in Chapter III. 

Data verified as correct were retained based on the taxonomic group, range size and relative 

body size. Second, we applied spatial thinning at 50 metres per observation date to reduce the 

impact of duplicates (i.e. observations from an individual at a similar location on the same date). 

18.2. Model predictors 

We used existing maps, satellite imagery and species occurrence data from waarnemingen.be 

to construct the model predictors, i.e. heathland heterogeneity, vegetation structure, heathland 

size, the landscape context and two sampling bias covariates (accessibility and search effort) 

(Table 3; sections 18.3.1 to 18.3.5). Most model predictors (all except vegetation structure) 

were rasterised at a resolution of 50 metres by applying calculations (i.e. summary statistics, 

landscape metrics, vector lengths) in a buffer area with varying radii around each point at a 

regular grid of 50 x 50 metres, further called ‘dummy points’. Per species, all predictors were 

tested for multicollinearity by extracting their values at all training presence locations and 

calculating variance inflation factors (VIFs) and Pearson correlations in the R package 
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‘fuzzySim’ version 4.3 (Barbosa, 2015). All calculations were performed in R version 4.2.1 (R 

Core Team, 2022) and QGIS version 3.16.9. 

Table 3: Methods applied to obtain the model predictors that were used to predict the relative habitat 

suitability of dry-heathland species of conservation interest. Dummy points are points at a regular grid of 

50 x 50 metres throughout the study area. BVM = Biological Valuation Map, rasterised at 5 metres; EVI 

= Enhanced Vegetation Index; GLCM = gray-level co-occurrence matrix; 1 De Saeger et al. (2020); 2 

retrieved from Google Earth Engine; 3 retrieved from https://land.copernicus.eu/pan-european/corine-

land-cover/clc2018; 4 retrieved from https://www.geopunt.be/; 5 Herremans et al. (2018). All calculations 

were performed in R version 4.2.1 (R Core Team, 2022) and QGIS version 3.16.9. 

Predictor Source Calculation (per pixel) Scale Res. min-max 

ENVIRONMENTAL COVARIATES 

Heathland 

heterogeneity 

BVM version 2020 1 4 heathland subtypes (each 

with/without trees or shrubs) 

- dry heathlands 

- wet heathlands 

- peatlands 

- Nardus grasslands 

Shannon diversity 

index within 400 

metres (≈ 50 ha) 

around each dummy 

point 

50 m 0.00 - 1.71 

Vegetation 

structure 

Sentinel-2A images 2 

April to August 

2017-2021 

Heathlands (> 40% 

heathland) and semi-

natural edges (> 10% 

heathland) 

i. Masked clouds, snow/ice 

and unreliable pixels 

ii. Calculated EVI (kept 

values between 0.1 and 1) 

iii.Average of the annual 

median composites 

iv. GLCM 2nd order texture: 

homogeneity (inverse) 

5 x 5 moving window 

(≈ 0.25 ha) in steps of 

10 metres 

 

Pixels with missing 

values in moving 

window: average 

homogeneity (inverse) 

within 50 metres 

10 m 0.06 - 0.97 

Heathland 

size (hectares) 

 BVM version 2020 1 Percentage of heathland 

(converted to hectares) 

Mean within 400 

metres (≈ 50 ha) 

around each dummy 

point  

50 m 0.22 - 49.85 

      

Landscape 

context 

Flanders:  

BVM version 2020 1  

Outside Flanders: 

CORINE version 

2018 3  

Formed 3 land cover classes: 

- closed (forest) 

- open (other semi-natural)  

- anthropogenic (urban and 

agricultural)  

Dominant class within 

one kilometre around 

each dummy point 

50 m NA 

(factor) 

SAMPLING BIAS COVARIATES  

Accessibility 

(km road/km²) 

Wegenregister version 

2.0 4 

Length of road segments within 100 metres (≈ 

3.14 ha) around each 

dummy point 

50 m 0.00 - 0.05 

Search effort 

(n° species) 

waarnemingen.be 5 

April to August  

2017-2021 

The annual average number 

of species observed within the 

considered taxonomic group 

within 100 metres (≈ 

3.14 ha) around each 

dummy point 

50 m 0.0 - 37.4 

 

We chose to include only measures of vegetation structure and habitat composition, although 

we acknowledge that including measures of soil water, such as the topographic wetness index 

(Besnard et al., 2015; Moore et al., 1993), or soil biochemistry, such as nitrogen (N) and 
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phosphorus (P) content (Vogels et al., 2017), might have led to additional insights. We motivate 

the choice of our predictors by the objective of the study (i.e. to illustrate how integrating citizen 

science and multispectral satellite data can support multiscale heathland vegetation 

management) and the absence of multicollinearity (Table K.2; also see section 22.1). Soil water, 

for example, might be correlated with both heathland heterogeneity and vegetation structure, as 

soil moisture impacts the composition of vegetation communities and the presence and growth 

of certain plant species (Schellenberg and Bergmeier, 2020). 

18.2.1. Heathland heterogeneity 

Heathland heterogeneity, heathland size (section 18.3.3) and the landscape context (section 

18.3.4) were calculated based on the Biological Valuation Map (BVM) as it includes a detailed 

classification of habitat types and a classification of land cover in Flanders (De Saeger et al., 

2017). Heathland heterogeneity was quantified by the Shannon Diversity Index (shdi) in the R 

package ‘landscapemetrics’ version 1.5.4 (Hesselbarth et al., 2019), applied to four sub-types 

of heathland as classified in the BVM version 2020 (De Saeger et al., 2020): dry heathland, wet 

heathland, peat and Nardus grasslands. We also distinguished subtypes with and without trees 

or shrubs. The BVM was rasterised at 5 metres and the shdi was calculated in a 400-metre 

radius (≈ 50 hectares) around each dummy point (Figure 12b). The BVM is a vector but was 

rasterized because the ‘landscapemetrics’ package takes rasters as input. We chose 400 metres 

as the maximum radius for all species to facilitate comparability among results, although an 

alternative would be to tune the radius according to a species’ maximum dispersal ability. 

18.2.2. Vegetation structure 

We used Sentinel-2A imagery to quantify vegetation structure as this satellite has been 

delivering multispectral data across large spatial extents since April 2017 at a high spatial and 

temporal resolution (10 x 10 metres every 5 to 10 days for Flanders). Vegetation structure was 

quantified by calculating the homogeneity, a second-order texture measure for image 

smoothness (Haralick, 1979; Haralick et al., 1973), of a Sentinel-2 EVI (Enhanced Vegetation 

Index) composite (Liu and Huete, 1995) (Figure 12b). When calculating second-order texture 

measures, the spatial configuration of pixel values are taken into account by first constructing 

a gray-level co-occurrence matrix (GLCM; Haralick et al., 1973). Second-order homogeneity 

characterizes mainly vertical complexity with ancillary information on horizontal plant 

diversity and was suggested to sufficiently capture vegetation structure relevant to species' 

habitat suitability (Farwell et al., 2021). Figure 12c shows example locations with low structure 



 

81 

 

(i.e. a mostly uniform vegetation cover) and high structure (i.e. spatial variation in vegetation 

communities and height).  

For each 10-metre pixel in the Campine region, annual median EVI composites from April to 

August in the study period 2017-2021 were obtained from the near-infrared, blue and red band 

of the image collection “Sentinel-2 MSI: MultiSpectral Instrument, Level 2A” in Google Earth 

Engine. Before calculating the EVI, pixels with scene classification labels 1 to 3 and 8 to 11 

were omitted (i.e. unreliable pixels, clouds and snow/ice). The annual EVI values were 

averaged, excluding values below 0.1 and above 1 as they mostly indicated buildings, paved 

soils or solar panels. Homogeneity was calculated using the R package ‘glcm’ version 1.6.5 

(https://cran.r-project.org/web/packages/glcm/) with a kernel size of 5 (i.e. a moving window 

of 5 x 5 pixels or 50 x 50 metres). Vegetation structure was calculated in steps of 10 metres and 

the inverse of homogeneity was taken as low values indicated a high vegetation structure and 

vice versa. 

We adapted our approach to increase the availability of pixels available for modelling despite 

the large number of edges in our study area. Since the study area was not a spatially continuous 

patch, edges were abundantly present inducing one or more missing EVI values in the moving 

windows used to calculate homogeneity. To reduce the impact of these edge effects and hence 

increase the number of raster pixels with predictor values for vegetation structure, we took three 

actions. First, for texture calculations, we included the EVI values from semi-natural edges (i.e. 

connected patches of semi-natural habitats of which at least 10% was identified as heathland). 

Second, we chose a small kernel size to reduce the chance of missing values for texture 

calculations. Third, we calculated the average homogeneity in a 50-metre radius around each 

dummy point in the patch edges with missing values and added this information to the raster 

layer for vegetation structure. 

18.2.3. Heathland size 

To quantify heathland size, we attributed the percentage of heathland associated with each pixel 

in the rasterized BVM (see section 18.3.1) following the distribution key of the different habitat 

units per patch (De Saeger et al., 2020). Consequently, we calculated the mean percentage of 

heathland in a 400-metre radius (≈ 50 hectares) around each dummy point (Figure 12b). Models 

were run with continuous heathland size as predictor to assess its impact on habitat suitability. 

However, we also categorised heathland size into three classes in the results section for the dual 

purpose of simplifying the presentation of the results and formulating tangible 
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recommendations. We distinguish between (1) small patches (≤ 10 hectares), i.e. mostly small 

and isolated patches with an occasional heathland patch edge largely surrounded by different 

land cover, (2) intermediate patches/patch edges (10-30 hectares), i.e. mostly edges of large 

heathland patches with an occasional medium-sized patch, and (3) large patches (> 30 hectares), 

i.e. core areas of large heathland patches (Figure 12b).  

18.2.4. Landscape context 

To describe the landscape context, we categorised the land cover into three classes: closed (i.e. 

forest), open (i.e. all other semi-natural land covers) and anthropogenic (i.e. urban and 

agriculture) land cover. The dominant class in a one-kilometre buffer around each dummy point 

was taken as the landscape context (Figure 12b). Land cover within the Campine region was 

taken from the BVM, while at the borders of Flanders, we used the CORINE land cover 

classification9. 

18.2.5. Sampling bias covariates 

In a point process setting, it is common to include covariates that can accommodate sampling 

bias instead of modifying the background (i.e. the quadrature scheme) (Renner et al., 2015), 

opposed to, for example, a target group background selection in Maxent (Phillips et al., 2009). 

We added one accessibility covariate: road density (km road per square km, calculated based 

on the Wegenregister version 2.010); and one search effort covariate: the annual average number 

of species observed within the considered taxonomic group in the study period (extracted from 

waarnemingen.be). Both were calculated in a 100-metre radius around each dummy point. 

Accessibility accounted for the impact of high observation density around roads (both paved 

and unpaved) while search effort accounted for the impact of observer activity. 

18.3. Habitat suitability 

18.3.1. Gibbs Point Process Model 

Gibbs point process models (Baddeley et al., 2015) were used to study the impact of heathland 

size, vegetation structure and heathland heterogeneity on the habitat suitability of dry-heathland 

fauna in different landscape contexts. We ran models per species and landscape context (i.e. 

open, closed and anthropogenic) with two-way interactions between heathland size hsize and 

vegetation structure VS and heathland heterogeneity HH. The conditional intensity λ(u|x) at a 

 
9 Retrieved from https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 
10 Retrieved from https://www.geopunt.be/ 
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location u given a pattern of presences x consists of a first-order term (the trend or covariate 

effects) and a higher-order term γ (the interaction parameter). The model formula can be 

simplified as follows: 

λ(u|x) = (hsize + VS + HH + hsize:VS + hsize:HH + accessibility + search effort) * γ 

We used a binary window to delineate the study area and the translate border correction as it is 

the recommended method in a binary window setting (Baddeley and Turner, 2005). A Geyer 

saturation process was implemented to model spatial interaction as it deals well with clustered 

data (Baddeley et al., 2015) and most of the species occurrence data records were identified as 

inhomogeneous point processes with spatial interaction (mostly clustering at small distances) 

(Figures K.2 to K.11). Geyer radius and saturation values were defined for each species using 

the profilepl function in the R package ‘spatstat’ version 2.3-4 (Baddeley and Turner, 2005) on 

a range of 50 to 500-metre radii, with 50-metre intervals, and saturation values of either 1 or 2. 

We chose dummy points at a regular grid of 50 metres for model fitting (eps = 50), which was 

an adequate resolution for estimating the maximum pseudolikelihood considering covariate 

resolution (Baddeley and Turner, 2000; Renner et al., 2015). These are combined with the 

presence points to generate quadrature points and quadrature weights before model fitting.  

Only dummy points (i.e. background points) within five kilometres from a presence point were 

included. Goodness-of-fit was evaluated with a Diggle-Cressie-Loosmore-Ford (DCLF) test 

(Baddeley et al., 2014) and predictive performance was assessed in a spatial block cross-

validation using the R package ‘blockCV’ version 3.1-1 (Valavi et al., 2019). We encountered 

some model fitting problems in an exploratory analysis and set a threshold of 60 presences to 

avoid poorly fitted or invalid models. Eight species and four models in the anthropogenic 

landscape context were omitted for further analysis (see Table K.1). We finally kept ten species 

with valid models in at least two landscape contexts (Table 4). 

18.3.1. Model predictions 

We are interested in the impact of the environmental variables, and their interactions, on species' 

habitat suitability. Therefore, we fitted the first-order trend of the model, which can be seen as 

the conditional intensity without spatial interaction (i.e. the conditional intensity of an empty 

point pattern) (Baddeley et al., 2015), and kept sampling bias covariates constant (Warton et 

al., 2013). 
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Table 4: List of selected species with their Red List Status in Flanders (LC = Least Concern, NT = Near 

Threatened, EN = Endangered) (Devos et al., 2016; Maes et al., 2021, 2017b), Conservation Interest (BD 

= Birds Directive, FPS = Flemish Priority Species, HSS = Habitat Specific Species with Habitats Directive 

Annex I habitat types) (De Knijf et al., 2014; De Knijf and Paelinckx, 2013; Herremans et al., 2014; 

Paelinckx et al., 2009), and the number of observations and average intensities of the point processes. 

Species 

 

 

English name 

 

 

Red List 

status in 

Flanders 

Conservatio

n Interest 

 

Number of observations 

Intensity of the point process 

(.10-5) 

Open Closed Anthr. 

BIRDS       

Anthus trivialis Tree Pipit NT HSS 2310 
907 

4.35 

2638 

6.37 

137 

1.00 

Caprimulgus europaeus European Nightjar NT 
BD Annex I 

HSS 4030 

151 

0.72 

462 

1.10 
- 

Lullula arborea Woodlark NT 
BD Annex I 

HSS 2310, 4030 

492 

2.36 

1213 

2.88 

80 

0.59 

Saxicola rubicola European Stonechat LC HSS 2310, 4030 
935 

4.48 

1542 

3.66 

130 

0.95 

BUTTERFLIES       

Callophrys rubi Green Hairstreak EN HSS 2310, 4030 
265 

1.27 

321 

0.76 
- 

Hipparchia semele Grayling EN 

FPS 

HSS 2310, 2330, 

4030 

302 

1.45 

330 

0.78 

485 

3.55 

Plebejus argus Silver-studded Blue EN HSS 4030 
621 

2.98 

483 

1.15 
- 

GRASSHOPPERS       

Gryllus campestris Field Cricket EN HSS 2310, 2330 
118 

0.57 

324 

0.77 
- 

Myrmeleotettix 

maculatus 
Mottled Grasshopper LC HSS 2310, 2330 

68 

0.33 

243 

0.58 

82 

0.60 

Oedipoda caerulescens 
Blue Winged 

Grasshopper 
LC HSS 2310, 4030 

112 

0.54 

296 

0.70 

189 

1.38 

19. Results 

Species occurrence sets showed spatial interaction at radii of 50 to 250 metres (Table K.1 and 

Figures K.2 to K.11). Predictors showed no multicollinearity (Table K.2; VIF < 3 and average 

Pearson correlations r = -0.007 ± 0.193, r = 0.023 ± 0.188 and r = -0.060 ± 0.261 in open, closed 

and anthropogenic landscape contexts respectively). Models fitted the data reasonably well, 

with no test rejecting the null hypothesis at a 0.01 significance level (Table K.1). Bird models 

performed better than most butterfly and grasshopper models, with the latter also presenting 

more variation in model performance (Table L.1).  
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We will discuss the aggregated results for all species and per taxonomic group in the main text 

and refer to Appendix M for the results per species. We found that larger heathlands were more 

suitable than intermediate or small heathland patches for all three taxonomic groups, especially 

in an anthropogenic landscape context (Figures 13 and 14). Habitat suitability was impacted at 

different spatial scales (vegetation structure versus heathland heterogeneity) and results varied 

with heathland size and the landscape context (Figures 13 and 14). Results in semi-natural (i.e. 

open or closed) contexts were generally different from those in an anthropogenic context.  

The impact of vegetation structure and/or heathland heterogeneity on habitat suitability 

depended on the surrounding heathland size for most species in at least one landscape context 

(Appendices L to N). A high vegetation structure became more important at larger heathland 

sizes, but in small patches in a closed or open landscape context also a low vegetation structure 

could benefit habitat suitability, especially for birds and butterflies (Figure 14). A high 

heathland heterogeneity mostly impacted habitat suitability positively (Figures 13 and 14) and 

became more important when heathland size increased in an open landscape context, while 

being equally important across heathland sizes in a closed or anthropogenic context (Figure 14).  

Pooling all species (boxplots in Figure 14), habitat suitability in an open landscape context was 

highest in large patches with high heathland heterogeneity or small patches with a low 

vegetation structure. In a closed landscape context, high heathland heterogeneity is beneficial, 

as are small heathland patches with a low vegetation structure and large patches with a high 

vegetation structure. In an anthropogenic landscape context, habitat suitability was highest in 

patches with a high heathland heterogeneity and a high vegetation structure, especially in large 

patches. 

Habitat suitability of species in all three taxonomic groups was impacted by both vegetation 

structure and heathland heterogeneity, depending on heathland size and the landscape context 

(Figures 13 and 14). Bird habitat suitability was positively impacted by heathland 

heterogeneity, especially in large patches in a semi-natural landscape context. Habitat 

suitability further increased in small and intermediate patches/patch edges with a low vegetation 

structure in a semi-natural context, and in intermediate patches/patch edges and large patches 

with a high vegetation structure in an anthropogenic context. Butterfly habitat suitability was 

positively impacted by both a high vegetation structure and a high heathland heterogeneity in 

large patches in an open or anthropogenic context. In a closed context, a high vegetation 

structure increased habitat suitability in large patches and a high heathland heterogeneity did so 

in intermediate patches/patch edges. In small patches, habitat suitability for butterflies increased 
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with a low vegetation structure, combined with low heathland heterogeneity in an open 

landscape context and high heathland heterogeneity in a closed context. Grasshopper habitat 

suitability was higher at a high vegetation structure, especially in intermediate patches/patch 

edges, and at a high heathland heterogeneity in a closed or anthropogenic landscape context. 

 

Figure 13: Relative habitat suitability - the impact of vegetation structure (x-axis) and heathland 

heterogeneity (y-axis) on habitat suitability in different landscape contexts, summarised in three classes of 

heathland sizes. Predicted intensities were first log-transformed to generate a linear output and then scaled 

and averaged across all considered dry-heathland species and according to taxonomy in different 

landscape contexts (blue = low relative suitability, orange = high relative suitability). These values are the 

results of different Gibbs point process models with Geyer saturation process per landscape context, 

including two-way interactions between heathland size and vegetation structure/heathland heterogeneity. 

For four species (i.e. Caprimulgus europaeus, Callophrys rubi, Plebejus argus and Gryllus campestris), 

the model in the anthropogenic landscape context was omitted (see section 18.4.1). 
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Figure 14: Model coefficients - the impact of vegetation structure and heathland heterogeneity on habitat 

suitability in different landscape contexts, summarised in three classes of heathland sizes. The distribution 

of model trend coefficients is shown for all species (boxplots) and grouped according to taxonomy, with 

dots and error bars representing mean estimate values and standard deviations. These values are the results 

of different Gibbs point process models with Geyer saturation process per landscape context, including 

two-way interactions between heathland size and vegetation structure/heathland heterogeneity. For four 

species (i.e. Caprimulgus europaeus, Callophrys rubi, Plebejus argus and Gryllus campestris), the model 

in the anthropogenic landscape context was omitted (see section 18.4.1). 
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20. Discussion 

By integrating opportunistic citizen science data and multispectral satellite data in point process 

models, we have substantiated the importance of managing vegetation structure for heathland 

fauna (Byriel et al., 2023; Maes et al., 2017c) and highlighted some important considerations 

when working in human-dominated and fragmented landscapes, such as the impact of edge 

effects from the surrounding land cover and the characteristics of the considered taxonomic 

group. Quantifying vegetation structure and heathland heterogeneity in a standardized and 

spatially contiguous way enabled us to produce generalisable results, beyond local studies, an 

important asset for biodiversity policy and conservation, for example, for designing essential 

biodiversity variables (EBVs) (Valbuena et al., 2020; Vihervaara et al., 2015). Heathland 

vegetation management could increase the habitat suitability of ten species from different 

taxonomic groups at two spatial scales: local-scale vegetation structure (0.25 hectares) and 

habitat-scale heathland heterogeneity (50 hectares). 

According to the habitat heterogeneity hypothesis (e.g. MacArthur & Wilson, 1967), structural 

complexity and habitat heterogeneity increase niche availability and diversify environmental 

resources. Although animal species distributions and diversity are mostly affected positively by 

increased habitat heterogeneity (Ampoorter et al., 2020), this relationship can also remain 

undetected or even be negative, largely depending on the spatial scale, the type of heterogeneity 

measure and the taxonomic group considered (Stein et al., 2014; Tews et al., 2004). Results 

generally demonstrated positive impacts of heathland heterogeneity, and also of vegetation 

structure in core areas of large heathland patches. In small and fragmented patches, however, 

local-scale vegetation structure was often associated negatively with habitat suitability for the 

studied birds and butterflies. This might be explained by the habitat preference of the studied 

birds and by the effect of micro-fragmentation (Laanisto et al., 2013). All four birds prefer open 

to semi-open heathlands with occasional trees or shrubs as a viewing point for foraging. These 

relatively large species will need relatively large areas with low-structure vegetation cover, 

especially in small and fragmented patches. Micro-fragmentation, on the other hand, implies 

that small-scale heterogeneity can cause niche isolation for less mobile species. While 

intuitively birds should be less affected by micro-fragmentation at the considered scale (i.e. 

0.25 hectares), lower food availability of species that are negatively affected by micro-

fragmentation, such as invertebrates and plants (Laanisto et al., 2013; Tamme et al., 2010), 

could also explain the negative relationship with vegetation structure for birds. Grasshoppers 

were not affected, although this might have been the result of a mismatch between predictor 
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(0.25 hectares) and home ranges (Guisan and Thuiller, 2005; Oliveira et al., 2021) and 

grasshopper models also showed more variability (Table L.1 and Figures M.3 and M.6). 

Habitat edges induce edge effects that become stronger when habitats become more fragmented 

(Ewers et al., 2007; Fahrig, 2003), which is probably why we found the largest differences 

between landscape contexts in small patches and patch edges. Edges in a semi-natural landscape 

context can provide resources for the inhabiting species such as shelter, nesting or foraging 

opportunities (Dupont and Overgaard Nielsen, 2006; Evens et al., 2018) and deliver specific 

habitat conditions such as forest edges (Moquet et al., 2018; Pfeifer et al., 2017). Small and 

isolated patches can thus have high habitat quality (Wintle et al., 2019) if located in a 

resourceful environment. The surrounding semi-natural land cover might even enhance the 

structural complexity to a point where maintaining characteristic heathland vegetation (i.e. 

dwarf shrubs, quantified by a low vegetation structure; Figure 12c) will become relatively more 

important, especially for species that rely on them for food and reproduction (Byriel et al., 2023) 

such as Grayling, European Stonechat and Silver-studded Blue. Similarly, the diversity in 

vegetation communities can be enhanced by an open landscape context, which consists of all 

semi-natural land cover except forest. In a closed landscape context that consists of forest only, 

however, maintaining heathland heterogeneity remains essential. 

Butterflies are considered an umbrella taxon for insect conservation (e.g. van Swaay et al., 

2006) and birds are often used as indicators of general habitat quality (De Bruyn et al., 2009). 

Yet, results among taxonomic groups, even among invertebrates, showed dissimilarities 

(Figures 13 and 14). Taxonomic groups respond to different components of 3D vegetation 

structure at different spatial scales (Atauri and De Lucio, 2001; Davies and Asner, 2014; de 

Vries et al., 2021; Tews et al., 2004) and we stress the importance of targeting multiple taxa at 

multiple scales for proper heathland management, especially in small patches and around patch 

edges. The impact of local vegetation structure on bird habitat suitability, for example, would 

not have been detected by large-scale measures of habitat heterogeneity and certainly not by 

those derived from coarse categorical land cover maps (Coops and Wulder, 2019). Additionally, 

possible benefits of edges can be higher for larger (birds) or more mobile (birds and butterflies) 

taxonomic groups (Pfeifer et al., 2017) as opposed to small and less mobile taxonomic groups 

(grasshoppers). For the latter, we noted an overall positive impact of vegetation structure which 

was also noted in an earlier study for Blue Winged Grasshopper and Mottled Grasshopper 

(Schirmel et al., 2011). Additionally, the “enemy-free space hypothesis” states that prey species 

prefer dense vegetation with a high structure to escape from predators (Price et al., 1980). This 
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was found to be true for large carabid beetles (Brose, 2003) and can also count for the 

grasshoppers in this chapter.  

Although pooling species into taxonomic groups revealed some patterns regarding the impact 

of the predictors on habitat suitability, individual species might respond differently to 

multiscale vegetation management. Conservation planners must, therefore, consider additional 

knowledge on habitat requirements of dry-heathland species, especially those of conservation 

interest. For example, bird habitat suitability was generally impacted positively by a high 

heathland heterogeneity, although this was less pronounced for European Nightjar 

(Caprimulgus europaeus) (Figure M.4). This bird species requires complementary habitats for 

foraging (extensive grasslands) and breeding (heathlands) which may be separated up to several 

kilometres (Evens et al., 2018). The size of those habitats and the landscape configuration and 

heterogeneity will likely be more important than the heterogeneity of habitat subtypes (Evens 

et al., 2021). Another example is the overall preference for a low vegetation structure in a closed 

landscape context for Silver-studded Blue. This preference was also detected in intermediate 

and large patches, as opposed to the other two butterfly species which preferred a high 

vegetation structure in larger heathlands (Figure M.5; Table N.1). Figure 12c showed that a low 

vegetation structure can indicate a location with characteristic dry heather shrubs. Considering 

that Silver-studded Blue uses Calluna vulgaris as a host plant (Diemont et al., 2015) and has 

relatively low mobility, this can explain the importance of low vegetation structure for this 

species. 

Our results support that restoring and maintaining large and structurally complex habitats with 

patchy vegetation is a good approach for fauna conservation in heathlands (Byriel et al., 2023; 

De Blust, 2022; de Vries et al., 2021; Schirmel et al., 2011; van den Berg et al., 2001). The 

positive impact of an increased heathland size for most species is expected as habitat loss 

threatens biodiversity (Newbold et al., 2015) and positive relationships between quantitative 

measures of a species associated land cover or habitat type and occurrence are common, 

especially for habitat specialists (Fahrig, 2003; Milanesi et al., 2017; Rutten et al., 2019; van 

den Berg et al., 2001). Heathland enlargement becomes especially important in an 

anthropogenic landscape context (i.e. urban land use and agriculture), due to negative edge 

effects and low quality of the surrounding land cover for species of conservation interest 

(Fletcher et al., 2018; Newbold et al., 2015; Olivier et al., 2016). When large patches are located 

in an anthropogenic landscape context, however, increasing vegetation structure and heathland 
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heterogeneity becomes even more important in comparison to a semi-natural context, as habitat 

heterogeneity must also be present in the heathland itself. 

Although we could not assess the impact of the landscape context on habitat suitability 

parametrically due to correlations with all other predictors (Figure K.1), our results highlighted 

that heathland management needs to consider the landscape matrix in which fragmented 

heathlands are located. Traditionally, habitat quality was negatively associated with 

fragmentation (Hanski, 1998; MacArthur and Wilson, 1967), but the surrounding land cover 

might also increase habitat suitability for species that can benefit from edge effects (Dupont 

and Overgaard Nielsen, 2006; Evens et al., 2018; Pfeifer et al., 2017), although direct 

anthropogenic influences, such as nitrogen deposition from agriculture or industry should be 

avoided (Vogels et al., 2017). We further emphasize the importance of using multiple species 

from different taxa as conservation umbrella, which has become especially feasible in light of 

the unprecedented quantity of species occurrence data collected on citizen science data 

platforms, even from lesser-known taxonomic groups (Maes and Van Dyck, 2005). Comparing 

different management practices in depth was beyond the scope of this study, so we kept our 

recommendations general and mostly focused on translating our findings into suitable heathland 

management.  

The analyses in this chapter revealed that large heathland patches had higher habitat suitability 

for all three studied taxonomic groups (birds, butterflies and grasshoppers), especially in an 

anthropogenic landscape context. Enlarging and connecting heathland patches (Piessens et al., 

2005; Worboys et al., 2010) is, therefore, urgently needed. In regions with highly fragmented 

and isolated patches facing anthropogenic pressures, however, this can be challenging due to 

policy restrictions, budgetary limitations or land ownership (Diemont et al., 2015). In this light, 

it is essential to understand that even small patches can have adequate habitat quality for typical 

(threatened) heathland species when habitat heterogeneity and/or vegetation structure are 

sufficiently high. Nevertheless, if the landscape matrix allows it, increasing heathland area can 

be achieved by restoring heathland habitat, for example by cutting down (non-native) 

coniferous forests (Diemont et al., 2015).  

Increasing heterogeneity in nitrogen-polluted heathlands is often realised by large-scale 

removal of above-ground vegetation (e.g. by clearcutting, machine cutting or burning) or of 

both vegetation and soil top layers (i.e. sod-cutting or choppering) (De Blust, 2022). Those 

large-scale and intensive management practices homogenise the vegetation cover and deplete 

nutrients from the soil, which is beneficial for restoring typical heathland vegetation (Jones et 



 

92 

 

al., 2017; Schellenberg and Bergmeier, 2020), but can also have a detrimental effect on 

invertebrates and larger predators, such as birds, that feed on them (Maes et al., 2017c; Vogels 

et al., 2021, 2017). Therefore, intensified large-scale management practices should be avoided 

when possible, especially in and around areas where species of conservation interest are known 

to be present, however always with consideration of present endangered flora or habitat. 

The proxy that was used to quantify vegetation structure characterizes mainly vertical 

complexity with ancillary information on horizontal plant diversity (Farwell et al., 2021), yet 

both components are inextricably linked. Increasing the vertical complexity of vegetation cover 

at smaller scales will automatically allow for more plant diversity and can be achieved relatively 

fast, for example by removing above-ground vegetation and preventing grass encroachment of 

bare soil by mosaic mowing, cutting trees or low-intensity grazing, while allowing patches to 

reach older successional stages (Byriel et al., 2023). Note that, even when mostly evaluated as 

a good management practice for maintaining high vegetation structure, grazing can take many 

forms, such as variation in herbivore species or grazing intensity, and thus cause various 

responses of heathland flora and fauna (Diemont et al., 2015; Fagúndez, 2013). Furthermore, 

we recognize that additional changes in soil biochemistry (e.g. by liming) might be needed for 

nutrient-polluted soils (Vogels et al., 2017).  

While using a multivariate structural measure has been shown to outperform single components 

of vegetation structure for estimating species distributions and diversity (e.g. Brose, 2003; 

Farwell et al., 2021), it also complicated the interpretation of which aspect of vegetation 

structure (vertical complexity or horizontal diversity) impacted habitat suitability at small 

scales. Combining a continuous measure of structure derived from multispectral remote sensing 

data with LiDAR, for example, might help to disentangle the individual impact of the 

components of 3D vegetation structure (Bergen et al., 2009; de Vries et al., 2021; Moudrý et 

al., 2022). Future research can also include microclimate data at fine scales obtained from 

remote sensing (Zellweger et al., 2019). This can, for example, shed further light on the 

importance of vegetation structure for invertebrates in heathlands as regulator under climatic 

extremes (Maes et al., 2019c; Mantilla-Contreras et al., 2012; Schirmel et al., 2011; Schirmel 

and Fartmann, 2014). 

We remain careful to generalise our definition of multiscale management to a ‘small versus 

large-scale approach’. We did find important indications that heathland size, the landscape 

context and taxonomy affect the scale at which heathlands are best managed, yet additional 

findings from a sensitivity analysis (where vegetation structure and heathland heterogeneity are 
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quantified at different spatial scales) could further support management recommendations and 

might highlight some keystone structures (Tews et al., 2004) in heathland ecosystems. For 

example, a maximum radius of 250 metres (≈ 20 hectares) might have been more appropriate, 

as correlations between landscape metrics and species diversity at this scale were highest for 

both birds and invertebrates (Morelli et al., 2013; Schiegg, 2000; Schindler et al., 2013). A 

kernel size of 750 metres to quantify vegetation structure was also believed to be too coarse to 

fully capture habitat requirements of birds (Farwell et al., 2021). On the other hand, an 

exploratory analysis proceeding this study showed that heathland size and heathland 

heterogeneity quantified at different spatial scales were highly correlated, and different kernel 

sizes for quantifying vegetation structure also did not impact estimations of bird density in 

previous studies (Wood et al., 2013). 
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CHAPTER V. General Discussion 

21. Summary of the results 

21.1. Recommendations for data quality filtering of opportunistic citizen science data 

Chapters II and III formulated recommendations for data quality filtering (also called stringent 

filtering) of opportunistic citizen science data (CSD). This allowed us to use CSD optimally for 

biodiversity conservation supported by species distribution models (SDMs). To our knowledge, 

this was the first extensive study on the quantity-quality trade-off in stringent filtering. Both the 

questionable data quality in CSD (Burgess et al., 2017) and the negative impact of low sample 

size on SDM performance, especially when dealing with presence-only data (Liu et al., 2019), 

are widely recognized issues. Several studies have assessed the impact of sample size using 

data with constant quality (Chefaoui et al., 2011; Stockwell and Peterson, 2002; van Proosdij 

et al., 2016), while other studies have assessed the impact of stringent filtering on model 

performance without controlling for sample size (Kamp et al., 2016; Steen et al., 2019). 

However, recommendations for filtering CSD remained relatively general. 

BOX 2 shows clear and specific evidence-based recommendations for stringent filtering of 

opportunistic CSD based on an analysis of five and a half million opportunistic records from 

255 species across four taxonomic groups in Chapter II (Figure A.2; Table C.1) and 91 species 

across three taxonomic groups in Chapter III (Table I.1). The results in Chapter II indicated that 

the impact of stringent filtering on model performance depended on the quality of the filtered 

data (i.e. the filter type used) and both the proportional reduction in sample size caused by 

filtering and the remaining absolute sample size. Additionally, results showed that plant and 

dragonfly models benefitted more from stringent filtering than bird and butterfly models yet 

with variation in the impact on model performance among species. Chapter III confirmed that 

taxonomy can guide filtering recommendations, but that species traits should also be taken into 

account. 

The value of our research was further increased by using an external evaluation set for model 

testing. This reduced the risk of inflated model evaluation metrics (Elith et al., 2006), facilitated 

the comparison of model performance within one species (Elith et al., 2010) and enabled the 

assessment of three metrics for model evaluation (i.e. AUC, sensitivity and specificity). 
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BOX 2: THINK BEFORE YOU SHRINK  

Recommendations for data quality filtering based on the results of an extensive analysis of the 

data quantity-quality trade-off (Chapter II) and the impact of species traits (Chapter III) in 

stringent filtering. Maxent performance (AUC, sensitivity, specificity) was compared before 

and after filtering opportunistic data of well-surveyed bird, butterfly, dragonfly (and plant11) 

species (resolution = 1 km²; study area = 13,552 km²). 

ACTIVITY removes records from less experienced observers based on an observer’s 

average annual activity rate 

      Use for widespread species that are difficult to identify, 

for familiar and widespread butterflies and 

to minimize commission errors, e.g. for monitoring invasive species. 

DETAIL  removes records that were submitted without any additional information 

based on the presence of metadata beyond default requirements 

      Use for plants and 

for familiar species with a high reporting probability. 

VALSTAT removes doubtful and unevaluated records based on the verification status 

of a record in the data platform 

      Use is generally recommended, except for familiar and widespread butterflies. 

      Use to minimize omission errors, e.g. for prioritizing conservation areas. 

CAUTION is needed when data quality filtering reduces sample size  

to less than 100 presences and 

by more than 50 % (for widespread species)  

                   or 75% (for species with restricted home ranges) 

It was recommended that the goal of the study should be kept in mind when applying stringent 

filters, yet this was not elaborately discussed in the previous chapters. When predicting suitable 

presence locations is the main interest, like for the delineation of conservation areas, false 

negatives (omission errors, i.e. predicting absences when the species is actually present) should 

be avoided (Lobo et al., 2008; Thomaes et al., 2008). We, therefore, concur with the common 

practice of using verified records for increasing the quality of opportunistic CSD (also see Table 

2). However, for assisted monitoring, like for invasive species, false positives (commission 

 
11 Plant species were only considered in chapter II 
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errors, i.e. predicting a presence when the species is actually absent) should be avoided 

(Guillera-Arroita et al., 2015). Using observations from more experienced observers might then 

be more effective (Table 2). Note that in relatively small regions, such as Flanders, an 

occasional false positive observation of an invasive species might be less problematic (because 

it can be validated relatively easily) compared to larger regions and countries. 

We encourage the further development and implementation of semi-automated verification 

systems and the collection of metadata on observer experience in large citizen science platforms 

(Table 5). Verification systems can exist of (combinations of) image recognition, automated 

validation within known spatial and temporal ranges and expert or user validation (Figure 1; 

Swinnen et al., 2018). Metadata on observers can be collected in the form of observer 

classifications (such as the gold stars in iRecord https://irecord.org.uk/how-do-i) or observer-

specific information on their number of entries, reported species, misidentifications etc.. The 

latter can, for example, support the method for data quality filtering based on observer activity 

described in Chapter II (section 8.1 and Table A.1). 

Table 5: Examples of citizen science data platforms that collect species occurrence data. The second 

column indicates which methods or systems are used to provide information on data quality and increase 

it (Image = automated validation by image recognition; Range = automated validation within a reasonable 

spatial and temporal range of a verified record; Expert = manual record validation by experts; User = 

community consensus by user validation). The third column indicates how metadata on observers are 

provided. 

Platform Semi-automated validation system Metadata on observers’ 

experience 

Waarnemingen.be 

 

Image, Range, Expert (BOX 1) On request 

 

iRecord Partially integrated into the NBN Record 

Cleaner12 (data cleansing, range) 

Image, User (“Research grade” records 

imported from iNaturalist)13 

Expert 

Gold stars = observers’ level of 

certainty 

Artportalen Expert, Image (under development) On request 

eBird Image, Range, Expert Metadata from checklist data 

(Kelling et al., 2019)  

iNaturalist Image, User 

Data quality assessment protocol (e.g. 

Aristeidou et al., 2021) 

Metadata in user profiles (non-

downloadable) 

GBIF Data quality requirements for data 

publishers 

Automated data cleansing with Issues and 

Flags system14 

Only at the level of the data 

publisher 

 
12 https://nbn.org.uk/tools-and-resources/nbn-toolbox/nbn-record-cleaner/  
13 https://irecord.org.uk/linking-inaturalist  
14 https://data-blog.gbif.org/post/issues-and-flags/  
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21.2. Recommendations for multiscale vegetation management in dry heathlands 

Recent trends in biodiversity monitoring have made it possible to model species occurrence 

data at fine scales. In Chapter IV, opportunistic CSD and multispectral satellite data were 

integrated into SDMs to study the impact of heathland size, vegetation structure and heathland 

heterogeneity on the habitat suitability of dry-heathland fauna in three different landscape 

contexts (i.e. closed semi-natural, open semi-natural and anthropogenic context). Using a Point 

Process Model (PPM) with a Geyer saturation process (Baddeley et al., 2015; Renner et al., 

2015) allowed us to make use of the fine resolutions at which species occurrence data (i.e. point 

observations with a precision of 50 metres or less) and remote sensing data (i.e. 10 x 10 metres) 

were available. This led to additional evidence of the importance of vegetation structure for 

heathland fauna at multiple scales. The importance of vegetation structure is widely recognized 

but often based on professional field experience or the habitat heterogeneity hypothesis (e.g. 

MacArthur and Wilson, 1967). Most studies link habitat heterogeneity to species diversity and 

have been tested at larger resolutions (Tews et al., 2004), although studies have been using 

LiDAR data for small-scale assessments as well (e.g. de Vries et al. (2021)). At larger scales, 

we confirmed previous findings on the importance of high structural complexity (e.g. Graf et 

al., 2009; Huber et al., 2016; Seavy et al., 2009), however, at small scales in isolated patches, 

we found negative species-environment relationships (Figures 13 and 14; section 20) (Stein et 

al., 2014). These results highlighted the importance of multiscale assessments of habitat 

heterogeneity over large spatial extents.  

Integrating opportunistic CSD and remote sensing data is a promising advance in biodiversity 

conservation monitoring. By including heathlands of different sizes and the landscape context, 

management recommendations for fauna conservation could be formulated in highly 

fragmented landscapes. In summary, we recommend restoring and maintaining large and 

structurally complex heathlands with patchy vegetation. Conservation should also include 

action plans to connect fragmented heathlands (e.g. by cutting down pine plantations). When 

sufficient natural resources are available in the direct (semi-natural) environment of smaller 

heathlands (e.g. for foraging or nesting), heathland management plans should also emphasize 

the importance of maintaining characteristic dry-heathland shrub vegetation. In anthropogenic 

landscapes, on the other hand, simply increasing the structural complexity of patches without 

increasing their surface area might not be enough to avoid the local extinction of species of 

conservation interest. This is probably the largest challenge for conservation management, as 
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enlarging heathlands in human-dominated landscapes will need the field experience of local 

managers, the sensitisation of citizens and additional actions and funding at the policy level.  

22. Important considerations 

In addition to the limitations of working with opportunistic presence-only data in SDMs 

introduced in Chapter I (sections 2.2 and 3), this section highlights some important 

considerations for the implementation of this research.  

22.1. Correlation and causality 

The goal of Chapter IV was to support management recommendations in habitats under 

anthropogenic pressures using fine-scaled opportunistic and quantitative remote sensing data. 

Inferring causal relationships from correlative SDMs (like in Chapter IV) is controversial as 

correlation does not necessarily imply causation (Box, 1966). This can cause problems when 

environmental covariates are correlated, which is called multicollinearity (Dormann et al., 

2013). For example, Dormann et al. (2012) pointed out the potential danger of multicollinearity 

in correlative models for predictions under future scenarios when variables are correlated at 

present but not necessarily so in the future. Arif and MacNeil (2022) highlighted the 

inappropriateness of model selection techniques based on Akaike’s Information Criterion (AIC; 

Burnham et al., 2011) when the aim is to select the covariates that best explain the data. 

Furthermore, Kühn (2007) warned of flips in covariate signs when covariates are ill-specified 

or correlated with an unspecified environmental gradient that impacts the observed pattern of 

species occurrence. 

It is a misconception, however, that functional relationships among species occurrence and 

environmental parameters cannot be derived from SDMs (Arif and MacNeil, 2022). It is, 

however, essential to choose ecologically plausible parameters, check for multicollinearity, 

formulate appropriate hypotheses and include methods to account for spatial autocorrelation 

(Arif and MacNeil, 2022; Dormann et al., 2012; Kühn, 2007). Additionally, it is important to 

distinguish between ecological patterns in species occurrence data and patterns related to 

sampling bias. In Chapter IV, the selected parameters (i.e. heathland size, vegetation structure, 

heathland heterogeneity and the landscape context) exhibited no multicollinearity. Furthermore, 

these parameters were all proven or known (through professional expertise) to affect habitat 

quality (e.g. de Vries et al., 2021; Dupont and Nielsen, 2006; Piessens et al., 2005) so that 
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relevant hypotheses could be formulated (section 17). The methodology also accounted for 

sampling bias and spatial autocorrelation by (1) applying spatial filtering at 50 metres for 

records on the same date, (2) using a Geyer saturation process to model spatial dependence 

(Baddeley et al., 2015), (3) choosing two bias covariates for bias mitigation (Warton et al., 

2013) and (4) performing cross-validation in spatial-block design (Valavi et al., 2019). We 

argue that the predictions of the trend of the selected models were sufficiently validated by both 

their ecological plausibility and a reasonable model fit (sections 19 and 20). As residual spatial 

autocorrelation can increase type I errors (i.e. falsely rejecting the null hypothesis) but seldomly 

reverse the sign of a coefficient (Dormann et al., 2007; but see, e.g., Kühn, 2007), we are also 

confident that, by accounting for sampling bias, the interpretation of the relative impact of the 

covariates on relative habitat suitability was valid.  

We acknowledge, however, that true causality between species occurrence and environmental 

covariates cannot be proven (Arif and MacNeil, 2022) and that our variables might be correlated 

with other unspecified environmental drivers such as soil water or microclimate (see section 

23.1.3). Nevertheless, we maintain that we used the best available methods and refer to previous 

studies that employed similar methodologies to support our findings (e.g. De Solan et al., 2019). 

A related issue, and the reason why we did not model plant species in Chapter IV, is the 

challenge of explaining plant species occurrence using quantitative remote sensing predictors, 

as such measurements are influenced by both habitat quality and the spectral characteristics of 

the vegetation (Bradley et al., 2012). 

22.2. Transferability of the results 

In the two parts of the dissertation (Chapters II and II versus Chapter IV; Figure 4), we used 

two different presence-only SDMs for different species at different spatial scales and with 

different methods for bias correction. This was motivated by the different objectives of the 

study, i.e. performing a large-scale assessment of the change in model performance of a 

presence-only SDM before and after filtering (Chapters II and III) and performing a multiscale 

assessment of the impact of several predictors on the habitat suitability of species of 

conservation interest (Chapter IV). However, this raises two questions regarding the 

transferability of this research:  

i. How generic are the filtering recommendations from Chapters II and III and, more 

specifically, do they apply to the methods in Chapter IV? 

ii. Could we not have used the same methods for all three Chapters (II, II and IV)? 
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We will discuss these questions through three topics: (1) methods for modelling and bias 

correction, (2) species and sample size and (3) scale and study area.  

22.2.1. Methods for modelling and bias correction 

Chapters II, III and IV all supported the main objective of the research, i.e. to reduce the 

uncertainty associated with opportunistic citizen science data in biodiversity conservation 

applications (section 5). However, we argue that the specific objectives (improving predictive 

performance vs. causal inference) and potential applications (e.g. delineation of conservation 

areas vs. management recommendations) imposed limitations that caused a choice of different 

methods for modelling and bias correction. Choosing the same methods might have led to 

suboptimal recommendations for the intended conservation applications. Additionally, we refer 

to the interpretation of Maxent as an inhomogeneous PPM and argue that the implemented 

modelling methods were similar apart from the (important) assumption of spatial independence 

in Maxent (Renner and Warton, 2013).  

Maxent (Phillips et al., 2006) was used in Chapter II (and III), as the objective was to assess the 

relative predictive model performance and Maxent is, to this date, still evaluated as among the 

best-performing and most-used SDM methods for presence-only data (Elith et al., 2006; Valavi 

et al., 2022). This choice for this method, however, imposed some limitations regarding spatial 

scale and bias correction methods. Maxent assumes spatial independence (section 3.1; Renner 

and Warton, 2013), so sampling bias had to be reduced before modelling to avoid problems 

associated with spatial autocorrelation (section 3.2.2; Kramer-Schadt et al., 2013). We chose a 

resolution of one kilometre for spatial filtering which was a good trade-off between reducing 

sampling bias and an appropriate resolution for conservation policy applications on a regional 

scale such as Flanders (e.g. Demolder et al., 2014; Rutten et al., 2019; Vantieghem et al., 2017). 

We acknowledge that other bias correction methods could have been tested, such as background 

manipulation (Phillips et al., 2009; Vollering et al., 2019) or bias covariates (El-Gabbas and 

Dormann, 2017; Warton et al., 2013) (section 3.2.3). However, this would have jeopardized the 

comparability of our models ( section 8.3; Merow et al., 2013) and we chose to use the same 

background for all models instead. Another important limitation of Maxent, and presence-only 

SDMs based on opportunistic CSD in general, is that they can only provide a ranking of the 

relative habitat suitability of locations when information on detectability is unknown (section 

3.3; Guillera-Arroita et al., 2015). 
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A Gibbs Point Process Model (PPM) (Baddeley et al., 2015; Renner et al., 2015) was used in 

Chapter IV for two reasons. First, the objective was to support habitat management by analysing 

the impact of specific environmental predictors on relative species occurrence (Fithian and 

Hastie, 2013). The interpretation of coefficients and their interactions in PPMs is more 

straightforward compared to Maxent because the former are fitted by linear regression methods 

and the latter by maximum entropy methods, using features and tuning parameters to optimize 

model fit (Merow et al., 2013; Phillips et al., 2017). Second, the objective included an 

assessment of the impact of a fine-scaled habitat feature (i.e. vegetation structure) on relative 

habitat suitability. Therefore, we had to increase the resolution and could not apply spatial 

filtering like in Chapter II. The Geyer process combined with bias covariates offered a good 

solution as spatial interaction between points (Baddeley et al., 2015) and spatial variation in 

sampling (Warton et al., 2013) were accounted for.  

22.2.2. Species and sample size 

The selected methods and species had implications for the minimum sample size considered in 

the different chapters of the dissertation. In Chapter II, species were selected by setting a 

minimum sample size of 100 presences to ensure comparability among results, i.e. by setting 

identical Maxent settings and ensuring that all three filters (i.e. ACTIVITY, DETAIL, 

VALSTAT; BOX 2) and their combinations could be compared per species for at least one 

level of sample size (section 8.4; Figure A.3). In Chapter IV, we selected dry-heathland fauna 

of conservation interest as these are target species for biodiversity conservation policy. The 

sample size was set to a minimum of 60 presences because of model fitting problems below 

this threshold (section 18.4.1). A consideration when using small sample sizes is that they tend 

to generate models with low statistical power (Chefaoui et al., 2011), hence significant covariate 

effects can imply overestimations of that effect (Yang et al., 2022). We highlight, however, that 

we did not base our conclusions on the statistical significance of the covariate effects in the 

PPMs but rather on the sign of the effect and their relative magnitude. 

Due to the different SDM methods (Maxent versus Gibbs Point Process Models), 

recommendations regarding data quality filtering in Chapter IV could not rely on sample size. 

However, as Maxent and PPMs respond similarly to sampling and detection bias (Guillera-

Arroita et al., 2015), we could expect a similar impact of data quality filtering when spatial 

dependence was accounted for. Therefore, we adopted the recommendations based on species 

traits (i.e. a restricted home range, relatively small body size and taxonomic group) and decided 

to use only verified records. Additional analysis on the impact of stringent filtering at a smaller 



 

103 

 

scale and targeted at species of conservation interest could be valuable. In retrospect, as we 

only compared the single filters in Chapter III, the list of species used for the species profiles 

could have been expanded to species with more restricted home ranges. However, we do not 

expect changes in filtering recommendations because the positive effect of using correctly 

verified data for species with restricted home ranges was relatively important (Figure 10) and 

their models have higher transferability (Wogan, 2016).  

22.2.3. Scale and study area 

A different scale (i.e. the extent of the study area and the grain of the model) was used in 

Chapters II and III versus Chapter IV. In Chapters II and III, models were run for Flanders at a 

resolution of 1 kilometre, while in Chapter IV, models were run in the Campine region (the 

northeastern part of Flanders) at a resolution of 50 metres. The choice for scale was motivated 

by the objectives of the respective studies and the best options to meet them, as explained in 

section 22.2. While running the PPMs at larger scales would have resulted in a loss of 

information, running Maxent at smaller resolutions would have been feasible. We argue, 

however, that this could violate the assumption of spatial independence (Renner and Warton, 

2013). 

We repeatedly chose the same scales for all species to facilitate comparability among results. 

However, we acknowledge that information on the dispersal ability and/or mobility of the 

species could be used to further improve model predictions (Chapter II) or to gain additional 

insight into species-environment relationships (Chapter IV). Supposed that spatial dependence 

was not an issue, increasing the resolution (especially for butterflies, dragonflies and plants) 

towards one hectare rather than one squared kilometre (100 hectares) might have led to different 

recommendations for data quality filtering (Chapters II and III). Remember that the proportion 

of high-quality data in a model training set is scale-dependent because a coarse resolution gives 

a higher chance that at least one high-quality observation falls in a grid cell (section 10). Data 

quality filtering of the same dataset, but aggregated at a finer resolution, might hence cause a 

larger reduction in sample size. Whether this will impact the thresholds at which the data 

quality-quantity trade-off becomes unfavourable, has yet to be explored.  

Section 20 in Chapter IV already mentioned that additional findings from a sensitivity analysis 

(where vegetation structure and heathland heterogeneity are quantified at different spatial 

scales) could further support management recommendations and might highlight some 

keystone structures (Tews et al., 2004) in heathland ecosystems. Although we do not expect 
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major changes in the impact of heathland size and heathland heterogeneity, gathering more fine-

scaled data on vegetation structure with, for example, LiDAR and/or microclimate sensors 

could definitely lead to new insights (see section 23.4.1).  

We assumed that a species responded uniformly to the environmental gradients throughout the 

study regions as Flanders has limited geographical and environmental gradients (e.g. 240 km 

across, 0 to 288 m elevation and relatively uniform climatic conditions) and the Campine region 

is a region with similar biotic and abiotic conditions (Klijn and de Haes, 1994). We 

acknowledge, however, that on larger scales, the impact of climatic variables on habitat 

suitability becomes more prominent and species populations might respond differently to 

similar local environmental conditions (Chen et al., 2020). For example, heathland butterflies 

responded similarly to environmental conditions within the Campine region (Vanreusel et al., 

2007) but might respond differently to spatial structure in other regions (De Ro et al., 2021; 

Schirmel and Fartmann, 2014). 

The applied methods in Chapter IV might not be transferable to every habitat type, as 

quantifying habitat heterogeneity and vegetation structure possibly need different approaches 

or considerations. For example, habitat heterogeneity in farmland is not only impacted by 

variability in habitat subtypes (such as arable land, cultural grassland and orchards) but also by 

crop configuration and composition (Fahrig et al., 2011) and by the presence of small landscape 

features such as hedgerows or flower strips (Dochy, 2014).  

23. Future research 

Throughout the dissertation, different suggestions have been made for expanding this research. 

To improve filtering recommendations of opportunistic CSD, we encourage the implementation 

of the methods used in Chapters II and III at different scales (taking into account the limitations 

of sampling bias in opportunistic CSD), in other presence-only (or integrated) SDMs and for 

more citizen science databases. This will help to formulate both generic and specific filtering 

recommendations and increase the uptake and value of opportunistic CSD in biodiversity 

conservation applications. 

We suggest the expansion of our analysis on the impact of multi-scale vegetation heterogeneity 

on habitat suitability to other habitat types and associated species and encourage the integration 

of habitat area size and the landscape context as environmental variables. With the increasing 
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availability of fine-resolution data on species occurrences (through CSD) and quantitative 

measures of habitat quality (through remote sensing), we also believe that our methods can be 

used at even finer resolutions across large extents. The next sections formulate some additional 

suggestions regarding modelling methods and additional environmental predictors. 

23.1. Integrated species distribution models 

Integrated SDMs were introduced in section 3.2.3 as a method to mitigate bias. In the current 

section, we use the term "integrated SDM" for a model that incorporates submodels for different 

types of data. These submodels estimate shared parameters by utilizing a joint likelihood or 

correlation structure. Integrated SDMs typically employ a point process framework (Renner et 

al., 2015) in either a single-species (e.g. Dorazio, 2014) or multi-species (e.g. Botella et al., 

2021; Fithian et al., 2015) approach. This framework facilitates the integration of various data 

types and allows for more robust modelling. We concur with the notion that data integration 

methods hold immense potential for fully harnessing the benefits of opportunistic presence-

only CSD (Johnston et al., 2023). By employing data integration methods, model performance 

can be improved, and bias can be reduced in comparison to using single presence-only SDMs. 

For a comprehensive overview of data integration methods, we recommend referring to the 

reviews conducted by Miller et al. (2019) and Isaac et al. (2020). 

In recent years, the number of checklist observations in waarnemingen.be has been growing 

exponentially and recently reached the milestone of three million records (Figure 2). Therefore, 

we particularly want to highlight methods that integrate semi-structured checklist data 

(presence-absence data) with opportunistic presence-only data (e.g. Dorazio, 2014; Fithian et 

al., 2015; Pacifici et al., 2017). Using integrated SDMs becomes especially interesting when 

few presence-absence data are available, for example at a ratio of structured to unstructured 

data of less than 5 % in a study by Simmonds et al. (2020). However, simply integrating 

unbiased presence-absence data will not be sufficient to improve model predictions and also 

the presence of unknown biases can significantly impact the performance of integrated SDMs 

(Simmonds et al., 2020; Suhaimi et al., 2021). Possible solutions to overcome these limitations 

include weighted joint likelihoods to account for sample size differences (Fletcher et al., 2019), 

adding terms that quantify sampling bias, such as bias covariates  (Bradter et al., 2018) or a 

flexible spatial term (Simmonds et al., 2020), or using correlation methods (Suhaimi et al., 

2021). 
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23.2. Joint species distribution models 

Limitations or opportunities imposed by co-occurring species in the studied regions were not 

considered. Stacking model predictions without consideration of these effects might lead to 

over- or underestimations of species richness (Clark et al., 2014). Techniques such as joint 

SDMs can be explored to predict the suitability of locations for multiple species more accurately 

(Ovaskainen et al., 2010; Ovaskainen and Soininen, 2011; Pollock et al., 2014). Joint SDMs 

often rely on a hierarchical framework, such as the flexible Hierarchical Modelling of Species 

Communities (HMSC) proposed by Ovaskainen et al. (2017). However, they only recently 

started to include presence-only data (Escamilla Molgora et al., 2022), which is a promising 

advance for community modelling when no or little structured data are available.  

23.3. Include temporal aspect 

Further research on the impact of data quality filtering on model performance could, for 

example, assess whether data quality changed over the years and between seasons. Data quality 

might have increased over time due to increased participation and experience, but at the same 

time, mobile applications have made citizen science platforms more accessible to a broad 

public. This leads to more observers with low expertise and experience (i.e. lower ACTIVITY; 

BOX 2) and fewer observations submitted with accompanying metadata (i.e. lower DETAIL; 

BOX 2), which might both affect data quality negatively (Chapters II and III). 

We assumed that a species’ response to environmental variables was constant across the studied 

period (section 8.3; section 22.2.3) and temporal aggregation of records was performed to 

reduce bias (section 3.2.2). However, temporal patterns might be missed by our methods as 

species respond to annual and seasonal changes in landscape and climate (Zurell et al., 2009) 

and different acquisition dates of remote sensing images can impact model performance 

(Bonthoux et al., 2018; Sheeren et al., 2014). Methods that capitalize on the high temporal and 

spatial resolution of remotely-sensed variables include phenological predictors (see section 

23.1.3.d), seasonal SDMs (Oeser et al., 2020), multi-state SDMs (Frans et al., 2018) and 

dynamic SDMs (Milanesi et al., 2020). Seasonal and multi-state SDMs account for the fact that 

a species occupies different habitats at different lifecycle stages, such as breeding, nursing, and 

overwintering. However, the resolution of the data must be much smaller than the species' 

migration area, so multi-state SDMs (and to a lesser extent, seasonal models) are primarily 

suitable for species with high data availability, long behavioural periods, and large dispersal 

areas, such as GPS-tracked large mammals (Frans et al., 2018; Oeser et al., 2020) or birds 
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(Vanermen et al., 2020). Dynamic SDMs either average individual models from different 

periods or link species occurrences to the environmental situation at a specific time range 

(Milanesi et al., 2020). Nonetheless, few attempts have fully exploited the time series and 

temporal dynamics of remotely-sensed variables (Randin et al., 2020). Although these methods 

seem promising, their applicability to opportunistic CSD may be restricted by the higher 

incidence of bias in temporally disaggregated data.  

23.4. Additional predictors 

The selection of model predictors was motivated by the objectives in the different chapters, the 

characteristics of the study area and the need for comparability in Chapters II and III. However, 

the following predictors could be explored in further research. 

23.4.1. Microclimate 

Microclimates are an important driver of local species occurrence, as differences in local land 

cover and topography can create ecological conditions that differ from the average 

macroclimate conditions measured by common weather stations (Lembrechts et al., 2019). 

Microclimates have gained renewed attention for species distribution modelling with the 

increased accessibility of high-resolution remote sensing data, such as LiDAR and 

hyperspectral data (Zellweger et al., 2019). They can, for example, be used to interpolate data 

obtained from microclimate sensors (Lembrechts et al., 2020; Zellweger et al., 2019). 

Vegetation structure impacts microclimate in heathlands (section 20; Barclay-Estrup, 1971; 

Mantilla-Contreras et al., 2012; Schirmel et al., 2011; Schirmel and Fartmann, 2014). However, 

capturing fine-scaled variations in near-surface temperature and humidity for low-stature 

habitats across large extents remains a challenge (Maclean et al., 2021; Zellweger et al., 2019) 

and research is currently ongoing. When available, microclimate data can be adopted in SDMs 

to further analyse the relationship between vegetation structure and habitat suitability for 

heathland species (Chapter IV; Maes et al., 2019b; Mantilla-Contreras et al., 2012; Schirmel et 

al., 2011; Schirmel and Fartmann, 2014). Moreover, using fine-scaled species occurrence data 

in Gibbs point process models is a promising strategy to adopt microclimate data in SDMs for 

predicting relative habitat suitability across large spatial extents. This can be important for 

delineating conservation areas, especially in light of climate change (Lenoir et al., 2017). 
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23.4.2. Soil parameters 

We included soil texture in the predictor set in Chapter II as combining land cover and soil data 

is known to improve predictions of species distributions (Titeux et al., 2009). While at these 

coarse scales, we believe that large differences in soil type are reflected by the difference in 

land cover, we do admit that a measure of soil water could have improved predictions. It is 

unlikely, however, that the assessment of relative model performance would have been 

impacted by adding one predictor. 

In Chapter IV (section 18.3), it was noted that soil predictors could be tested, but with 

consideration of possible collinearity with other predictors. We acknowledged that including 

measures of soil water or soil biochemistry, such as nitrogen (N) and phosphorus (P) content 

(Vogels et al., 2017), might have led to additional insights. Those insights can support 

integrated soil-vegetation management, such as the combination of sod-cutting and P addition. 

Sod-cutting removes both vegetation and soil top layers, which depletes nutrients from the soil 

and homogenises the vegetation cover (De Blust, 2022). While this is beneficial for restoring 

typical heathland vegetation (Jones et al., 2017; Schellenberg and Bergmeier, 2020), the 

induced P limitation affects the nutritional quality of plants for invertebrates and by 

consequence also for larger predators, such as birds, that feed on them (Vogels et al., 2017, 

2021). The methods presented in Chapter IV offer a way to investigate this effect for multiple 

species at fine scales and large extents. 

23.4.3. Landscape metrics 

Among the most used landscape metrics in SDMs are metrics related to landscape heterogeneity 

(i.e. the spatial variation in habitat types or land cover classes) due to its positive relationship 

with biodiversity, especially at large scales (Stein et al., 2014; Tews et al., 2004). We warn, 

however, that a high landscape heterogeneity might be a measure of high fragmentation in 

anthropogenic regions such as Flanders (Maes et al., 2022) and thus might have impacted 

species occurrence both positively and negatively in Chapter II. 

Habitats contain various resources that appeal more to some species than others (Stein et al., 

2014; Tews et al., 2004), hence integrating within-habitat heterogeneity in Chapter II might 

have improved predictions. We argue, though, that using one measure of within-habitat 

heterogeneity for all habitat types is not appropriate in a coarse-scale analysis. Heterogeneity 

in forests (De Frenne et al., 2021), for example, will not have the same effect on species 

occurrence as heterogeneity in heathlands or grasslands (Bar-Massada and Wood, 2014; de 
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Vries et al., 2021). Moreover, abiotic differences such as soil type can impact which habitat 

sub-types occur or dominate (Thoonen et al., 2013).  

For studies at smaller scales, however, including more landscape metrics could have helped the 

interpretation of our results. For example, many of the findings in Chapter IV related to edge 

effects, hence edge metrics such as edge density (Lustig et al., 2017) could be used in future 

studies. 

23.4.4. Remotely-sensed ecosystem functioning attributes 

Using remotely-sensed ecosystem functioning attributes (EFAs) as a predictor in SDMs has 

been gaining attention as they can capture responses to changes in habitat much earlier than 

climatic or landscape variables (Mouillot et al., 2013) and can be used in the framework of the 

essential biodiversity variables (EBVs) (Alcaraz-Segura et al., 2017; Pereira et al., 2013). EFAs 

have been shown to successfully predict annual range shifts (Alcaraz-Segura et al., 2017), 

habitat suitability and abundance for protected plant species (Arenas-Castro et al., 2019, 2018; 

Vila-Viçosa et al., 2020) and bird distributions (Regos et al., 2019), yet the latter with low 

temporal transferability (Regos et al., 2020).  

EFAs include, for example, land surface temperature (LST) (Arenas-Castro et al., 2018), 

Albedo (Regos et al., 2020) or indicators of seasonal dynamics quantified by summary statistics 

of the Enhanced Vegetation Index (EVI) (Alcaraz-Segura et al., 2017; Arenas-Castro et al., 

2019, 2018) and Normalized Difference Water Index (NDWI) (Vila-Viçosa et al., 2020). In 

their definition as EFAs, their use is relatively new, but note that many of these variables have 

been used before in SDMs (Cord and Rödder, 2011). We encourage further research that 

includes EFAs obtained from high-resolution sensors (e.g. Sentinel-2) and that validates their 

use as model predictors for multiple species and species groups. We concur with their esteemed 

potential for biodiversity conservation applications (Arenas-Castro et al., 2019, 2018) due to 

their high spatial and temporal coverage and cheap collection.  

23.4.5. Binary predictors of land cover  

A recent study demonstrated that the probability of occurrence does not necessarily increase 

with increasing habitat size because it might be enough to have a certain amount of habitat to 

support a vital population (Gábor et al., 2022). In Maxent, this could easily be integrated by 

allowing threshold features (Merow et al., 2013). It would be interesting to see (i) whether such 

responses are detected by a presence-only algorithm (as Gábor et al. (2022) used presence-
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absence data) and (ii) how they impact model performance. For example, jumps in the response 

curve were detected when using non-linear features in Maxent for an endemic plant species in 

South Africa (Merow et al., 2013), while in a study on rare squirrels in Florida, conclusions did 

not change (Tye et al., 2017). Additionally, threshold features are preferably used based on 

existing knowledge of a species’ ecology as they quickly overcomplicate model interpretation 

(Merow et al., 2013). 
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CHAPTER VI. Application Potential 

24. General application potential 

This research has diverse application potential in biodiversity conservation policy and can guide 

end-users of large citizen science platforms that collect biodiversity data. SDMs are 

increasingly used to support conservation policy in different domains (section 4.2). When the 

goal is to predict the potential habitat suitability of species, Chapters II and III offered a set of 

recommendations for data quality filtering. When the goal is to study relationships between 

species occurrence and environmental data at fine resolutions, Chapter IV provided an example 

study, where fine-scaled data on species occurrence and vegetation characteristics were used in 

a point process setting to support evidence-based habitat management. While the first 

application is more interesting for conservation strategies at coarse scales (i.e. delineation and 

prioritization of areas for biodiversity conservation and monitoring), the second is also relevant 

to small-scale conservation practices (i.e. supporting habitat management) (also see section 

22.2). We stress that the potential habitat suitability maps and management recommendations 

are mostly targeted at short-term biodiversity conservation efforts. Long-term future risk 

assessments, for example by extrapolating model predictions under the Representative 

Concentration Pathway (RCP) scenarios for climate change (e.g. Van Daele et al., 2021), were 

beyond the focus of this research. 

There is a growing consensus that opportunistic CSD can make valuable contributions to 

biodiversity conservation, if processed correctly (Chapters II, II and IV; Henckel et al., 2020; 

Soroye et al., 2018; Van Strien et al., 2013). Ideally, the strengths of both opportunistic and 

structured survey data should be combined (Fletcher et al., 2019; Henckel et al., 2020; 

Simmonds et al., 2020). While that was not the focus of our research, we contributed to a study 

on allergenic tree species in which structured data and relative habitat suitability maps based 

on opportunistic data were combined to improve abundance estimations in urban areas of 

Wallonia (the southern region of Belgium) (Dujardin et al., 2022).  

Furthermore, the value of this research, as with much ecological research, is only realised when 

science, policy and practice meet in a transparent way (Parker et al., 2016; Wood et al., 2018). 

Still too often, research does not find its way into policy and policy measures are evaluated as 
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ineffective after significant investments (Downey et al., 2021) or even international policy 

reforms such as the Greening of the Common Agricultural Policy (Lakner et al., 2019; Pe’er et 

al., 2017). We have shown that with relatively simple, accessible and cheap methods, evidence-

based recommendations for biodiversity conservation policy and management can be 

supported. These findings can reach practitioners in the field, for example, by training them to 

interpret scientific results (Downey et al., 2021), by using so-called ‘evidence bridges’ 

(Kadykalo et al., 2021) who can also provide feedback to scientists on possible caveats, or by 

publishing scientific studies into local nature journals such as Natuurfocus in Flanders. 

Nevertheless, the expertise of all parties must be treasured (Molnár and Babai, 2021). A 

scientist, for example, has a deeper understanding of statistical methods and can make well-

founded choices among different methods to reach a specific goal. A practitioner, on the other 

hand, has priceless field experience and will be better at estimating the feasibility of certain 

applications, while, lastly, policymakers have more insight into the socio-economic 

implications.  

Considering the potential applications for presence-only SDMs in conservation which were 

introduced in Chapter I (section 4.2) and the known limitations of opportunistic CSD and 

presence-only SDMs (sections 3.3 and 22), this chapter will elaborate on possible applications 

in Flanders. 

25. Application potential in Flanders 

25.1. The current state of biodiversity (policy) in Flanders 

Flanders (the northern region of Belgium) is an area of 13,625 km² characterized by a high 

population density (492/km²), intensive anthropogenic land use (46% agriculture and 29% 

urban areas) and a high fragmentation of the remaining semi-natural areas 

(https://www.statbel.fgov.be; Maes et al., 2022). Biodiversity has been suffering tremendously 

under these pressures which, in combination with climate change, have led to serious declines 

in species and populations and brought almost a third of the species in Flanders on a IUCN Red 

List (Schneiders et al., 2020). 

In Flanders, nature conservation policy is primarily built around the Natura 2000 network 

(Figure 15). The protected area currently covers 1663 km² (12% of the total area) (Schneiders 

et al., 2020) of which 940 km² (7% of the total area) is under conservation management (Vught 

https://www.natuurpunt.be/pagina/natuurfocus


 

113 

 

et al., 2020). Additionally, Natuurpunt, one of the largest NGOs working in the nature sector 

in Flanders, also happens to be one of the largest private landowners, contributing another 200 

km² of protected areas. 

 

Figure 15: The Natura 2000 network in Flanders, including the special areas of conservation (SACs) under 

the Birds Directive (2009/147/EG) and the special protected areas (SPAs) under the Habitats Directive 

(92/43/EEG) (situation on 22/07/2005 and 18/01/2013 respectively)15. The SACs and SPAs respectively 

cover 7% and 8% of the total area (with an overlap in 3% of the total area).  

Following the EU Biodiversity Strategy for 2020, the Flemish Natura 2000 program should 

realize a set of conservation goals before 2050 (Agentschap voor Natuur en Bos, 2017). This 

program included management plans for special protection areas (SPAs) and special areas of 

conservation (SACs), nature development plans, plans to reduce negative pressures on 

biodiversity such as the programmatic approach to nitrogen, species protection plans and EU 

LIFE projects. Every six years, intermediate goals are assessed and reported to the EU. 

Unfortunately, the most recent report showed that none of the six targets of the EU Biodiversity 

Strategy for 2020 were achieved (Schneiders et al., 2020). At the start of the new EU 

Biodiversity Strategy for 2030, governing bodies in Flanders are challenged to find ways to 

expand and connect the existing Natura 2000 network and enhance the protection and 

restoration of biodiversity directed by the anticipated Nature Restoration Law (European 

Commission, 2022). To reach these goals, it is now, more than ever, time to join forces with 

citizens, scientists and land owners. 

Historically, the designation of nature conservation areas in Flanders (for example, the Natura 

2000 areas in 2001 or the Flemish Ecological Network in 2003) was largely biotope-driven and 

highly defined by socio-economic factors and politics. It was only in 2005, that the first study 

 
15 Retrieved from https://www.geopunt.be/ on the 14th of March 2023 
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highlighted the importance of considering species distributions for biodiversity conservation 

policy (Maes et al., 2005). The uptake of data on species occurrence in policy research has since 

evolved gradually and developments such as, for example, the GeoDynamiX toolbox 

(https://vito.be/en/product/geodynamix-spatial-modelling-tools) and the standardisation of Red 

List criteria (Maes et al., 2019b) have supported many technical reports (e.g. Maes et al., 2015, 

2019b). New initiatives, such as the design of the structured survey protocols for priority species 

“MEETNETTEN” (Westra et al., 2016), will further expand policy applications of species 

occurrence data. 

Structured data collected in systematic surveys might outperform opportunistic CSD as input 

for SDMs, yet such high-quality data is often not available (Wood et al., 2018). Today, CSD 

platforms can deliver millions of species records with high geographic precision, which can be 

combined with remote sensing data to facilitate biodiversity conservation and monitoring on a 

much larger scale and with greater efficiency (Leitão and Santos, 2019). While some may be 

sceptical about using uninformed citizen scientists for data collection, there are additional 

benefits to this approach. For example, these individuals collect data without prior knowledge 

of the species distribution or ecology, which can be useful for detecting early range expansions 

or behavioural changes (Broman et al., 2014).  

The role of opportunistic CSD in Flemish nature policy is acknowledged, yet their full potential 

remains untapped. Currently, CSD are primarily used to support more established methods and 

uncertainty is generally reduced by using general practices such as the use of verified data or 

spatial filtering of records to reduce sampling bias (Chapter II). The Research Institute for 

Nature and Forest (INBO) developed mechanistic models to map potentially suitable habitats 

for 245 species of conservation priority (Maes et al., 2017a). The maps indicate where species 

can occur at a 20-metre resolution (1 = present, 0 = absent), without guarantee of actual species 

presence. To finetune these potential habitat suitability maps, opportunistic CSD have been 

used to delineate areas that are relevant for the modelled species by taking into account 

(opportunistic) presence records and dispersal distances (Maes et al., 2016). Our research aims 

to facilitate the integration of opportunistic CSD and SDMs in biodiversity conservation policy, 

particularly in two domains that were earlier identified in Chapter I (section 4.2): the delineation 

and prioritization of areas for conservation and monitoring; and habitat management. 
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25.2. Examples of potential applications in Flanders 

To illustrate the application potential with examples, we ran SDMs for 33 species (Table O.1) 

that were either Flemish priority species or bound to farmland. We used opportunistic presence-

only data to run Maxent models at a 500-metre resolution in Flanders with 15,000 randomly 

selected background points. Opportunistic presence-only records were retrieved from the 

waarnemingen.be database for the period 2018-2022. Presences were cleansed (removing bad 

coordinates, wrong observations and observations with a precision of more than 250 metres), 

spatially thinned and quality filtered (Chapters II and III). The predictions from the resulting 

models were stacked to generate maps with biodiversity scores, i.e. weighted sums of model 

predictions from different species (in this example, weighted by their red list status (Demolder 

et al., 2014)) (Figures 16 and 17; Table O.1). 

25.2.1. CASE STUDY 1: Biodiversity 2030 

The most recent EU Biodiversity Strategy states that by 2030, at least 30% of the European 

land area must be protected, including 10% strictly protected areas (European Commission, 

2020). Member states are free to choose how to implement and monitor these guidelines in their 

respective territories and are faced with the challenge of enlarging and connecting the existing 

Natura 2000 network. This challenge is especially prominent in fragmented and anthropogenic 

regions such as Flanders (Maes et al., 2022).  

Correlative SDMs have some advantages to the mechanistic approach (GeoDynamiX toolbox) 

described earlier. First, these SDMs are based on actual species occurrences that reflect a 

species’ realized niche rather than its fundamental niche (Lobo et al., 2010). This implies that, 

when model predictors have a longitudinal/latitudinal gradient, dispersal will automatically be 

taken into account (Sillero, 2011). Second, locations will be ranked according to the predicted 

habitat suitability so that policy-defined thresholds for conservation can easily be met. As a first 

case study, we have delineated protected and strictly protected areas in Flanders by indicating 

respectively 30% and 10% of the total land area with the highest biodiversity scores (Figure 

16). In this example, biodiversity scores were derived from the stacked Maxent predictions of 

14 Flemish priority species (De Knijf et al., 2014; Herremans et al., 2014). The map with 

biodiversity scores was overlayed with the existing SPAs under the Habitats Directive 

(92/43/EEG) to check for overlap and differences. 
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Figure 16: Prioritization of the protected (30%) and strictly protected (10%) areas in Flanders for the EU 

Biodiversity Strategy 2030, based on biodiversity scores (i.e. stacked relative occurrence rates from 14 

Flemish priority species, weighted by Red list status). The map can be used to prioritize current Special 

Protected Areas (SPAs) under the Habitats Directive (92/43/EEG) in the Natura 2000 network for 

monitoring and possible relocation (A) and to indicate areas that are suitable for connecting (B) and 

expanding (C) the existing Natura 2000 habitat network. 
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In general, predictions overlapped well with the SPAs, with 85% of the current areas indicated 

as protected and 54% as strictly protected. This means that 15% of the current SPAs could be 

prioritized for additional monitoring and might be considered for relocation. Results on the 

strictly protected area also agreed well with previous studies as we noted an overlap of 42% 

with Natura 2000 SPAs (cf. 43% of the grids with the highest biodiversity scores overlapped 

with Natura 2000 area (Maes et al., 2005)). Only 22% of the protected area is now designated 

as SPA, yet this is not surprising as the threshold for protected area was 30% of the total land 

area and SPAs are only 8% of the total land area. This leaves 78% of the protected areas and 

58% of the strictly protected areas for potential reserve expansion and connection. Note that 

SACs, i.e. areas designated under the Birds Directive, were not yet considered in this example. 

25.2.2. Biological valuation Map 

The current biological valuation map (BVM) is based on a detailed inventory of the biological 

environment and land cover in Flanders between 1998 and 2010 (De Saeger et al., 2010). It has 

been widely adopted as a spatial base layer by governments, scientists and NGOs to support 

landscape planning and nature conservation (De Saeger et al., 2017). After 2013, the map has 

been mostly updated inside protected areas as this requires labour-intensive fieldwork, leading 

to long mapping cycles (18 years for forests and 12 years for other semi-natural habitats). 

Occasionally, adjustments are also made based on the topographic reference layer for Flanders 

and the agricultural land declaration, but these areas are usually mapped with less detail. With 

the increasing availability of free high-resolution data from remote sensing, this method is also 

being explored to assist in monitoring and reduce fieldwork (Dumortier et al., 2022; Vanden 

Borre et al., 2011). 

We see two applications of our research for the BVM, on the condition that the layer is not used 

to construct environmental predictors (like in Chapter IV, for example)16. First, areas with high 

biodiversity scores could be prioritized for monitoring. This can, for example, be harmonized 

with remote-sensing-based change detection (Tarantino et al., 2015; Vanden Borre et al., 2011; 

Williams et al., 2006). For practical reasons, the indicated areas for such guided field visits 

should be (much) smaller than 25 ha (cf. the 500x500m grids used for the biodiversity scores 

in the case studies), hence additional methods for dealing with sampling bias should be 

considered. Although the valuation in the BVM is largely plant-based, we highlight the value 

 
16 Other layers that might be used are small landscape features (Dochy, 2014), vegetation height (e.g. the Flanders 

Groenkaart; available on https://www.geopunt.be), remotely-sensed EFAs (section 23.4.4), the soil map (Bodemkaart; 

available on https://www.dov.vlaanderen.be/), water bodies (Packet et al., 2018). 
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of animal species as they have intrinsic value, are biodiversity indicators and deliver ecosystem 

services (Deliège and Neuteleers, 2015; IPBES, 2019; Peters et al., 2016). Moreover, many 

priority species for conservation in Flanders are animals (De Knijf et al., 2014; Herremans et 

al., 2014). As remote sensing is being explored as a new technique for habitat quality 

assessment, we encourage the adoption of, for example, measures of vegetation structure as this 

mostly impacted habitat suitability of animal species positively in large heathlands (Figure 14).  

Second, a quality assessment could evaluate whether the current mapping cycles are sufficient 

to capture habitat changes by contrasting biodiversity scores with the biological valuation 

classes in the BVM (e.g. Figure 1 in De Saeger et al. (2017)). One could compare areas that 

have been inventoried regularly with those that have not in different habitats17. We expect to 

confirm that cycles can be longer in forests than in heathlands, for example, as these latter are 

characterized by fast natural succession (De Saeger et al., 2017; Fagúndez, 2013).  

25.2.3. MEETNETTEN 

The “MEETNETTEN” are networks for monitoring plant and animal species of conservation 

interest in Flanders (i.e. breeding birds, wintering waterfowl and 77 species of other taxonomic 

groups18) (Westra et al., 2016). Each network consists of predefined locations where citizen 

scientists can count individuals by following structured survey protocols. The resulting data are 

extremely valuable to monitor population trends and are a major success in their completeness 

since the project started in 201619. Given their success, new networks will be operational soon, 

for example for the monitoring of farmland biodiversity (Dumortier et al., 2022) or invasive 

alien species20. Locations with high relative habitat suitability can be prioritised for more 

structured monitoring, both to design new networks and to optimise and expand existing 

networks.  

25.2.4. Common agricultural policy 

The Common Agricultural Policy (CAP) is the European legal framework that provides funding 

for eligible farmers in all EU member states. It was designed in 1962 as an answer to the 

growing need for food while ensuring fair incomes for farmers. Over the years, the CAP became 

more ‘green’ with increasing attention towards ecosystem services and biodiversity. Besides 

 
17 Inventory dates are saved as metadata in the Biological Valuation Map (available on https://www.geopunt.be). 
18 The MEETNETTEN currently include birds, amphibians, plants, mammals, molluscs, butterflies, dragonflies and 

other invertebrates https://meetnetten.be/  
19 Personal notes from the Biodiversity Spring Market. 22 March 2023. INBO, Brussels 
20 Personal notes from the Biodiversity Spring Market. 22 March 2023. INBO, Brussels 
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the delivery of positive services (e.g. food production, habitat creation and some cultural 

services), farming also has a detrimental effect on nature through eutrophication, acidification 

and drainage and also farmland biodiversity has seen major declines over the past decades 

(Tscharntke et al., 2005). On the other hand, farmers can benefit from ecosystem services such 

as pollination and pest control (Van Eupen, 2017). 

The CAP reform of 2014-2020 failed on its so-called ‘Greening’ measures that were targeted 

at safeguarding and restoring biodiversity on farmland (Lakner et al., 2019). In return for 

funding, Flemish farmers mostly selected catch crops and nitrogen-fixing crops, which do not 

necessarily benefit biodiversity (Dicks et al., 2014; Pe’er et al., 2014) and agri-environment 

(AE) schemes, where farmers preferred schemes with easy implementation, although they do 

consider the environmental impact (Ghyselinck, 2021). The newest reform of the CAP 2023-

202721 presented a new green architecture, with the largest changes being the abandonment of 

the ecological focus areas (Van Eupen, 2017) and the introduction of eco-schemes such as 

biological pest control, buffer strips and flower strips (Runge et al., 2022). 

Biodiversity monitoring and conservation in and around farmland comes with challenges 

regarding the use of opportunistic data and the current positions of agricultural vs. nature 

organisations and policy in Flanders. First, lower accessibility of farmland can lead to sampling 

bias and imperfect detection of farmland species. Additionally, farmers may not report rare 

species to avoid unwanted visitors on their land, further complicating monitoring efforts 

(Stubbe, 2021). Second, transparent communication between farmers and (non-) governmental 

organisations is crucial for effective measures but mostly lacking (Stubbe, 2021; Verdonckt, 

2018). Farmers need more evidence-based information on the current and potential value of 

their land for biodiversity, including species presence and how to protect them (Ghyselinck, 

2021; Stubbe, 2021). Nature organisations and scientists also need to engage with farmers and 

allow them to participate in the design and monitoring of conservation measures. 

Our methods have the potential to support biodiversity conservation in the Flemish 

implementation of the CAP in various ways. For instance, they can help prioritize areas for 

effective implementation of agri-environment schemes, as we will illustrate in a second case 

study in the next section. Additionally, our methods can improve the valuation of farmland by 

assisting in the biological valuation of habitats in the BVM (as described in section 25.2.2), 

which is used for the biodiversity component of the high nature value farmland indicator in 

 
21 https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27/key-reforms-new-cap_en  
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Flanders (Andersen et al., 2004; Danckaert et al., 2009a; Paracchini et al., 2008). Finally, the 

methods presented in Chapter IV can also support biodiversity-friendly farmland management 

or provide additional evidence of negative impacts from intensified land use, such as in the 

context of the nitrogen policy (Overloop et al., 2001; Vantieghem et al., 2017; Vogels et al., 

2017). Implementing more efficient management practices can enhance positive outcomes and 

promote intrinsic motivation among farmers (Ghyselinck, 2021; Wilson and Hart, 2001). 

25.2.5. CASE STUDY 2: Agri-environment schemes 

Agri-environment (AE) schemes are a CAP funding tool to support environmentally friendly 

practices by landowners, supervised by the Flemish Land Agency (VLM) in Flanders. 

Currently, most of them are situated in specific regions (southwest of West-Flanders and 

southeast of Flemish-Brabant, south Limburg). The VLM employs professional landscape 

managers to advise farmers and assess the feasibility of AE schemes, which can be concluded 

in management agreements (MAs) with the VLM in terms of five years. Currently, farmers can 

choose out of twenty-two options and variations22. 

Figure 17 illustrates that farmland biodiversity scores can promote equitable participation of 

farmers throughout Flanders while taking into account budgets and recommendations from 

existing projects. In the PARTRIDGE project (Ghyselinck, 2021), for example, land managers 

observed that in the 500-hectare demonstration sites, roughly 10% should be assigned to an AE 

scheme (Stubbe, 2021). The figure indicates which areas of 625 ha should be considered 

according to this principle following a few assumptions. Farmers receive on average 1700 euros 

per hectare per year for implementing fauna-related AE schemes 7, meaning that 1176 hectares 

(or almost 9% of the total land area) can be declared as AE schemes with a budget of 10 million 

euros (cf. 8 million euros were paid out to farmers in Flanders in 2016 23). For this exercise, we 

first identified the 500-metre grids (i.e. 25 hectares) with the 10% highest farmland biodiversity 

scores per province and consequently counted the eligible grids per area of 625 hectares. Areas 

with no eligible grids are indicated as not suitable for AE schemes. Areas with one or two 

eligible grids (4 to 8%) are indicated in orange, three to ten eligible grids (12 to 40%) in light 

green and more than ten eligible grids (> 40%) in dark green. 

 
22 Retrieved from: https://www.vlm.be/nl/themas/beheerovereenkomsten/Paginas/default.aspx on March 27th 2023 
23 Retrieved from: https://www.vlm.be/nl/themas/beheerovereenkomsten/Wouter_Rombouts/Paginas/default.aspx on 

March 27th 2023 
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Figure 17: The area suitable for agri-environment (AE) schemes in Flanders. Colours indicate the number of 25-hectare 

areas with the 10% highest biodiversity scores for farmland fauna in areas of 625 hectares.  

The coloured areas in Figure 17 are all suitable for AE schemes, as they contain at least one 

area of 25 hectares with high farmland biodiversity scores at a regional level. However, 

different approaches might be considered for farms located in the light green, orange and dark 

green grids. The most optimal choice in terms of budget, biodiversity and equitability would be 

to visit farms in the light-green grids across Flanders. Farms situated in orange areas can also 

be considered, and might especially be interesting for biodiversity restoration initiatives. Farms 

in the dark green can be encouraged to diversify AE schemes on their farms, for example by 

forming collectives. The white areas are mostly characterized by high urbanisation or intensive 

farming (Danckaert et al., 2009b), which is why they have less potential for biodiversity 

conservation (also see Figure 16). These maps could be further improved by considering 

additional predictors for farmland biodiversity, such as soil texture, soil water-related 

parameters, habitat heterogeneity, historical land use, and small landscape features.  

A related study was performed in 2019, which generated relevant potential habitat maps for a 

set of indicator species for which management agreements can contribute to the protection of 

biodiversity in and around farmland (De Bruyn et al., 2019a, 2019b). The maps were based on 

mechanistic models (GeoDynamiX toolbox) and species occurrence data and were stacked to 

quantify potential species richness. A drawback of this method is that area prioritization is not 

possible because the produced maps are binary (presence or absence) and thus give no ranking 

of habitat suitability (opposed to correlative SDMs).  
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25.3. Discussion of the case studies 

Preliminary results in the two case studies (sections 25.2.1 and 25.2.5) confirmed that stacking 

models for species of conservation priority is good practice (Guillera-Arroita et al., 2015). 

However, the presented maps (Figures 16 and 17) did not include all socioeconomic restrictions 

or thresholds such as the minimum percentage of SACs that should fall in Natura 2000 areas 

(Decleer, 2007). For example, while biodiversity scores can be a good first indication of the 

most suitable areas for protection and connection (Figure 16), the method should be expanded 

to include also cost-effectiveness (Wätzold et al., 2010) and stakeholder interests. Reaching 

cost-effectiveness based on opportunistic presence-only SDMs is challenging, as they can only 

provide a ranking of the relative habitat suitability of locations (section 3.3; Guillera-Arroita et 

al., 2015). We highlight that even without such restrictions it will take many years, even 

decades, to reach the Biodiversity targets set by the EU (European Commission, 2020) due to 

the high eutrophication levels and anthropogenic fragmentation in Flanders. 

We further propose to validate our method for delineating conservation areas by comparing 

their output to that of well-established mechanistic methods such as the GeoDynamix toolbox. 

A master thesis in the context of this research has demonstrated that mechanistic models usually 

predict a higher share of the study area as suitable compared to Maxent (Deschuytter and 

Somers, 2022). However, this study compared the binary output of both methods to indicate 

spatial differences between predictions of potential habitat suitability. We propose a Spearman 

rank correlation test to indicate whether model predictions differ between methods and an 

evaluation of both methods on an independent evaluation set if such data are available (Norberg 

et al., 2019). The method for constructing an external validation set in Chapter II (Appendix A) 

can be used, supplemented with MEETNETTEN data (see section 25.2.3). 

Recently, the European project ‘BirdWatch’24 started in Flanders, aiming to monitor and 

increase habitat suitability for farmland birds while considering various stakeholders. The 

project will use remote sensing data and species distribution models to model habitat suitability, 

and we recommend that they adopt the methods presented in this research. These can facilitate 

the use of opportunistic CSD by increasing their quality (Chapters II and III) and improve 

SDMs by incorporating measures of heterogeneity at different scales (Chapter IV). We also 

encourage similar initiatives for other taxonomic groups. 

 
24 https://www.vlaanderen.be/inbo/en-GB/projects/effectiviteit-van-beheerovereenkomsten-voor-akker-en-weidevogels 
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CHAPTER VII. General conclusions 

 

This dissertation provides further evidence that opportunistic citizen science data (CSD) can be 

a valuable resource for biodiversity conservation policy and management if processed correctly.  

Chapters II and III zoomed in on data cleansing through stringent filtering of opportunistic CSD 

collected in large online data platforms and how this can be fine-tuned by taking into account 

the traits of the species under study. The findings in Chapter II showed that there is a quantity-

quality trade-off in stringent filtering and that filtering should not be performed blindly. In 

general, we recommend using verified records or records from more experienced observers for 

animal species and records submitted with extra detail for plant species, although with caution 

when the sample size is reduced beyond a certain threshold (BOX 2) and with consideration of 

the goal of the study. We encourage the integration of semi-automated verification systems and 

the provision of metadata on observer experience, such as observer ratings or the number of 

observations per taxonomic group.  

Chapter IV used opportunistic CSD in combination with environmental data obtained through 

remote sensing to support multi-scale habitat management in heathlands. Since heathland size 

and the landscape context are static environmental variables, especially in anthropogenic 

landscapes, heathland management should include heathland vegetation management at 

multiple scales, with consideration of the species of conservation interest. The integration of 

opportunistic CSD and remote sensing data is a promising advancement in biodiversity 

conservation monitoring, which should be tested in other habitat types and regions. 

While the results in this dissertation can contribute to the uptake of opportunistic CSD, species 

distribution models (SDMs) and remotely-sensed predictors in biodiversity conservation 

applications, the possible drawbacks of our methods needed to be recognized. Presence-only 

SDMs predict relative habitat suitability only and the objectives of the studies largely defined 

the applied methods (i.e. methods for modelling and bias correction, species, minimum sample 

size, scale and study area). For assessing the impact of specific environmental drivers on habitat 

suitability, it is important to choose ecologically plausible parameters, check for 

multicollinearity, formulate appropriate hypotheses, and account for spatial autocorrelation. In 

retrospect, the best option for reconciling methods in the dissertation would have been to use 
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point process models, yet this may have led to suboptimal recommendations for the intended 

conservation applications.  

Some initial suggestions for future research were made throughout the dissertation, where we 

encouraged additional studies to enhance the transferability of our results to other methods, 

scales, habitats and species. Our research focussed on the use of opportunistic CSD as the only 

data source, yet encourages applications where these data can be integrated with (semi-) 

structured survey data (e.g. through integrated SDMs). Additional suggestions made in Chapter 

V were the consideration of species co-occurrence (e.g. through joint-SDMs), the integration 

of a temporal aspect (e.g. through dynamic SDMs) and the uptake of other predictors related to 

microclimate (e.g. near-surface temperature), soil (e.g. soil water), landscape metrics (e.g. edge 

density), ecosystem functioning (e.g. remotely-sensed ecosystem functioning attributes) and 

environmental thresholds (e.g. the presence or absence of a habitat type).  

Providing land owners, governing bodies and policymakers with evidence-based research on 

the state of biodiversity and the drivers of its change is a conservation priority. This study can 

guide end-users of large citizen science platforms by reducing the uncertainty associated with 

opportunistic biodiversity data. In Chapter VI, several examples were presented to illustrate the 

application potential in different domains of biodiversity conservation (i.e. prioritization of 

areas for monitoring and conservation and assisting habitat management). Species distribution 

models that provide relative estimates of habitat suitability were proposed as an instrument for 

policy based on thresholds such as minimum area (e.g. EU Biodiversity Strategy 2030) and 

maximum budget (e.g. agri-environment schemes). Moreover, stacking techniques such as 

biodiversity scores are ideal to support biodiversity conservation in different policy fields in a 

flexible way, i.e. by adjusting species and weighting methods. While opportunistic presence-

only data cannot replace systematic survey data for the monitoring of population trends, they 

can direct surveys to prioritize locations for monitoring. We recognize that the conservation 

potential in the two case studies may have been overestimated or misplaced due to socio-

economic restrictions. 

To conclude, this dissertation illustrates the value of funded research with a focus on 

application, yet its value can only be realized when science, policy, and practice meet in a 

transparent way, and expertise from all parties is treasured. We should all take advantage of the 

current momentum for change and we hope these results inspire conservation practitioners and 

governing bodies to enhance biodiversity conservation policy and management with citizen-

science-based research.  
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APPENDICES 

CHAPTER II 

Appendix A: Data selection and model evaluation procedure 

The impact of applying data quality filters on opportunistic citizen science data was assessed 

for 255 species across four taxonomic groups, i.e. birds, butterflies, dragonflies and plants. 

Species occurrence records were extracted from the Belgian data platform waarnemingen.be 

(BOX 1). All submitted species records in waarnemingen.be were provided by Natuurpunt 

Studie as point coordinates with specified geographical precision, accompanied by all the 

details provided by the observer at data entry. We had access to the relevant metadata to define 

the degree of structure and received the validation status of each record at the moment of data 

extraction from the database. User ids were randomised for privacy law compliance. An initial 

selection retained only observations made from January 2014 until September 2019 in the 

Flemish region of Belgium and with a precision of 500 metres or less. Absences (zero-counts) 

and records with an ‘incorrect’ validation status were removed, and only birds that breed in 

Flanders were used (Vermeersch et al., 2020). 

Figure A.1 presents a scheme of the formation of the different training and testing sets for 

species distribution modelling. In the process of selecting the model testing set, which is 

preferably an independent dataset of structured records (Araújo and Guisan, 2006), we were 

confronted with two major limitations. The first limitation was the unavailability of fully 

independent structured data for most species in Flanders. The second limitation was that random 

cross-validation, where species records are repeatedly split in a model training and model 

testing set and model performance is averaged across different folds (Fielding and Bell, 1997), 

has been discouraged for presence-only SDMs (van Proosdij et al., 2016) and when using auto-

correlated data (Roberts et al., 2017), and it was therefore not suited to compare presence-only 

datasets of different quality. To counter these limitations, we separated the structured from the 

unstructured records and used the first for model testing and the latter for model training. 
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Figure A.1.  Scheme of the dataset generation and model evaluation procedure. First, presence-only 

records from a target species were restricted to match five (i-v) conditions and structured records were 

separated from unstructured records. The structured records were further reduced to match only records 

that were validated as correct and made by more active observers. These high-quality records formed the 

model testing set, together with absences from complete checklists and absences derived from 1x1km grids 

with high search effort for the associated taxonomic group and where the target species was not observed. 

All unstructured records were used for model training and were subjected to three data quality filters, as 

single filters or in combinations, forming seven filtered datasets. Unfiltered datasets were also kept to use 

as a baseline for the evaluation of a change in model performance by filtering. All eight datasets were 

aggregated to one presence per 1x1 km grid to use as input for Maxent. The resulting datasets of presence 

grids were modelled as such, with varying sample sizes, and they were also repeatedly (x20) and randomly 

reduced to six fixed levels of sample size (100, 250, 500, 1000, 2000 and 4000 presences), if possible. Only 

species with at least one filtered dataset of at least 100 presence grids and a testing set with at least 50 

presence grids were retained. Model predictions were compared with the high-quality testing set, and 

model discrimination accuracy was measured by calculating the AUC (area under the receiver operating 

characteristic curve), Sensitivity and Specificity. 

The unstructured model training data was subjected to three filters and their combinations 

(Table A.1), forming one unfiltered and seven filtered datasets (Figure A.2). Species records 

were then aggregated by a 1x1 km grid in our study area. Using an unstructured dataset as the 
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baseline for assessing the impact of filtering aided the transferability of our study, because large 

databases of volunteer-generated data often consist only of unstructured incidental 

observations.  

Table A.1. Definitions and motivations of the three data quality filters. 

Filter  Measurement Definition of high quality Motivation 

ACTIVITY Activity rate = the average number of 

active days of an observer per full year.  

Threshold = the first quartile of 

the activity rates of observers that 

provided 80% of all the 

20,676,308 observations in the 

study period 01-2014 to 09-2019 

in waarnemingen.be. 

Activity rate >= 93 days  

3% of the 28,855 

observers met this 

threshold. First-year 

observers were 

classified as low 

quality.  

More active observers 

have more experience, 

leading to lower rates of 

both false-negative and 

false-positive errors  

e.g. Farmer et al. (2012), 

Kallimanis et al. (2017), 

Kelling et al. (2015) 

DETAIL More detailed information, beyond the 

default name, date and location, was 

given at data entry. 

E.g. behaviour, sex, comments, … 

One or more extra 

‘information fields’ were 

filled out. 

An observer providing 

detailed information shows 

an increased effort 

e.g. Steen et al. (2019) 

VALSTAT The validation status of the record in 

the database. 

Classification of validation codes 

in waarnemingen.be: 

A, J = Correct 

O, P, I, U = Uncertain 

Incorrect entries (N) were 

removed 

Correctly validated by auto-

validation or expert 

verification 

Correct data are meant to 

contain no 

misidentification errors  

e.g. Vantieghem et al. 

(2017) 

 

The structured model testing data was further restricted to data that was also validated as correct 

and coming from more experienced observers. Here we also aggregated the species records by 

the 1x1 km grid. The high-quality presences were complemented with absences from complete 

checklists (Sullivan et al., 2014) and absences derived from grid cells with the highest search 

effort, based on the principle of species accumulation curves (Colwell et al., 2004), where an 

absence is noted when many species from a taxonomic group were recorded in a grid cell but 

not the target species. We first took derived absences from the 5% most frequently visited grid 

cells with checklist observations and supplemented these with derived absences from grid cells 

with a high search effort for the considered taxonomic group. The number of absences was 

chosen to match the number of high-quality presences, and we formed one presence-absence 

model testing set per species.  
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Figure A.2. The total number of records in the filtered and unfiltered model training sets and in the model 

testing set. Unstructured data was used to generate model training sets, i.e. one unfiltered set and seven 

filtered sets per species. Structured data was never used for model training and was further reduced to 

records that were also validated as correct and collected by more active observers. 

Only species with at least one filtered training set of 100 presences and a testing set of at least 

50 presences were selected. We ran Maxent models (Phillips et al., 2006) on the model training 

sets obtained after the data aggregation step. In addition, we repeatedly (x20) and randomly 

reduced the sample size to six fixed levels of 100, 250, 500, 1000, 2000 and 4000 presences, if 

the sample size of the species allowed it, and ran Maxent models for each of them. Figure A.3 

shows an example of how many different training sets can be formed for one particular species. 

We used the area under the receiver operating characteristic curve (AUC), Sensitivity and 

Specificity (Fielding and Bell, 1997) to assess Maxent’s discrimination accuracy by comparing 

the predictions for a species’ distribution based on a presence-only model training set to the 

species’ presence-absence model testing set. An assessment of relative model performance was 

chosen because an accurate model assessment based on opportunistic presence-only data is 

impossible (Peterson et al., 2011) and because our main interest was to see whether model 

performance changes with the manipulation of the model training set. We evaluated the results 

of our analyses across all species and across species within one taxonomic group. We compared 

model performance (i) between models built with data of different quality (and constant sample 
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size), (ii) between models built with data of different sample size (and constant data quality), 

and (iii) between models built with unfiltered data versus those built with filtered data (Figure 

A.3). Based on the differences in model performance of the latter comparison, we could assess 

the combined impact of data quality and sample size on model performance. 

 

Figure A.3. An example of how many different training sets can be formed for one particular species (Anas 

crecca L.) and filter (VALSTAT) to assess the impact of quality filtering on model performance. 66,940 

species records were aggregated to 2026 unfiltered presences (1x1 km grid cells) (see Table C.1). This 

allowed unfiltered training sets of 100, 250, 500, 1000 and 2000 presences to be used in the analysis of the 

impact of absolute sample size on model performance (ii). Filtering by VALSTAT retained 37,631 records, 

aggregated in 1116 filtered presences. This allowed filtered training sets of 100, 250, 500 and 1000 

presences to be used in the analysis of the impact of absolute sample size on model performance (ii). The 

example can be repeated for the other filters, each resulting in a different number of presences. By 

comparing model performance metrics between training sets of different quality (unfiltered data and 

filtered data) but equal sample size, we could assess the impact of data quality (i). In this example, we could 

compare the quality of filtered data and unfiltered data at 100, 250, 500 and 1000 presences. By combining 

the different training sets of unfiltered and filtered data, we could assess the combined impact of data 

quality and sample size (iii). In this example, we could form 19 combinations (= 19 values for ∆ AUC, ∆ 

Sensitivity and ∆ Specificity impacted by different proportional reductions in sample size and different 

remaining sample sizes after filtering). 
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Appendix B: ODMAP protocol 

Overview 

Authorship 

Contact: camille.vaneupen@kuleuven.be 

Study link: https://doi.org/10.1016/j.ecolmodel.2021.109453 

Model objective 

Model objective: Mapping and interpolation 

Target output: A relative occurrence rate per 1x1 km grid cell. 

Focal Taxon – 255 species from 4 taxonomic groups: 54 bird species, 25 butterfly species, 14 dragonfly 

species and 162 vascular plant species 

Location – Flanders 

Scale of Analysis 

Spatial extent: 2.51, 5.95, 50.67, 51.51 (xmin, xmax, ymin, ymax) 

Spatial resolution: 1 km 

Temporal extent: January 2014 to September 2019 

Boundary: political, regional 

Biodiversity data 

Observation type: citizen science 

Response data type: presence-only 

Predictors – Predictor types: climatic, habitat, geographical 

Hypotheses – We tested whether filtering by data quality improved model performance when model 

parameters and predictors were kept constant. 

Assumptions – Model assumptions: We assumed that (i) the species are at (pseudo-) equilibrium with 

their environment, (ii) spatial thinning was sufficient to reduce the impact of sampling bias to a minimum, 

(iii) the included ecological drivers were sufficiently relevant for all considered species to ensure a 

constant predictor set throughout our study, (iv) the environmental response of a species was similar 

across the entire study area, i.e. with no adaptation to the local environment. 

Algorithms 

Modelling techniques: Maxent 

Model complexity: Maxent models were built with linear, quadratic and product features only. 

Workflow – Model workflow: Species records were subjected to three data quality filters, as single filters 

or in combinations, forming seven filtered datasets. Unfiltered datasets were also kept to use as a baseline 



 

157 

 

for the evaluation of a change in model performance by filtering. All eight datasets were aggregated to 

one presence per 1x1 km grid to use as input for Maxent. The resulting datasets of presence grids were 

modelled as such, with varying sample sizes, and they were also repeatedly (x20) and randomly reduced 

to six fixed levels of sample size (100, 250, 500, 1000, 2000 and 4000 presences), if possible. Only 

species with at least one filtered dataset of at least 100 presence grids and a testing set with at least 50 

presence grids were retained. Model predictions were compared with the high-quality testing set, and 

model discrimination accuracy was measured by calculating the AUC (area under the receiver operating 

characteristic curve), Sensitivity and Specificity. 

Software 

Software: Analyses were conducted in R version 4.0.1 (R Core Team, 2021), using Maxent version 3.4.1 

(https://biodiversityinformatics.amnh.org/open_source/maxent/) implemented in the R package ´dismo` 

v1.1-4 (Hijmans et al., 2017). 

Data availability: The full dataset (species presences for model training, model testing set, model 

predictors and quality tags) will be made available in Dryad Digital Repository at a 1x1 km resolution. 

Data 

Biodiversity data 

Taxon names:  

• 54 birds: Accipiter nisus, Actitis hypoleucos, Alcedo atthis, Alopochen aegyptiaca, Anas crecca, 

Anser anser, Ardea alba, Ardea cinerea, Athene noctua, Aythya farina, Aythya fuligula, Branta 

canadensis, Branta leucopsis, Buteo buteo, Carduelis carduelis, Chroicocephalus ridibundus, 

Ciconia ciconia, Circus aeruginosus, Circus cyaneus, Corvus frugilegus, Cuculus canorus, Cygnus 

olor, Delichon urbicum, Egretta garzetta, Falco tinnunculus, Fulica atra, Gallinago gallinago, Larus 

argentatus, Larus canus, Larus fuscus, Limosa limosa, Linaria cannabina, Luscinia svecica, Mareca 

strepera, Motacilla alba, Motacilla flava, Numenius arquata, Oenanthe oenanthe, Perdix perdix, 

Phalacrocorax carbo, Platalea leucorodia, Podiceps cristatus, Psittacula krameri, Rallus aquaticus, 

Recurvirostra avosetta, Riparia riparia, Spatula clypeata, Spinus spinus, Sterna hirundo, 

Tachybaptus ruficollis, Tadorna tadorna, Tringa tetanus, Turdus pilaris, Vanellus vanellus;  

 

• 25 butterflies: Aglais io, Aglais urticae, Anthocharis cardamines, Aphantopus hyperantus, Araschnia 

Levana, Aricia agestis, Celastrina argiolus, Coenonympha pamphilus, Colias crocea, Favonius 

quercus, Gonepteryx rhamni, Issoria lathonia, Lycaena phlaeas, Maniola jurtina, Ochlodes sylvanus, 

Papilio machaon, Pararge aegeria, Pieris brassicae, Pieris napi, Pieris rapae, Polygonia c-album, 

Polyommatus icarus, Pyronia tithonus, Vanessa atalanta, Vanessa cardui; 

 

• 14 dragonflies: Aeshna cyanea, Aeshna mixta, Anax imperator, Calopteryx splendens, Coenagrion 

puella, Enallagma cyathigerum, Ischnura elegans, Libellula depressa, Libellula quadrimaculata, 

Orthetrum cancellatum, Platycnemis pennipes, Pyrrhosoma nymphula, Sympetrum sanguineum, 

Sympetrum striolatum; 

 

• 162 vascular plants: Acer pseudoplatanus, Achillea millefolium, Aegopodium podagraria, Ajuga 

reptans, Alliaria petiolata, Allium vineale, Alnus glutinosa, Anemone nemorosa, Angelica 

sylvestris, Anisantha sterilis, Anthriscus sylvestris, Arabidopsis thaliana, Artemisia vulgaris, Arum 

maculatum, Asplenium ruta-muraria, Bellis perennis, Betula pendula, Bromus hordeaceus, 

Calamagrostis epigejos, Calluna vulgaris, Capsella bursa-pastoris, Cardamine hirsute, Cardamine 

pratensis, Carex hirta, Centaurea jacea, Cerastium glomeratum, Chamerion angustifolium, 
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Chelidonium majus, Chenopodium album, Cirsium arvense, Cirsium palustre, Cirsium vulgare, 

Convolvulus arvensis, Convolvulus sepium, Conyza Canadensis, Coronopus didymus, Corylus 

avellana, Crataegus monogyna, Crepis capillaris, Cytisus scoparius, Dactylis glomerata, Daucus 

carota, Draba verna, Dryopteris filix-mas, Echinochloa crus-galli, Epilobium hirsutum, Epipactis 

helleborine, Equisetum arvense, Erodium cicutarium, Eupatorium cannabinum, Euphorbia peplus, 

Fallopia japonica, Ficaria verna, Filipendula ulmaria, Fraxinus excelsior, Galium aparine, Galium 

palustre, Geranium dissectum, Geranium molle, Geranium robertianum, Geum urbanum, Glechoma 

hederacea, Gnaphalium luteoalbum, Gnaphalium uliginosum, Hedera helix, Heracleum 

sphondylium, Hieracium pilosella, Hieracium umbellatum, Holcus lanatus, Humulus lupulus, 

Hypericum perforatum, Hypochaeris radicata, Ilex aquifolium, Iris pseudacorus, Jacobaea vulgaris, 

Juncus effusus, Lactuca serriola, Lamium album, Lamium purpureum, Lapsana communis, Lathyrus 

pratensis, Leucanthemum vulgare, Linaria vulgaris, Lonicera periclymenum, Lotus corniculatus, 

Lotus pedunculatus, Luzula campestris, Lycopus europaeus, Lysimachia vulgaris, Lythrum 

salicaria, Malva sylvestris, Matricaria discoidea, Medicago lupulina, Melilotus albus, Mentha 

aquatica, Mercurialis annua, Ornithopus perpusillus, Papaver dubium, Papaver rhoeas, Persicaria 

amphibian, Persicaria maculosa, Phragmites australis, Plantago coronopus, Plantago lanceolata, Poa 

annua, Polygonatum multiflorum, Polygonum aviculare, Potentilla anserina, Potentilla reptans, 

Prunella vulgaris, Prunus avium, Prunus serotine, Prunus spinosa, Pulicaria dysenterica, Quercus 

robur, Ranunculus acris, Ranunculus repens, Ranunculus sceleratus, Rorippa palustris, Rumex 

acetosa, Rumex acetosella, Rumex obtusifolius, Sagina procumbens, Salix caprea, Sambucus nigra, 

Scrophularia nodosa, Sedum acre, Senecio inaequidens, Senecio vulgaris, Silene dioica, Silene flos-

cuculi, Silene latifolia, Sinapis arvensis, Sisymbrium officinale, Solanum dulcamara, Sonchus asper, 

Sonchus oleraceus, Sorbus aucuparia, Stachys palustris, Stachys sylvatica, Stellaria holostea, 

Stellaria media, Symphytum officinale, Tanacetum vulgare, Tragopogon pratensis, Trifolium 

arvense, Trifolium dubium, Trifolium pratense, Trifolium repens, Tussilago farfara, Typha latifolia, 

Urtica dioica, Valeriana officinalis, Veronica arvensis, Veronica chamaedrys, Veronica hederifolia, 

Veronica persica, Veronica serpyllifolia, Vicia cracca, Vicia hirsuta, Vicia sativa, Viola arvensis. 

Taxonomic reference system: We followed the taxonomy of the data repository ‘waarnemingen.be’ 

Ecological level: species 

Data sources: waarnemingen.be 

Sampling design: Model training data were unstructured opportunistic data (i.e. incidental observations 

that are not related to any survey project, and not supported by guidelines nor a protocol). 

Sample size: We used the sample sizes of the original training sets (Table C.1) and six fixed sample sizes 

(100, 250, 500, 1000, 2000, 4000) 

Clipping: Flanders 

Scaling: We received the data as point coordinates and excluded records with a geographical precision > 

500 m. Point records were aggregated in a 1x1 km grid, resulting in one presence per grid cell per species. 

Cleaning: We retained only breeding birds and removed absences (zero-counts) and entries validated as 

incorrect. The aggregation of point records is also called ‘spatial thinning’ or ‘spatial filtering’, a common 

technique to reduce spatial bias. 

Background data: The entire study area was used as background (1x1km resolution) 

Errors and biases: Opportunistic data may suffer from biases and error (e.g. misidentification errors, 

imperfect detection, sampling bias), that can result in low-quality training data. The goal of the study was 
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to evaluate whether stringent filtering can improve data quality, potentially removing some of the biases 

and errors. 

Data partitioning 

Training data: Model training presences: Unstructured species records 

Test data:  

• Model testing presences: structured species records, validated as correct in the database’s 

internal validation system, made by more active observers;  

• Model testing absences: absences from complete checklists and absences derived from 1x1 km 

grids with high search effort for the associated taxonomic group and where the target species 

was not observed. 

Predictor variable  

Predictor variables (Table C.3):   

• 12 continuous predictors:  

o 10 land use classes (forest, semi-natural grassland, scrub, heathland, saltmarshes, 

wetlands, dunes, urban areas, water and other green areas) 

o 2 climate variables (mean annual temperature and mean annual precipitation) 

• 2 factor variables: dominant soil texture and ecoregion 

Data sources:  

• Land use (Poelmans and Van Daele, 2014) and ecoregion (Couvreur et al., 2004): 

https://www.geopunt.be/catalogus 

• Mean annual temperature and mean annual precipitation, BIO1 and BIO12 from WorldClim 2 

respectively (Fick and Hijmans, 2017): https://www.worldclim.org/data/index.html 

• Dominant soil texture class (Maréchal and Tavernier, 1974): https://www.dov.vlaanderen.be/ 

 

Spatial resolution:  

• Rasters: Land use at 10m resolution and mean annual temperature and mean annual 

precipitation at approximately 1 km resolution 

Coordinate reference system: all data was available in or transformed to Belge 1972 / Belgian Lambert 72 

- Belgium - EPSG:31370 

Data processing: Land use was aggregated in 11 classes: agriculture, forest, semi-natural grassland, scrub, 

heathland, saltmarshes, wetlands, dunes, urban areas, water and other green areas. The area of these 

classes in each 1x1 km cell was calculated. We used the mean temperature and precipitation and the 

modal value of the dominant soil texture class and ecoregion in each 1x1 km cell.  

Model 

Multicollinearity – Pearson correlations between predictors were calculated. We removed one class 

“agriculture” from the set because of the relatively high collinearity with other classes (maximum |ρ| = 

0.69) and because of the problem with perfect multicollinearity in compositional data. 

Model settings – maxent: featureSet (linear, quadratic, product), maximumbackground (13552) 



 

160 

 

Threshold selection – AUC is a threshold-independent measure of model performance. The threshold to 

calculate Sensitivity and Specificity was set to the value that maximizes the sum of Sensitivity and 

Specificity calculated on the species’ testing set. 

Assessment 

Performance statistics – Performance on test data: AUC, Sensitivity, Specificity 

Prediction 

Prediction output – Prediction unit: relative occurrence rate 
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Appendix C: Summary species and predictor variables 

Table C.1. Species occurrence records and presences (i.e. the number of 1x1km grid cells) in 

the model testing and model training sets for each of the 255 analysed species in the four 

considered taxonomic groups.  
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BIRDS                

Anas crecca 66940 1075 189 64591 2026 46075 22002 37631 1724 1296 1116 1175 1020 855 807 

Aythya ferina 48406 1081 108 46259 1067 31596 16680 28288 879 677 577 604 508 460 429 

Ciconia ciconia 22415 205 63 22103 2940 12938 10266 17084 1734 1774 1754 1165 1215 1232 920 

Circus aeruginosus 38929 152 81 38483 2197 25957 22132 15466 1740 1708 1310 1446 1135 1165 1046 

Cygnus olor 53724 1285 183 51753 2084 35968 21176 40334 1781 1391 1412 1256 1244 1064 979 

Fulica atra 122925 6169 635 114743 3463 81893 49185 102053 2966 2578 2884 2358 2548 2290 2128 

Podiceps cristatus 80134 2094 268 77261 1922 53551 31455 68381 1650 1412 1536 1294 1377 1237 1159 

Riparia riparia 12946 277 58 12471 977 8879 6281 5442 796 693 432 610 386 377 355 

Spatula clypeata 55531 1257 158 53305 1416 36967 17781 33042 1213 900 793 821 727 637 600 

Tadorna tadorna 72180 1345 265 69713 2547 50085 25486 45725 2127 1667 1469 1496 1337 1177 1106 

Alcedo atthis 65360 837 139 63854 3734 40979 21966 43825 2761 2350 2074 1877 1698 1592 1380 

Athene noctua 26215 191 89 23058 3705 15062 14101 8312 2489 2845 1077 2024 848 889 731 

Limosa limosa 28061 238 66 27510 850 17589 10902 22137 686 634 574 553 514 475 445 

Mareca strepera 88789 3587 346 82514 2387 58320 29276 59055 2097 1647 1530 1533 1404 1223 1165 

Motacilla flava 35019 286 106 33173 3677 23394 14563 7525 2846 2395 1309 1997 1136 1051 946 

Numenius arquata 36836 413 139 36102 2274 23724 15402 25897 1803 1676 1186 1434 1022 998 912 

Phalacrocorax carbo 83573 2985 376 78682 3491 54935 26850 53965 2823 2040 2322 1828 2029 1677 1556 

Tachybaptus ruficollis 73576 1623 205 70884 2315 49499 31470 45978 1960 1659 1417 1488 1279 1166 1084 

Ardea cinerea 141335 5771 748 134133 6797 93723 46211 120460 5596 4343 5913 3820 4984 4008 3572 

Circus cyaneus 20748 99 57 20505 2140 13330 10988 6656 1539 1561 944 1202 772 803 681 

Anser anser 61632 2875 316 57965 2273 41169 23902 52791 1884 1494 1793 1361 1559 1308 1219 

Cuculus canorus 51543 465 94 48910 4515 31855 36801 13066 3356 3992 920 3112 846 882 818 

Delichon urbicum 36026 621 96 32982 3373 23041 18294 9715 2599 2359 1456 1927 1229 1208 1047 

Psittacula krameri 20889 1488 74 17047 1135 12316 6994 5784 824 771 601 615 483 497 429 

Aythya fuligula 94955 2011 231 90788 2279 65172 35121 52833 1975 1633 1303 1491 1220 1118 1067 

Larus canus 28453 428 117 26630 3171 21565 9735 8798 2769 1717 1014 1611 939 735 700 

Oenanthe oenanthe 30057 155 58 29626 2658 21249 8285 9455 2046 1274 1273 1070 1090 789 706 

Branta canadensis 71715 2310 423 66905 3603 47572 29252 34469 2941 2503 2636 2174 2253 2094 1868 

Ardea alba 102215 841 222 100758 3791 67725 29323 75265 2983 2336 2712 2019 2297 1910 1731 

Recurvirostra avosetta 19421 198 55 19068 432 13009 7635 16016 361 297 292 270 257 228 216 

Branta leucopsis 19420 203 66 18979 1261 12714 6980 14588 1038 740 635 657 568 478 445 

Buteo buteo 226402 7694 1460 215145 10409 158255 74435 167866 9033 7595 8836 6899 7900 6946 6415 

Sterna hirundo 23890 432 81 23251 847 16041 10056 17437 698 636 569 568 487 474 435 

Larus argentatus 39999 1022 272 37065 3290 29000 15076 22325 2705 1926 1722 1747 1532 1286 1199 

Actitis hypoleucos 40101 332 102 39445 1887 28533 11270 24666 1524 1110 1048 991 915 761 710 

Perdix perdix 24772 108 51 24253 4047 17112 11682 8533 2976 2750 1668 2166 1339 1351 1131 

Platalea leucorodia 29070 173 58 28756 661 18098 11121 25632 505 443 498 376 413 381 339 

Corvus frugilegus 21340 307 139 20294 3248 15771 10718 7514 2664 1928 1462 1697 1288 1058 972 

Tringa totanus 31689 221 58 31104 923 21612 10525 20393 787 643 413 589 380 343 327 

Gallinago gallinago 41587 275 69 40787 2457 28343 14634 19646 1921 1573 737 1318 649 631 576 
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Larus fuscus 37415 722 215 35484 3545 28109 14289 13957 3002 2052 1914 1853 1670 1368 1248 

Egretta garzetta 34384 179 54 34062 1336 22324 10132 27712 981 728 681 594 584 486 446 

Luscinia svecica 38297 814 102 35776 1650 25258 27833 17712 1403 1493 584 1320 550 562 537 

Chroicocephalus ridibundus 90486 7034 1007 81536 5347 62309 30172 70663 4469 3287 3959 2991 3446 2714 2507 

Accipiter nisus 56253 387 198 54627 6908 39659 27949 23002 5406 4913 3235 4036 2668 2697 2284 

Carduelis carduelis 61030 2147 330 57315 4874 40949 25931 40278 3776 3261 3427 2706 2777 2609 2229 

Motacilla alba 74384 2492 435 69438 6646 50595 26373 41294 5234 4030 4195 3425 3478 2998 2622 

Rallus aquaticus 34313 402 60 33139 1233 23789 23703 16029 1025 1070 387 922 343 367 332 

Alopochen aegyptiaca 69409 2779 557 63949 4840 45003 23925 43752 3863 3110 3729 2664 3077 2697 2354 

Falco tinnunculus 133428 2001 724 129573 8168 96905 52431 84360 6970 5930 5563 5278 4963 4553 4182 

Linaria cannabina 48356 1810 263 44924 3519 33086 19367 27945 2923 2229 1972 1968 1716 1477 1348 

Spinus spinus 32863 668 163 30608 3595 22427 14390 12946 2800 2298 1659 1904 1362 1256 1073 

Turdus pilaris 45436 140 51 43358 5061 31109 16749 5192 3893 2947 1077 2416 914 909 795 

Vanellus vanellus 114506 1729 376 109499 6678 76958 51991 51679 5362 5153 3103 4382 2754 2768 2544 

BUTTERFLIES                

Aglais io 87676 3459 720 83627 7194 61825 64229 83121 5848 6168 7186 5276 5843 6161 5272 

Aglais urticae 31981 397 154 31512 4483 22995 21922 30641 3479 3433 4420 2829 3446 3391 2806 

Araschnia levana 38277 1325 296 36438 4232 25154 27596 25782 3195 3531 3248 2809 2582 3130 2522 

Coenonympha pamphilus 36060 1639 206 33297 2143 24032 25284 22923 1791 1748 1477 1523 1320 1438 1291 

Colias crocea 9717 137 50 9518 2260 7082 6936 6084 1748 1836 1724 1486 1399 1673 1366 

Papilio machaon 18248 339 128 17806 3552 10810 13316 13183 2181 2924 2885 1909 1894 2828 1881 

Pieris brassicae 40766 2206 408 38026 4739 28888 29048 27866 3646 3926 3824 3194 3130 3794 3118 

Pieris rapae 90958 5344 787 84437 7033 65904 71719 69611 5929 6257 6172 5470 5421 6131 5400 

Vanessa atalanta 90433 2210 523 87614 7306 67118 67950 63624 5979 6333 6173 5421 5277 6088 5251 

Vanessa cardui 40963 1470 342 39172 5625 28699 30093 28571 4293 4657 4609 3763 3721 4507 3676 

Pieris napi 52476 1991 457 50042 4748 37461 41937 41974 3906 4126 4125 3503 3498 4068 3469 

Aricia agestis 20238 1033 152 18845 2733 13908 15142 14009 2090 2328 2076 1872 1674 2006 1635 

Anthocharis cardamines 34494 432 159 33352 4264 22160 23517 18068 3251 3409 2495 2774 2105 2458 2084 

Issoria lathonia 7809 388 60 7349 1006 4704 5755 6350 652 842 824 578 554 752 522 

Aphantopus hyperantus 21142 892 76 19322 1725 13051 14295 9392 1299 1369 806 1084 648 762 624 

Maniola jurtina 92313 10375 699 79626 5588 59553 64757 64194 4513 4832 4793 4056 4039 4753 4018 

Ochlodes sylvanus 33223 1514 208 31011 3800 22109 24325 21077 2903 3198 2667 2545 2113 2548 2053 

Celastrina argiolus 35352 1071 229 33802 4554 24146 25923 22305 3495 3767 3190 3060 2607 3102 2566 

Gonepteryx rhamni 88637 3610 587 84013 6604 58487 62352 83282 5342 5532 6578 4727 5331 5520 4719 

Polyommatus icarus 55777 2122 305 52431 4461 38373 40668 38277 3584 3854 3544 3218 2980 3458 2934 

Lycaena phlaeas 31449 833 223 30123 4025 21263 22980 22111 3075 3375 3097 2722 2506 2996 2452 

Pararge aegeria 84092 2523 473 80296 6487 59858 63342 57532 5324 5622 4872 4814 4165 4796 4136 

Favonius quercus 7105 270 55 6644 1290 4766 5475 4589 957 1108 921 868 720 896 708 

Polygonia c-album 51957 1602 389 50040 5288 35995 38509 49759 3964 4421 5277 3499 3960 4413 3495 

Pyronia tithonus 47206 3256 293 42763 4400 32439 34639 30664 3400 3719 3059 3022 2510 3002 2486 

DRAGONFLIES                

Coenagrion puella 23061 567 112 21645 2477 13598 16216 15053 1835 2056 2009 1613 1541 1721 1377 

Enallagma cyathigerum 13955 233 61 13378 1135 8927 10081 9319 890 938 826 777 665 708 592 

Ischnura elegans 25035 440 132 23741 2633 15093 17526 16062 2040 2144 2035 1751 1611 1707 1410 

Libellula depressa 12405 191 80 11988 2053 7482 8018 7390 1431 1545 1735 1159 1238 1333 1015 

Orthetrum cancellatum 23908 482 156 22802 2632 15171 16965 15372 2112 2217 2103 1856 1713 1810 1539 

Sympetrum striolatum 17363 293 60 16679 2433 11676 13175 8876 1845 2116 1600 1660 1224 1480 1154 

Libellula quadrimaculata 13595 305 86 12534 1184 7427 8655 7471 918 968 1014 793 806 847 709 

Anax imperator 20651 292 104 19722 2519 13054 14066 9599 1966 2029 1993 1679 1580 1634 1371 
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Platycnemis pennipes 9184 225 71 8791 966 5406 6261 5939 733 773 870 625 665 702 572 

Aeshna mixta 12716 187 79 12347 2124 9066 9518 7247 1672 1727 1705 1411 1357 1405 1156 

Sympetrum sanguineum 22901 413 94 21803 2215 15191 17986 12361 1666 1908 1805 1489 1421 1606 1300 

Aeshna cyanea 10002 113 50 9806 1901 7001 7181 5694 1411 1476 1502 1131 1136 1185 916 

Pyrrhosoma nymphula 13673 170 58 13160 2036 7899 9232 8474 1417 1597 1566 1200 1131 1294 999 

Calopteryx splendens 14466 481 77 13588 1598 8176 8970 9244 1169 1248 1275 968 937 1037 802 

PLANTS                

Acer pseudoplatanus 7113 146 85 6704 1992 4716 1906 2967 1530 650 808 550 640 389 326 

Achillea millefolium 13802 392 176 13069 3705 9581 4699 8090 2917 1722 2163 1509 1715 1248 1081 

Alliaria petiolata 8051 209 126 7651 2431 4935 3052 5095 1859 1203 1579 1016 1216 927 784 

Alnus glutinosa 7661 90 72 7284 2178 4526 1427 2498 1644 653 762 544 570 336 277 

Arabidopsis thaliana 2900 197 52 2543 1219 1868 978 1233 950 431 521 353 382 251 200 

Artemisia vulgaris 8437 209 105 7946 2676 5918 1856 4308 2106 926 1224 794 991 609 522 

Bromus hordeaceus 4325 64 52 3969 1719 2729 1158 1535 1261 486 581 395 432 252 202 

Calamagrostis epigejos 6810 93 50 6550 1203 5623 1160 2009 970 342 439 304 363 200 173 

Capsella bursa-pastoris 5145 168 110 4755 2181 3345 1839 2374 1672 891 1065 748 814 567 473 

Cardamine hirsuta 5508 268 103 4998 1973 3624 2149 2408 1476 844 1009 666 744 530 428 

Carex hirta 6640 111 58 6318 1698 4895 1229 3637 1304 561 722 491 544 312 268 

Centaurea jacea 14693 711 195 13733 3029 9770 4496 9174 2419 1457 2053 1257 1638 1178 1014 

Cerastium glomeratum 4621 259 71 4132 1758 3093 1599 1982 1343 616 796 494 593 406 324 

Chenopodium album 3801 123 76 3494 1675 2569 859 1482 1295 452 676 364 517 304 239 

Cirsium arvense 25536 450 165 24241 3229 20778 3563 19588 2453 1326 1718 1124 1304 948 789 

Cirsium vulgare 10888 318 171 10219 2837 7797 2655 7315 2193 1227 1745 1023 1359 951 789 

Convolvulus arvensis 2810 110 73 2563 1100 1690 1165 1494 824 554 602 453 451 379 304 

Convolvulus sepium 7068 221 112 6537 2101 4610 1934 3091 1525 873 1167 725 853 620 511 

Conyza canadensis 5551 109 68 5194 1636 4151 1988 3381 1193 507 627 401 443 304 231 

Dactylis glomerata 10014 114 65 9414 2354 6959 1516 2048 1785 693 756 581 588 338 285 

Daucus carota 8923 255 109 8451 1867 6953 1715 6283 1472 756 933 632 734 506 421 

Dryopteris filix-mas 7639 143 85 7255 2115 5004 2332 4417 1671 727 1192 595 930 501 396 

Echinochloa crus-galli 1962 76 59 1756 1112 1339 471 790 891 314 432 246 335 211 155 

Epilobium hirsutum 6958 147 93 6522 2082 4675 1962 3234 1549 927 1142 775 847 664 547 

Epipactis helleborine 6910 115 76 6709 2182 4407 3273 5335 1571 1122 1684 836 1210 966 717 

Equisetum arvense 6441 177 102 5915 2199 4223 1582 3070 1623 712 1124 577 822 462 365 

Erodium cicutarium 3795 99 64 3585 1142 2935 1188 2177 917 520 667 439 542 385 328 

Eupatorium cannabinum 10019 235 146 9380 2531 6304 2866 5915 1981 1155 1563 988 1238 882 755 

Fraxinus excelsior 6109 90 53 5738 1890 3743 1312 1918 1425 602 603 518 476 280 239 

Galium aparine 9425 225 132 8785 2811 5502 2469 4241 2089 1037 1353 875 1046 683 595 

Geranium molle 5519 139 81 5180 1918 3743 2144 2926 1428 737 979 589 744 499 401 

Hypericum perforatum 8394 276 72 7849 2517 5368 1998 3277 1844 900 758 725 587 354 305 

Hypochaeris radicata 13699 403 137 13003 2972 9777 4753 6776 2298 1151 1496 991 1184 771 661 

Jacobaea vulgaris 16578 422 163 15826 2302 14015 3329 11913 1761 1100 1379 903 1067 837 690 

Lactuca serriola 3386 72 52 3134 1440 2174 1002 1570 1077 530 646 424 466 323 245 

Lamium album 7498 355 178 6854 2472 4610 3350 4832 1857 1390 1682 1130 1263 1086 882 

Lapsana communis 5432 145 91 5036 1998 3397 1846 2512 1494 748 953 595 700 508 391 

Lotus corniculatus 5442 155 75 5116 1615 3307 1674 2060 1179 638 590 533 462 320 277 

Medicago lupulina 5355 131 82 4994 1600 3755 1393 2039 1216 587 717 484 528 381 307 

Melilotus albus 3515 124 67 3231 1173 2349 1156 2106 906 550 640 469 488 384 319 

Mentha aquatica 10932 149 73 10593 1669 8171 1934 7015 1289 808 1037 689 823 619 538 

Persicaria amphibia 3680 94 55 3402 1163 2515 1113 2199 885 442 639 368 495 333 274 

Persicaria maculosa 3474 83 52 3157 1488 2157 814 1073 1038 481 445 371 304 221 167 
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Phragmites australis 29787 150 80 29302 2443 26294 2075 4227 1917 919 1019 810 820 492 430 

Plantago coronopus 3275 110 69 3083 1092 2236 1154 1828 888 347 575 300 460 252 214 

Plantago lanceolata 19895 470 134 19074 3616 14504 5880 10729 2804 1510 1831 1307 1450 1010 876 

Poa annua 13047 132 52 12581 2122 10925 7782 7947 1620 557 578 461 456 243 201 

Polygonum aviculare 7322 113 66 6961 1832 5791 1936 4342 1389 526 655 430 516 298 247 

Prunella vulgaris 7845 166 89 7473 2054 5162 2411 5410 1509 867 1320 727 991 693 578 

Prunus spinosa 6951 151 88 6614 1780 4613 2044 3472 1417 869 946 733 780 567 483 

Ranunculus acris 15931 262 121 15098 3019 11231 3826 6102 2267 1348 1454 1135 1093 830 687 

Ranunculus repens 14588 543 132 13515 3048 9864 3327 4449 2279 1240 1389 1004 1047 759 618 

Rorippa palustris 2126 89 66 1948 903 1426 486 949 715 317 482 251 376 242 192 

Rumex obtusifolius 8316 151 81 7639 2736 4887 1751 2814 1984 834 1006 693 725 425 354 

Sagina procumbens 3260 109 64 2982 988 2479 1485 1828 796 240 355 202 295 134 117 

Sambucus nigra 9097 165 106 8571 2782 5838 2172 3318 2134 946 1139 802 892 551 465 

Senecio vulgaris 5668 181 114 5293 2046 3904 1987 2758 1570 838 1017 689 768 560 455 

Sinapis arvensis 1759 85 57 1554 876 1071 661 866 676 418 464 317 340 294 213 

Sisymbrium officinale 3186 105 71 2910 1556 1976 945 1532 1152 562 818 450 580 397 311 

Sonchus asper 5307 126 84 4941 1847 3654 1409 2977 1402 640 912 507 665 449 340 

Sonchus oleraceus 4577 134 83 4202 1794 2915 1420 1863 1360 668 766 532 567 430 337 

Stellaria holostea 10041 185 76 9753 1851 6646 3553 7604 1474 1043 1430 894 1139 884 762 

Stellaria media 6031 236 131 5570 2311 4049 1986 2997 1788 868 1190 720 898 588 482 

Tanacetum vulgare 9615 381 160 8877 2956 6155 3105 5313 2298 1357 1639 1158 1282 976 827 

Trifolium dubium 5604 104 70 5172 1981 3615 1767 2407 1502 690 890 559 669 425 341 

Trifolium repens 14178 205 111 13234 2742 10626 2550 8749 2024 968 1108 809 809 569 460 

Tussilago farfara 6677 137 100 6427 1816 4518 3560 4936 1408 1120 1356 947 1053 915 778 

Typha latifolia 5747 71 56 5478 1837 3720 1269 2816 1435 679 876 574 673 427 352 

Urtica dioica 27564 558 174 26649 3938 20758 4802 7857 2948 1586 2017 1299 1522 1070 865 

Veronica arvensis 4600 114 74 4317 1548 3434 2040 2687 1193 556 835 451 641 392 317 

Vicia cracca 5426 154 89 4908 1837 3311 1485 2708 1354 701 913 561 662 474 377 

Aegopodium podagraria 6310 142 90 5808 2134 4029 1741 2721 1643 801 1024 687 801 551 478 

Allium vineale 2335 79 52 2199 892 1622 667 1413 730 333 556 284 442 253 216 

Anisantha sterilis 3648 95 60 3329 1487 2321 1094 1301 1080 473 531 382 396 265 217 

Anthriscus sylvestris 10372 246 154 9667 2877 6888 3544 6572 2204 1489 1820 1266 1409 1120 946 

Bellis perennis 12269 261 175 11624 2981 8669 4501 6449 2210 1495 1941 1236 1392 1119 909 

Chelidonium majus 6012 175 122 5661 2126 3842 2332 3778 1591 964 1319 798 980 721 592 

Corylus avellana 8919 107 87 8567 2413 5441 2177 4450 1836 888 1220 743 972 640 545 

Crataegus monogyna 7970 155 82 7495 2111 5152 1854 3143 1629 820 954 670 748 510 422 

Crepis capillaris 6956 158 95 6498 2019 5199 2154 2747 1508 774 1006 613 746 542 420 

Geranium dissectum 3487 68 54 3242 1373 2053 1204 1808 971 578 774 447 534 425 318 

Geranium robertianum 9270 240 161 8747 2672 5794 3496 5778 2020 1236 1759 1006 1337 971 801 

Geum urbanum 9388 234 112 8931 2185 6019 3462 5371 1692 1002 1244 873 983 707 617 

Glechoma hederacea 15957 598 229 14968 3262 11160 4428 8903 2467 1564 2209 1299 1688 1228 1033 

Hedera helix 10866 173 108 10457 2683 7504 3663 6111 2024 1062 1393 874 1025 727 574 

Heracleum sphondylium 11541 311 151 10599 2866 7290 3063 5852 2208 1220 1595 1051 1249 856 726 

Hieracium umbellatum 3991 122 71 3758 1337 2973 1225 2369 1133 539 761 480 642 389 339 

Holcus lanatus 11285 140 63 10569 2497 7293 1822 2578 1827 731 774 602 583 352 296 

Humulus lupulus 6092 116 79 5849 1939 4053 1662 3709 1557 752 1121 658 914 565 495 

Ilex aquifolium 11132 106 80 10804 2610 7131 3325 5351 2085 1022 1288 899 1011 675 585 

Iris pseudacorus 10649 215 83 10205 2372 6897 2986 5956 1863 1019 1309 891 1043 691 606 

Lamium purpureum 7443 307 164 6911 2693 4875 3420 4867 2060 1431 1871 1177 1420 1142 937 

Lathyrus pratensis 7196 181 69 6741 1622 4979 2363 4366 1288 731 996 651 774 523 466 
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Leucanthemum vulgare 9202 253 95 8778 2454 6164 3285 4735 1961 1182 1217 1053 983 726 636 

Lycopus europaeus 10583 156 91 10225 2256 6816 2367 6217 1765 896 1398 779 1068 675 573 

Lythrum salicaria 8630 282 114 8050 2246 5415 2839 5507 1747 1147 1503 981 1166 918 778 

Malva sylvestris 2757 113 76 2526 1184 1817 1155 1680 902 621 798 505 605 493 401 

Matricaria discoidea 2750 104 73 2472 1199 1738 752 929 858 374 442 295 301 206 163 

Potentilla anserina 13195 121 71 12846 1688 10967 1565 10813 1265 706 912 590 694 483 408 

Potentilla reptans 3919 179 104 3587 1290 2382 1292 2192 984 556 742 476 569 412 354 

Prunus avium 3986 88 54 3716 1411 2390 989 1523 1071 479 534 407 420 259 219 

Pulicaria dysenterica 12965 270 119 12468 1840 10863 2389 10878 1459 978 1216 846 970 771 671 

Rumex acetosa 11178 91 58 10550 2724 7000 2692 4252 2108 961 1078 834 823 526 462 

Salix caprea 5160 140 62 4783 1740 3380 1107 1436 1291 548 631 431 472 288 215 

Sedum acre 3803 95 68 3658 851 2746 1358 3027 673 392 578 333 453 314 273 

Stachys sylvatica 6157 112 70 5903 1661 3977 2045 4052 1251 759 1079 632 822 592 488 

Symphytum officinale 12343 384 140 11686 2319 8969 3261 6210 1766 1145 1573 969 1222 912 768 

Trifolium pratense 13535 466 153 12661 2913 9505 3208 5313 2221 1285 1626 1098 1256 904 773 

Veronica chamaedrys 5246 156 76 4913 1544 3237 1964 3327 1176 772 1075 655 823 602 515 

Veronica hederifolia 3170 88 56 3006 1258 1957 1152 1940 946 568 797 482 587 426 367 

Veronica serpyllifolia 3281 93 59 3081 1260 2250 1191 2073 978 500 783 420 604 391 331 

Vicia hirsuta 4138 200 110 3775 1745 2471 1204 2037 1287 606 888 496 641 396 318 

Vicia sativa 2996 110 65 2678 1342 1759 1161 1476 931 600 729 454 509 437 329 

Chamerion angustifolium 3281 114 64 3030 1330 1890 1131 1741 997 536 696 441 516 363 301 

Papaver dubium 1579 71 53 1400 748 971 465 628 584 252 320 216 257 149 126 

Lotus pedunculatus 8911 272 71 8418 2010 5525 1999 3750 1602 751 860 650 698 465 409 

Betula pendula 7539 89 57 7150 1805 5034 1173 1784 1338 465 550 368 422 188 149 

Sorbus aucuparia 7986 114 85 7684 2235 5334 1836 3026 1775 766 925 647 740 434 358 

Trifolium arvense 3126 89 67 2990 1088 2141 1038 2271 874 468 767 393 611 372 317 

Cardamine pratensis 15497 482 144 14818 3285 10301 6598 11138 2574 2032 2450 1746 1912 1644 1420 

Fallopia japonica 28640 102 63 28401 2384 23355 6621 20500 1679 1242 1190 840 847 713 513 

Solanum dulcamara 7574 106 86 7336 1810 4663 2072 4564 1413 758 1134 648 897 603 522 

Viola arvensis 2762 58 52 2619 1234 1837 1087 1602 945 544 774 443 586 406 326 

Juncus effusus 11535 84 66 10985 2664 6171 1775 4348 2013 800 1019 690 773 444 384 

Quercus robur 14304 156 92 13658 3248 9100 2956 5503 2524 1063 1386 881 1119 601 504 

Coronopus didymus 1915 108 65 1659 976 1223 488 915 766 334 506 276 375 225 177 

Mercurialis annua 2505 106 62 2292 1055 1654 819 1223 840 424 576 371 427 281 237 

Ranunculus sceleratus 3338 105 73 3138 1277 2243 1103 2276 1000 579 843 493 659 445 378 

Asplenium ruta-muraria 4979 100 63 4815 987 3462 1293 3443 831 368 621 330 525 293 270 

Cirsium palustre 12684 286 78 12182 2102 8088 3213 7478 1688 911 1219 821 989 680 614 

Euphorbia peplus 1516 80 50 1339 646 985 482 704 508 235 308 200 225 144 120 

Filipendula ulmaria 15026 216 80 14544 2220 9840 4375 9022 1732 1054 1330 911 1040 776 667 

Papaver rhoeas 3306 127 91 3056 1495 2128 1303 1808 1123 695 886 562 656 505 403 

Draba verna 3321 106 50 3114 1276 2392 1330 1894 996 605 704 522 529 377 322 

Stachys palustris 3234 81 53 3077 1137 1920 1191 2207 858 542 793 440 579 439 354 

Linaria vulgaris 5745 205 129 5408 2120 3614 2245 3531 1614 985 1356 818 1017 762 627 

Silene dioica 7153 163 75 6865 1882 4195 3051 5155 1382 1070 1398 882 1050 897 743 

Veronica persica 3482 145 98 3233 1495 2064 1561 2277 1104 823 1073 648 769 669 522 

Angelica sylvestris 9227 249 58 8673 1898 6056 2292 4277 1494 716 924 619 732 471 403 

Ficaria verna 10374 357 107 9858 2683 6346 5212 7596 2020 1761 2076 1486 1561 1446 1222 

Valeriana officinalis 6881 114 63 6660 1654 4206 2045 4311 1245 771 1088 657 815 580 493 

Gnaphalium uliginosum 2649 65 51 2476 1208 1795 577 1177 937 352 566 290 425 236 187 

Senecio inaequidens 6026 182 99 5697 1693 4315 1750 4146 1327 727 983 625 777 525 443 
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Polygonatum multiflorum 9648 124 54 9433 1647 6472 3327 6353 1331 814 1006 720 841 601 539 

Cytisus scoparius 10091 230 125 9485 2350 6896 2917 5465 1966 1074 1418 962 1188 795 710 

Prunus serotina 9113 90 64 8723 2228 4868 2527 3558 1732 790 870 662 689 417 349 

Scrophularia nodosa 3483 84 57 3254 1334 2121 1023 1898 1024 506 760 414 586 405 326 

Anemone nemorosa 22356 225 56 22050 1849 16014 7732 18040 1475 1252 1406 1076 1128 1030 895 

Hieracium pilosella 7306 89 50 7137 1478 4672 1899 4479 1211 576 848 521 711 428 393 

Silene flos-cuculi 9481 597 56 8777 1764 5714 3686 6781 1326 1013 1203 857 930 800 681 

Gnaphalium luteoalbum 2652 72 57 2516 991 1873 756 1836 774 411 647 354 498 330 286 

Tragopogon pratensis 2369 67 50 2248 857 1502 978 1460 646 416 519 346 369 307 250 

Lonicera periclymenum 14500 104 80 14252 2310 10008 4020 8906 1906 1023 1312 926 1103 739 672 

Calluna vulgaris 18793 231 76 18418 1725 11558 4447 12878 1528 799 1148 752 1025 632 600 

Galium palustre 7480 325 69 7055 1634 4699 1692 4310 1310 638 947 567 777 482 428 

Rumex acetosella 8336 100 65 8070 2207 5406 2137 3970 1803 781 1009 703 830 450 402 

Ajuga reptans 7861 138 53 7535 1624 5077 2410 5334 1271 760 1139 660 902 644 561 

Arum maculatum 10290 194 51 10019 1226 7267 4203 7170 1015 733 840 644 715 570 505 

Luzula campestris 6754 116 75 6467 2097 4643 1750 3402 1703 750 1131 656 926 529 471 

Lysimachia vulgaris 13534 179 90 13190 2249 8417 3026 8862 1795 990 1432 868 1141 755 657 

Ornithopus perpusillus 4317 70 53 4204 1296 2903 1167 2795 1017 431 837 375 654 337 294 

Silene latifolia 2373 70 50 2247 888 1434 1081 1631 608 471 611 349 393 387 277 
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Table C.2. Summary of the predictor set. 

 

  

Predictor minimum maximum mean sd q25 median q75 

Dunes (%) 0.0 93.0 0.1 2.0 0.0 0.0 0.0 

Forest (%) 0.0 100.0 10.2 16.4 0.3 3.0 12.4 

Grassland (%) 0.0 32.9 1.1 2.3 0.0 0.1 1.2 

Green (%) 0.0 37.2 1.9 2.1 0.6 1.3 2.6 

Heathland (%) 0.0 100.0 0.6 5.2 0.0 0.0 0.0 

Saltmarshes (%) 0.0 58.0 0.1 1.5 0.0 0.0 0.0 

Scrubs & Hassle (%) 0.0 72.3 1.0 2.6 0.0 0.1 0.9 

Urban (%) 0.0 100.0 30.3 23.3 12.2 23.7 43.0 

Water (%) 0.0 98.6 2.3 6.4 0.1 0.4 1.5 

Wetlands (%) 0.0 31.1 0.1 0.7 0.0 0.0 0.0 

Mean annual 

precipitation (mm) 
65.9 90.8 76.7 4.4 73.9 77.9 79.8 

Mean annual 

temperature (°C) 
9.4 10.3 10.0 0.2 9.8 10.1 10.2 

Ecoregions 

1 = Kustduinen 

2 = Polders en 

getijdenschelde 

3 = Pleistocene 

riviervalleien  

4 = Cuesta’s 

5 = Kempen 

6 = Westelijke interfluvia 

7 = Midden-Vlaamse 

overgangsgebieden 

8 = Zuidwestelijke 

heuvelzone 

9 = Zuidoostelijke 

heuvelzone 

10 = Krijt-leemgebieden 

11 = Krijtgebieden 

12 = Grindrivieren 

Soil texture 

1 = Dunes 

2 = Sand 

3 = loamy sand 

4 = sandy loam 

5 = light sandy loam 

6 = loam 

7 = clay 

8 = heavy clay 

9 = peat 

10 = chalk 

11 = paved soils 
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Appendix D: The impact of data quality on Sensitivity and Specificity 

The appendix shows the impact of data quality on Sensitivity (Figure D.1) and Specificity 

(Figure D.2) for all species and per taxonomic group, when absolute sample size is constant at 

six levels: 100, 250, 500, 1000, 2000 and 4000 presences. Per level, species were limited to 

those that could be modelled with all filters at the considered level, including the 3-filter 

combination ACTIVITY-DETAIL-VALSTAT. Species were subsequently classified at the 

highest level possible, meaning that model performance cannot be compared between sample 

size levels, because species are different. The number of species in each comparison is 

presented in the top left corner of the graphic areas. Not all levels could be assessed for all 

taxonomic groups, because for example for butterflies there were no species with less than 500 

presences in our dataset, so all species were classified at level 500 or higher. Boxplots represent 

medians, upper and lower quartiles with whiskers extending to the minimum and maximum 

values. Asterisks show significant differences in model performance compared to the unfiltered 

data, tested by a multiple comparison test with Benjamini and Hochberg (1995) correction (*** 

p<0.001, ** p<0.01, * p<0.05). Colours indicate a positive (green) or negative (red) change in 

model performance. 
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Figure D.1. The impact of data quality on Sensitivity 

 

Figure D.2. The impact of data quality on Specificity 
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Appendix E: The impact of absolute sample size on Sensitivity and Specificity 

and the impact on AUC, Sensitivity and Specificity per taxonomic group 

The appendix shows the impact of absolute sample size on Sensitivity (Figure E.1) and 

Specificity (Figure E.2) when data quality is constant for all species combined. It also shows 

the results for birds, butterflies, dragonflies and plants separately for AUC (Figures E.3-E.7), 

Sensitivity (Figures E.7-E.10) and Specificity (Figures E.11-E14). Per filter, species were 

grouped in one of the six specified intervals of sample size (left) that indicate the available 

sample sizes of the original training sets. Model performance was compared between models 

resulting from a repeated and random selection of different fixed sample sizes. Because species 

differ, results can only be compared within the graphic areas, i.e. between fixed sample sizes, 

but not between filters (horizontal) or intervals (vertical). The number of species in each 

comparison is presented in the top left corner of the graphic areas. Boxplots represent medians, 

upper and lower quartiles with whiskers extending to the minimum and maximum values. 

Asterisks show significant differences in model performance compared to the highest sample 

size, tested by a multiple comparison test with Benjamini & Hochberg (1995) correction (*** 

p<0.001, ** p<0.01, * p<0.05). Colours indicate a positive (green) or negative (red) change in 

model performance. 

 

 

Figure E.1. The impact of absolute sample size on Sensitivity 



 

171 

 

 

Figure E.2. The impact of absolute sample size on Specificity 

Results per taxonomic group for AUC 

 

Figure E.3. The impact of sample size on AUC when data quality is constant for birds. 
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Figure E.4. The impact of sample size on AUC when data quality is constant for butterflies. 

 

Figure E.5. The impact of sample size on AUC when data quality is constant for dragonflies. 

 

Figure E.6. The impact of sample size on AUC when data quality is constant for plants. 
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Results per taxonomic group for Sensitivity 

 

Figure E.7. The impact of sample size on Sensitivity when data quality is constant for birds. 

 

Figure E.8. The impact of sample size on Sensitivity when data quality is constant for butterflies.  
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Figure E.9. The impact of sample size on Sensitivity when data quality is constant for dragonflies. 

 

Figure E.10. The impact of sample size on Sensitivity when data quality is constant for plants. 
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Results per taxonomic group for Specificity 

 

Figure E.11. The impact of sample size on Specificity when data quality is constant for birds. 

 

Figure E.12. The impact of sample size on Specificity when data quality is constant for butterflies. 



 

176 

 

 

Figure E.13. The impact of sample size on Specificity when data quality is constant for dragonflies. 

 

Figure E.14. The impact of sample size on Specificity when data quality is constant for plants. 
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Appendix F: GAMM model selection  

Table F.1. Model selection results of the GAMMs (Generalized Additive Mixed Models) that 

model the impact of data quality and sample size on ∆ AUC, ∆ Sensitivity and ∆ Specificity, 

per taxonomic group. Columns show the parameters in the model, the number of parameters 

(df), the log-likelihood (LogLik ), the Akaike Information Criterion (AIC) and the difference 

in AIC (∆AIC) compared to the top model, and the model weight (i.e. the relative likelihood of 

the model). We selected the model with the least parameters (bold) and a small difference in 

AIC (∆AIC < 1) (highlighted in grey) compared to the top-ranked model. 

Model parameters df logLik AIC ∆AIC weight 

BIRDS (∆AUC ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 
91 23906.2 -47628.9 0 0.51 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

92 23906.9 -47628.8 0.1 0.49 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 
85 23821.5 -47472.4 156.5 0 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
78 23800.9 -47445.9 183 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
72 23350.7 -46556.5 1072.3 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 
82 23144.9 -46125 1503.8 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 
82 23145.1 -46124.7 1504.1 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 
75 23089.9 -46028.3 1600.6 0 

filter + s(reduction) + s(samplesize) + s(species) 68 23071.7 -46007.2 1621.7 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 69 22830.5 -45521.2 2107.6 0 

filter + s(reduction) + s(species) 64 22818.2 -45508.3 2120.6 0 

s(reduction) + s(samplesize) + s(species) 61 22681.7 -45239.4 2389.5 0 

s(reduction) + s(species) 57 22444.1 -44772.3 2856.6 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 75 20684.6 -41217.7 6411.2 0 

filter + s(samplesize) + s(species) 63 20641.8 -41156.1 6472.8 0 

s(samplesize) + s(species) 57 20447.9 -40780.5 6848.4 0 

s(species) 53 19576.1 -39046.1 8582.7 0 

BUTTERFLIES (∆AUC ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 
52 14919.2 -29734 0 0.495 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 
52 14919.2 -29733.9 0.1 0.473 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 
49 14912.9 -29727.5 6.5 0.019 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
47 14911.3 -29726.7 7.3 0.013 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
42 14669.4 -29254.6 479.4 0 

filter + s(reduction) + s(samplesize) + s(species) 39 14308.4 -28537.3 1196.7 0 
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Model parameters df logLik AIC ∆AIC weight 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 
40 14308.5 -28536.8 1197.2 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 
41 14309.9 -28536.4 1197.6 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 
41 14310 -28536.3 1197.7 0 

s(reduction) + s(samplesize) + s(species) 33 14109.4 -28151.4 1582.6 0 

filter + s(reduction) + s(species) 35 14074.8 -28078.2 1655.8 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 36 14075.1 -28077.3 1656.7 0 

s(reduction) + s(species) 29 13897.5 -27735.7 1998.3 0 

filter + s(samplesize) + s(species) 35 13238.7 -26406.1 3327.9 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 38 13240.9 -26405 3329 0 

s(samplesize) + s(species) 29 13121.9 -26184.5 3549.5 0 

s(species) 25 12429.5 -24808.2 4925.8 0 

DRAGONFLIES (∆AUC ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 
te(samplesize,reduction) + s(species) 

29 5865.3 -11672.6 0 0.264 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

29 5865.3 -11672.6 0 0.264 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) 

+ s(species) 
27 5863.8 -11672.3 0.2 0.236 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
te(samplesize,reduction) + s(species) 

27 5863.8 -11672.3 0.2 0.235 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 
28 5855 -11653.5 19 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 
27 5853.3 -11652.1 20.4 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 
26 5850.3 -11646.6 26 0 

filter + s(reduction) + s(samplesize) + s(species) 26 5848.7 -11645.3 27.2 0 

filter + s(reduction) + s(species) 23 5839.4 -11630.9 41.7 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 23 5839.4 -11630.8 41.7 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
21 5836.5 -11629.6 42.9 0 

s(reduction) + s(samplesize) + s(species) 20 5822.2 -11604.4 68.2 0 

s(reduction) + s(species) 17 5814.4 -11593.2 79.4 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 25 5807 -11562.6 109.9 0 

filter + s(samplesize) + s(species) 24 5805.7 -11561.8 110.8 0 

s(samplesize) + s(species) 18 5779.5 -11521.6 151 0 

s(species) 14 5716.1 -11402.4 270.1 0 

PLANTS (∆AUC ~)      

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 
196 49308.3 -98222.9 0 1 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

te(samplesize,reduction) + s(species) 
192 49273.2 -98161.5 61.4 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 
189 49260.8 -98141.8 81.1 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 
188 49238 -98098.6 124.4 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 
186 49231.5 -98091 131.9 0 
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Model parameters df logLik AIC ∆AIC weight 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 
183 49228.1 -98089.1 133.8 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 
181 49195.2 -98028.4 194.6 0 

filter + s(reduction) + s(samplesize) + s(species) 176 49186.1 -98020.2 202.8 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 182 49057.9 -97750 472.9 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 178 49049.3 -97741.9 481.1 0 

filter + s(reduction) + s(species) 172 49036.1 -97727 495.9 0 

filter + s(samplesize) + s(species) 172 49015.1 -97685 537.9 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 
s(species) 

181 44300.1 -88236.3 9986.6 0 

s(reduction) + s(samplesize) + s(species) 170 44207.8 -88074.9 10148 0 

s(samplesize) + s(species) 166 44121.2 -87910.1 10312.9 0 

s(reduction) + s(species) 166 43923.2 -87514.3 10708.6 0 

s(species) 162 43788.3 -87252.1 10970.8 0 

BIRDS (∆Sensitivity ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 80 16309.1 -32457.9 0 0.513 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 80 16309 -32457.8 0.1 0.487 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 68 16286.4 -32435.1 22.8 0 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 74 16289.5 -32429.2 28.7 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 75 16289.6 -32428.8 29.1 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 71 16224.1 -32305.4 152.5 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 72 16224.7 -32305.2 152.7 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 72 16224.7 -32305.2 152.7 0 

s(samplesize) + s(species) 57 16201.4 -32287 170.9 0 

s(reduction) + s(samplesize) + s(species) 59 16202.2 -32285.3 172.6 0 

filter + s(samplesize) + s(species) 63 16204.1 -32280.5 177.4 0 

filter + s(reduction) + s(samplesize) + s(species) 65 16204.9 -32278.7 179.2 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
s(species) 66 16205.3 -32278.2 179.7 0 

s(reduction) + s(species) 56 16167 -32221.8 236.1 0 

filter + s(reduction) + s(species) 62 16169.7 -32215.3 242.6 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 63 16170.1 -32213.8 244.1 0 

s(species) 53 16157.1 -32206.3 251.6 0 

BUTTERFLIES (∆Sensitivity ~)      

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 

42 9903.1 -19722 0 0.396 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) 

+ s(species) 

42 9903.1 -19721.4 0.6 0.3 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

te(samplesize,reduction) + s(species) 

45 9906.1 -19721.3 0.6 0.289 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

42 9900 -19714.9 7 0.012 
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Model parameters df logLik AIC ∆AIC weight 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

39 9895 -19710.6 11.4 0.001 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

39 9894.9 -19710.6 11.4 0.001 

filter + s(reduction) + s(samplesize) + s(species) 37 9891.1 -19707.1 14.9 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

37 9891.1 -19706.9 15 0 

filter + s(reduction) + s(species) 35 9888.9 -19706.8 15.1 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 35 9888.9 -19705.9 16.1 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

36 9889 -19704.8 17.2 0 

s(reduction) + s(samplesize) + s(species) 31 9876.3 -19689.3 32.7 0 

s(reduction) + s(species) 29 9873.9 -19688.9 33.1 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 39 9753.4 -19427.6 294.3 0 

filter + s(samplesize) + s(species) 34 9743.9 -19418.9 303.1 0 

s(samplesize) + s(species) 28 9729 -19401.1 320.8 0 

s(species) 25 9709.1 -19367 355 0 

DRAGONFLIES (∆Sensitivity ~)      

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

31 2790.8 -5519.1 0 0.394 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 

31 2790.8 -5519.1 0 0.394 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

30 2788.3 -5516.4 2.6 0.105 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 

30 2788.3 -5516.4 2.6 0.105 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

23 2777.6 -5507.2 11.9 0.001 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

26 2753.7 -5454.5 64.5 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

26 2753.7 -5454.5 64.5 0 

filter + s(reduction) + s(samplesize) + s(species) 25 2751.5 -5452.9 66.2 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

25 2751.5 -5452.9 66.2 0 

s(reduction) + s(samplesize) + s(species) 19 2740.1 -5441.8 77.2 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 24 2742.9 -5436.2 82.8 0 

filter + s(samplesize) + s(species) 23 2740.9 -5434.6 84.5 0 

filter + s(reduction) + s(species) 23 2737.7 -5428.6 90.4 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 23 2737.7 -5428.6 90.4 0 

s(samplesize) + s(species) 17 2729.8 -5424.2 94.9 0 

s(reduction) + s(species) 17 2725.6 -5416.5 102.6 0 

s(species) 14 2689.8 -5349.8 169.3 0 

PLANTS (∆Sensitivity ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 185 26346.9 -52321.8 0 0.636 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 187 26348 -52320.7 1.1 0.364 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 189 26305.4 -52232.1 89.7 0 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 184 26295.9 -52222.5 99.3 0 
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Model parameters df logLik AIC ∆AIC weight 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 183 26290.2 -52214.3 107.6 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 181 26288 -52212.5 109.3 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 181 26248 -52133.2 188.6 0 

filter + s(reduction) + s(samplesize) + s(species) 175 26236.4 -52121.9 200 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 178 26199.7 -52041.8 280 0 

filter + s(reduction) + s(species) 171 26172.3 -52001.8 320 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 178 26048.7 -51740.7 581.1 0 

s(reduction) + s(samplesize) + s(species) 169 25994.6 -51650.5 671.3 0 

s(reduction) + s(species) 165 25918.7 -51506.9 814.9 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 175 25908.6 -51466.7 855.1 0 

filter + s(samplesize) + s(species) 171 25855 -51366.8 955.1 0 

s(samplesize) + s(species) 165 25619.6 -50908.2 1413.6 0 

s(species) 161 25508.8 -50694.5 1627.3 0 

BIRDS (∆Specificity ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 

80 15103.7 -30046.6 0 0.505 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

80 15103.7 -30046.5 0 0.495 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 
s(species) 

73 15087.6 -30028.5 18.1 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 

75 15087.8 -30025.1 21.5 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

73 15073.9 -30001.1 45.5 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

73 15073.9 -30001 45.5 0 

filter + s(reduction) + s(samplesize) + s(species) 67 15059.8 -29985.4 61.2 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 
s(species) 

67 15060.1 -29984.9 61.7 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

68 15060.1 -29982.9 63.6 0 

filter + s(reduction) + s(species) 63 15044.6 -29961.7 84.9 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 65 15044.9 -29959.5 87.1 0 

s(reduction) + s(samplesize) + s(species) 61 15033.4 -29944.8 101.8 0 

s(reduction) + s(species) 57 15017.6 -29919.7 126.9 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 69 14924.2 -29710.1 336.5 0 

filter + s(samplesize) + s(species) 61 14908.4 -29692.9 353.7 0 

s(samplesize) + s(species) 55 14883.4 -29655 391.6 0 

s(species) 54 14875.6 -29643 403.6 0 

BUTTERFLIES (∆Specificity ~)      

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 

47 9315 -18534.9 0 0.404 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

47 9315 -18534.9 0 0.401 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 
s(species) 

44 9309.9 -18531.7 3.2 0.081 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 
te(samplesize,reduction) + s(species) 

44 9310.1 -18531.3 3.5 0.069 
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Model parameters df logLik AIC ∆AIC weight 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

38 9303.3 -18530.5 4.4 0.044 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

39 9297.1 -18515 19.9 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

39 9297.1 -18515 19.9 0 

filter + s(reduction) + s(species) 35 9292.1 -18513.2 21.7 0 

filter + s(reduction) + s(samplesize) + s(species) 35 9292.1 -18512.9 22 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

36 9292.3 -18512 22.8 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 36 9292.3 -18512 22.9 0 

s(reduction) + s(species) 29 9285.5 -18511.9 22.9 0 

s(reduction) + s(samplesize) + s(species) 29 9285.5 -18511.7 23.2 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 40 8887 -17693.1 841.8 0 

s(samplesize) + s(species) 29 8875.1 -17691 843.9 0 

filter + s(samplesize) + s(species) 35 8880.3 -17689.4 845.5 0 

s(species) 25 8713.1 -17375.3 1159.6 0 

DRAGONFLIES (∆Specificity ~)      

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

31 2660.7 -5258.4 0 0.394 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 

31 2660.7 -5258.4 0 0.392 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

30 2658 -5255.8 2.6 0.107 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 

30 2658 -5255.8 2.6 0.107 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

24 2646.3 -5244.5 13.9 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

26 2620.4 -5187.6 70.8 0 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

26 2620.4 -5187.6 70.8 0 

filter + s(reduction) + s(samplesize) + s(species) 25 2618.2 -5185.4 73 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

25 2618.2 -5185.4 73 0 

s(reduction) + s(samplesize) + s(species) 19 2605.7 -5172.2 86.2 0 

filter + s(reduction) + s(species) 23 2601.4 -5156 102.4 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 23 2601.4 -5156 102.4 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 24 2602.2 -5154.7 103.7 0 

filter + s(samplesize) + s(species) 23 2600.1 -5152.9 105.5 0 

s(reduction) + s(species) 17 2588.2 -5141.5 116.9 0 

s(samplesize) + s(species) 17 2588 -5140.5 117.9 0 

s(species) 14 2532.6 -5035.5 222.9 0 

PLANTS (∆Specificity ~)      

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + te(samplesize,reduction) + s(species) 

186 25170.8 -49968.1 0 0.534 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) 

+ te(samplesize,reduction) + s(species) 

186 25170.7 -49967.8 0.3 0.466 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

te(samplesize,reduction) + s(species) 

187 25143.7 -49912.8 55.3 0 

filter + s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

184 25137.3 -49905.1 63 0 
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Model parameters df logLik AIC ∆AIC weight 

filter + s(reduction) + s(samplesize) + s(samplesize, by = filter) + 

s(species) 

180 25091.9 -49822 146.1 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(samplesize, by = filter) + s(species) 

181 25092.4 -49821.8 146.3 0 

filter + s(reduction) + s(samplesize) + s(reduction, by = filter) + 

s(species) 

180 25064 -49767.7 200.3 0 

filter + s(reduction) + s(samplesize) + s(species) 175 25055.7 -49760.9 207.2 0 

filter + s(reduction) + s(reduction, by = filter) + s(species) 177 25042.8 -49731.3 236.8 0 

filter + s(reduction) + s(species) 171 25022.6 -49702.7 265.3 0 

s(reduction) + s(samplesize) + te(samplesize,reduction) + 

s(species) 

177 24779.3 -49203.8 764.3 0 

s(reduction) + s(samplesize) + s(species) 169 24697.4 -49056.4 911.7 0 

s(reduction) + s(species) 165 24675 -49019.6 948.5 0 

filter + s(samplesize) + s(samplesize, by = filter) + s(species) 175 24600.8 -48850.7 1117.4 0 

filter + s(samplesize) + s(species) 171 24563.1 -48783.9 1184.2 0 

s(samplesize) + s(species) 165 24229.2 -48128.3 1839.7 0 

s(species) 161 24110.7 -47898.9 2069.1 0 
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Appendix G: The relative variable importance in the best GAMM model per 

taxonomic group for Sensitivity and Specificity 

The appendix shows the relative variable importance, based on the proportion of the percentage 

of deviance explained (%DE) by the different explanatory variables in the best GAMM 

(Generalized Additive Mixed Model) per taxonomic group (orange dots), and the relative 

variable importance across species, in the GAMs (Generalized Additive Models) where the 

random species effect was excluded (boxplots) for Sensitivity (Figure G.1) and Specificity 

(Figure G.2). The proportional %DE is the decrease in %DE between the full model and the 

model where the variable was excluded (but with identical smoothing parameters), relative to 

the %DE of the full model to summarize effects across n species. Species for which the full 

model could not be estimated due to convergence issues were excluded from the summary. 

 

Figure G.1. The relative variable importance in the best GAMM model per taxonomic group for 

Sensitivity.  
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Figure G.2. The relative variable importance in the best GAMM model per taxonomic group for 

Specificity 
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Appendix H: The combined impact of data quality and sample size on model 

performance.  

The appendix shows the combined impact of data quality and sample size on ∆ Sensitivity 

(Figure H.1) and ∆ Specificity (Figure H.2) per taxonomic group. The full lines are the 

predictions for the difference in model performance (∆ = filtered data - unfiltered data) from 

the ‘best’ GAMM (Generalized Additive Mixed Model) along a continuous scale of 

proportional reduction in sample size and for three sample sizes after filtering that we chose 

based on data availability: 100, 500 and 1000 presences. Colours represent the different filters 

(data quality). The red dotted line equals a zero difference, i.e. filtering did not impact model 

performance. We used the REML method (restricted maximum likelihood) in the ‘gam’ 

function of the ´mgcv` R package v 1.8-31 (Wood, 2017) to model our data. Filter type was 

modelled as factor variable and species as random effect. Smoothing functions were used to fit 

both sample size variables (proportional reduction and sample size after filtering), with cubic 

spline method and k = 5. ∆ Sensitivity and Specificity were rescaled to fall between 0 and 1, so 

that we could use the ‘betareg’ family with logit-link, because of the double-bounded character 

of the response variable. 

Figures H.3 to H.6 present the Maxent model predictions (i.e. cloglog transformed raw output) 

based on the unfiltered data and three situations of reduced sample size when using the best 

filter (i.e. the filter that caused the largest positive difference in AUC). The actual reduction in 

sample size refers to the situation where the filter was applied to the data as extracted from the 

waarnemingen.be database. The resulting sample size of 100 presences was the maximum 

reduction analyzed. The third situation is a reduction to a sample size in between the other two 

situations. We selected one species per taxonomic group, i.e. the species where the highest 

positive change in AUC was observed). 
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Figure H.1. The combined impact of data quality and sample size on ∆ Sensitivity per taxonomic group. 
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Figure H.2. The combined impact of data quality and sample size on ∆ Specificity per taxonomic group. 
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Figure H.3: Example of the best filter and impact of sample size for birds: Relative habitat suitability 

(darker colour = more suitable) for Tachybaptus ruficollis. 

 

Figure H.4: Example of the best filter and impact of sample size for butterflies: Relative habitat 

suitability (darker colour = more suitable) for Aglais urticae. 
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Figure H.5: Example of the best filter and impact of sample size for dragonflies: Relative habitat 

suitability (darker colour = more suitable) for Enallagma cyathigerum. 

 

Figure H.6: Example of the best filter and impact of sample size for plants: Relative habitat suitability 

(darker colour = more suitable) for Salix caprea. 
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CHAPTER III 

Appendix I: Data summary 

Figure I.1. Pearson correlation matrix of absolute and relative (rel.) species traits. 
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Table I.6. Species traits per species, the species profile they are associated with and the percentage of opportunistic observations accompanied by photographs 

(photo rate) or sound fragments (sound rate) in the model training sets for unfiltered and filtered data using the VALSTAT filter (i.e. approved data only). As 

trait values show taxonomic differences, continuous values (absolute traits) were rescaled per taxonomic group (relative traits) to detect patterns across 

taxonomic groups that could go unnoticed otherwise. For a full description of species traits and profiles see Table 1 and section 13.2, and Table 2 and section 

14.2 respectively in the main text. 
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BIRDS VOGELS 

      

     

Accipiter nisus Sperwer 222 0.065 0.518 5970 0.547 5829 1 10.7 25.4 3.6E-02 3.4E-02 

Alcedo atthis IJsvogel 76 0.000 0.767 11500 0.712 3349 5 22.1 32.1 2.0E-02 1.6E-02 

Alopochen aegyptiaca Nijlgans 384 0.007 0.737 16800 0.306 4969 5 9.7 14.2 4.3E-03 6.4E-03 

Anas crecca Wintertaling 184 0.021 0.816 4100 0.176 1492 2 7.5 12.8 6.0E-03 7.7E-03 

Anser anser Grauwe Gans 454 0.035 0.735 3460 0.222 2189 3 8.7 9.5 9.8E-03 3.6E-03 

Ardea alba Grote Zilverreiger 440 0.008 0.858 4100 0.526 3495 3 13.1 17.5 9.8E-04 n/a 
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Sound rate 

 

Ardea cinerea Blauwe Reiger 450 0.006 0.688 7200 0.373 7064 4 12.1 13.4 6.4E-03 4.7E-03 

Athene noctua Steenuil 162 0.004 0.298 5890 1.748 2454 5 12.7 35.1 1.9E-01 3.6E-01 

Aythya ferina Tafeleend 212 0.026 0.859 3980 0.186 817 2 8.8 14.4 2.1E-03 3.4E-03 

Aythya fuligula Kuifeend 202 0.018 0.813 5330 0.194 1876 2 8.3 14.2 3.2E-03 5.4E-03 

Branta canadensis Grote Canadese Gans 443 0.019 0.791 1010 0.209 3549 3 9.4 17.9 4.2E-03 5.4E-03 

Branta leucopsis Brandgans 401 0.018 0.559 2220 0.314 790 3 14.9 19.3 1.5E-02 6.7E-03 

Buteo buteo Buizerd 392 0.035 0.795 10900 0.520 10581 4 9.8 12.5 1.1E-02 7.4E-03 

Carduelis carduelis Putter 77 0.005 0.770 12100 0.332 4931 5 10.4 14.8 2.3E-02 1.6E-02 

Chroicocephalus ridibundus Kokmeeuw 300 0.030 0.858 3460 0.246 5465 3 8.2 9.4 4.5E-03 5.1E-03 

Ciconia ciconia Ooievaar 570 0.004 0.458 16800 1.390 2228 5 30.8 39.6 4.5E-03 5.8E-03 

Circus aeruginosus Bruine Kiekendief 403 0.031 0.761 5130 0.530 1880 3 20.3 50.1 2.1E-02 3.2E-02 

Circus cyaneus Blauwe Kiekendief 357 0.029 0.521 2770 0.879 1678 3 23.0 70.0 n/a n/a 

Corvus frugilegus Roek 315 0.047 0.438 3130 1.315 2846 3 7.9 21.3 1.9E-02 5.1E-02 

Cuculus canorus Koekoek 222 0.011 0.507 10600 1.240 1032 5 5.0 18.9 9.9E-02 2.7E-01 

Cygnus olor Knobbelzwaan 606 0.010 0.755 3500 0.296 1902 3 12.7 16.2 7.5E-03 7.2E-03 

Delichon urbicum Huiszwaluw 111 0.039 0.701 3350 0.493 2622 2 5.2 17.4 1.4E-02 2.9E-02 

Egretta garzetta Kleine Zilverreiger 288 0.012 0.959 2980 0.334 931 3 18.6 22.8 n/a n/a 

Falco tinnunculus Torenvalk 251 0.021 0.637 6910 0.700 7964 4 9.9 15.1 3.8E-03 2.3E-03 

Fulica atra Meerkoet 212 0.015 0.891 5250 0.189 3536 2 5.6 6.2 1.1E-02 8.2E-03 

Gallinago gallinago Watersnip 134 0.011 0.799 4910 0.290 1348 2 10.5 21.6 2.6E-02 2.5E-02 

Larus argentatus Zilvermeeuw 432 0.088 0.795 4960 0.246 2341 1 14.4 24.3 1.0E-02 4.3E-03 

Larus canus Stormmeeuw 363 0.100 0.788 2730 0.256 1617 1 9.1 27.8 n/a n/a 
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Larus fuscus Kleine Mantelmeeuw 420 0.084 0.669 2890 0.329 3140 1 10.6 26.4 5.3E-03 1.4E-02 

Limosa limosa Grutto 214 0.020 0.745 5100 0.411 680 2 16.0 19.8 1.4E-02 8.8E-03 

Linaria cannabina Kneu 78 0.024 0.708 3930 0.322 3403 2 9.0 14.4 3.5E-02 4.0E-02 

Luscinia svecica Blauwborst 105 0.005 0.522 4870 0.421 673 2 13.0 26.4 9.1E-02 1.4E-01 

Mareca strepera Krakeend 260 0.032 0.843 3820 0.166 2118 3 6.5 9.1 2.3E-03 1.6E-03 

Motacilla alba Witte Kwikstaart 90 0.014 0.748 2180 0.318 6433 2 8.2 13.7 6.8E-03 9.1E-03 

Motacilla flava Gele Kwikstaart 80 0.050 0.843 4580 0.395 2338 2 10.8 46.2 4.9E-02 1.4E-01 

Numenius arquata Wulp 302 0.020 0.370 5870 0.539 1680 3 9.8 13.6 2.4E-02 2.3E-02 

Oenanthe oenanthe Tapuit 96 0.016 0.564 3180 0.704 2251 2 19.0 58.6 3.3E-03 1.0E-02 

Perdix perdix Patrijs 159 0.016 0.306 8570 1.353 3089 5 9.4 26.4 4.1E-02 5.8E-02 

Phalacrocorax carbo Aalscholver 348 0.010 0.779 6470 0.289 3303 3 11.5 16.6 n/a n/a 

Platalea leucorodia Lepelaar 382 0.001 0.565 4580 0.756 608 3 27.1 30.3 6.9E-03 3.9E-03 

Podiceps cristatus Fuut 190 0.003 0.864 6280 0.295 1926 2 12.7 14.3 2.5E-03 2.8E-03 

Rallus aquaticus Waterral 120 0.008 0.617 3100 0.583 780 2 7.2 15.0 1.4E-01 1.6E-01 

Recurvirostra avosetta Kluut 226 0.002 0.512 2960 0.401 390 2 16.5 19.7 1.0E-02 6.1E-03 

Riparia riparia Oeverzwaluw 107 0.029 0.746 2480 0.438 593 2 10.2 22.9 7.7E-03 1.7E-02 

Spatula clypeata Slobeend 237 0.008 0.969 4430 0.141 1177 3 8.3 13.3 n/a n/a 

Spinus spinus Sijs 73 0.012 0.719 4820 0.323 3147 2 13.7 32.7 3.1E-02 4.4E-02 

Sterna hirundo Visdief 271 0.011 0.912 3050 0.348 825 3 21.7 28.8 2.1E-02 1.7E-02 

Tachybaptus ruficollis Dodaars 100 0.008 0.720 4040 0.329 2004 2 8.8 13.5 1.2E-02 1.5E-02 

Tadorna tadorna Bergeend 318 0.006 0.838 4220 0.257 2214 3 7.0 10.6 n/a n/a 

Tringa totanus Tureluur 162 0.039 0.744 3390 0.247 606 2 11.4 17.4 1.6E-02 2.4E-02 
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Turdus pilaris Kramsvogel 145 0.026 0.629 3620 0.374 1390 2 10.1 85.1 2.4E-02 1.5E-01 

Vanellus vanellus Kievit 226 0.003 0.841 7620 0.445 5289 4 6.4 13.6 1.7E-03 1.8E-03 

BUTTERFLIES VLINDERS   

         

Aglais io Dagpauwoog 28 0.014 0.891 4220 0.424 7629 4 12.4 12.4 n/a n/a 

Aglais urticae Kleine Vos 24 0.024 0.724 4220 0.470 4645 4 15.2 15.5 n/a n/a 

Anthocharis cardamines Oranjetipje 20 0.009 0.872 2930 0.616 2892 2 17.2 30.8 n/a n/a 

Aphantopus hyperantus Koevinkje 21 0.030 0.875 1280 0.318 916 2 15.4 29.2 n/a n/a 

Araschnia levana Landkaartje 18 0.019 0.819 2440 0.377 3484 2 24.5 33.8 n/a n/a 

Aricia agestis Bruin Blauwtje 13 0.097 0.737 1950 0.373 2432 1 41.8 52.6 n/a n/a 

Celastrina argiolus Boomblauwtje 14 0.026 0.760 2190 0.363 3748 2 16.3 23.5 n/a n/a 

Coenonympha pamphilus Hooibeestje 16 0.056 0.793 1770 0.602 1706 2 12.3 16.8 n/a n/a 

Colias crocea Oranje Luzernevlinder 24 0.049 0.747 1070 0.860 2495 2 24.8 35.7 n/a n/a 

Favonius quercus Eikenpage 16 0.013 0.808 937 0.441 1027 2 49.3 69.1 n/a n/a 

Gonepteryx rhamni Citroenvlinder 28 0.007 0.870 2920 0.554 6793 4 7.6 7.5 n/a n/a 

Issoria lathonia Kleine Parelmoervlinder 21 0.021 0.760 1270 0.462 1082 2 48.6 54.5 n/a n/a 

Lycaena phlaeas Kleine Vuurvlinder 14 0.010 0.818 1840 0.423 3492 2 34.9 46.3 n/a n/a 

Maniola jurtina Bruin Zandoogje 24 0.062 0.941 1540 0.325 5156 1 9.8 11.5 n/a n/a 

Ochlodes sylvanus Groot Dikkopje 14 0.045 0.821 1220 0.364 2996 2 27.7 38.5 n/a n/a 

Papilio machaon Koninginnenpage 36 0.005 0.781 2240 0.682 3110 4 34.2 45.0 n/a n/a 

Pararge aegeria Bont Zandoogje 20 0.013 0.839 1860 0.436 5523 4 12.2 16.5 n/a n/a 

Pieris brassicae Groot Koolwitje 30 0.170 0.874 2130 0.238 4182 1 9.9 12.2 n/a n/a 

Pieris napi Klein Geaderd Witje 22 0.087 0.887 1530 0.277 4476 1 14.7 16.8 n/a n/a 



 

 

 

1
9

6
 

 

Species name (scientific) Species name (Dutch) 

B
o

d
y

 s
iz

e
 

C
la

ss
if

ic
a

ti
o

n
 

e
r
r
o

r
 r

a
te

 

D
e
te

c
ta

b
il

it
y

 

F
a

m
il

ia
r
it

y
 

R
e
p

o
r
ti

n
g

 

p
r
o

b
a

b
il

it
y

 

R
a

n
g

e
 s

iz
e
 

P
r
o

fi
le

 

Photo rate 

 

Sound rate 

 

Pieris rapae Klein Koolwitje 24 0.132 0.916 2750 0.385 6769 1 8.7 9.2 n/a n/a 

Polygonia c-album Gehakkelde Aurelia 23 0.009 0.815 3000 0.335 5582 4 18.8 18.7 n/a n/a 

Polyommatus icarus Icarusblauwtje 14 0.070 0.897 2020 0.373 4014 1 30.0 39.2 n/a n/a 

Pyronia tithonus Oranje Zandoogje 18 0.050 0.939 2420 0.393 3541 2 13.8 17.9 n/a n/a 

Vanessa atalanta Atalanta 29 0.016 0.797 3950 0.451 6836 4 10.7 14.1 n/a n/a 

Vanessa cardui Distelvlinder 28 0.013 0.856 2760 0.396 5113 4 19.8 25.3 n/a n/a 

DRAGONFLIES LIBELLEN            

Aeshna cyanea Blauwe Glazenmaker 62 0.077 0.775 777 0.617 1664 1 31.0 50.8 n/a n/a 

Aeshna mixta Paardenbijter 60 0.060 0.864 972 0.801 1906 1 32.0 51.7 n/a n/a 

Anax imperator Grote Keizerlibel 74 0.038 0.906 941 0.430 2299 1 22.7 45.8 n/a n/a 

Calopteryx splendens Weidebeekjuffer 47 0.045 0.956 2470 0.634 1396 2 27.6 38.7 n/a n/a 

Coenagrion puella Azuurwaterjuffer 33 0.078 0.898 773 0.420 2239 1 35.4 47.1 n/a n/a 

Enallagma cyathigerum Watersnuffel 33 0.108 0.865 656 0.310 948 1 28.7 38.9 n/a n/a 

Ischnura elegans Lantaarntje 32 0.058 0.892 1180 0.430 2263 1 27.8 38.1 n/a n/a 

Libellula depressa Platbuik 44 0.046 0.890 1210 0.522 1913 1 36.7 58.4 n/a n/a 

Libellula quadrimaculata Viervlek 44 0.028 0.911 837 0.300 1101 2 29.0 46.9 n/a n/a 

Orthetrum cancellatum Gewone Oeverlibel 47 0.051 0.932 1120 0.470 2301 1 33.8 48.0 n/a n/a 

Platycnemis pennipes Blauwe Breedscheenjuffer 36 0.045 0.643 964 1.322 912 2 39.0 56.3 n/a n/a 

Pyrrhosoma nymphula Vuurjuffer 34 0.017 0.743 793 0.509 1694 2 34.3 53.3 n/a n/a 

Sympetrum sanguineum Bloedrode Heidelibel 37 0.089 0.881 1280 0.534 2130 1 46.0 69.4 n/a n/a 

Sympetrum striolatum Bruinrode Heidelibel 40 0.092 0.925 1010 0.680 2030 1 55.3 93.0 n/a n/a 
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Appendix J: Principal component analysis (PCA) and clustering results 

Table J.1. Description of the different dimensions (Dim.) of the PCA: (i) in terms of eigenvalues and percentage of the total variance explained; and in terms 

of coordinate values of the different variables (coord), their contributions to the dimensions (ctr) and the square cosine (cos2), which is a measure of the quality 

of the representation in the dimension (you can e.g. sum the cos2 values from the first two dimensions to look at the quality of representation in the first plane 

of the PCA). The results of the PCA are used in an agglomerative hierarchical clustering of individuals (i.e. species), which are described by the principal 

components. Note that supplementary variables do not contribute to the different dimensions. For supplementary categorical variables, there are also v-test 

results, with extreme values indicating coordinate values that are significantly different to 0.   

 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 

Eigenvalue 2.614   2.189   1.555   0.992   0.863   0.429   0.213   0.111   0.033   

%  of total variance 

explained 
29.050   24.317   17.278   11.025   9.593   4.770   2.368   1.228   0.371   

Cumulative %  29.050   53.367   70.645   81.670   91.263   96.033   98.401   99.629   100   

Active variables coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 coord ctr cos2 

body size 0.378 5.461 0.143 -0.279 3.564 0.078 0.834 44.730 0.696 -0.026 0.068 0.001 0.003 0.001 0.000 0.209 10.182 0.044 0.085 3.358 0.007 0.174 27.489 0.030 0.041 5.147 0.002 

relative body size 0.333 4.232 0.111 0.264 3.183 0.070 0.656 27.693 0.431 0.255 6.543 0.065 -0.497 28.614 0.247 -0.242 13.657 0.059 -0.062 1.814 0.004 -0.119 12.730 0.014 -0.023 1.535 0.001 

range size 0.421 6.781 0.177 0.760 26.416 0.578 -0.046 0.136 0.002 -0.232 5.439 0.054 -0.076 0.671 0.006 0.329 25.195 0.108 -0.273 34.854 0.074 0.011 0.110 0.000 -0.012 0.397 0.000 

relative range size 0.076 0.223 0.006 0.881 35.478 0.776 -0.156 1.571 0.024 -0.151 2.285 0.023 -0.232 6.240 0.054 0.070 1.151 0.005 0.334 52.343 0.112 -0.002 0.005 0.000 0.015 0.703 0.000 

relative reporting probability 0.268 2.737 0.072 0.010 0.004 0.000 -0.318 6.519 0.101 0.878 77.757 0.772 -0.057 0.374 0.003 0.226 11.926 0.051 0.023 0.251 0.001 0.021 0.403 0.000 0.003 0.029 0.000 

familiarity 0.771 22.750 0.595 -0.016 0.012 0.000 0.215 2.964 0.046 -0.016 0.024 0.000 0.554 35.606 0.307 0.081 1.540 0.007 0.086 3.497 0.007 -0.193 33.606 0.037 -0.001 0.003 0.000 

relative familiarity 0.689 18.162 0.475 0.475 10.322 0.226 -0.151 1.460 0.023 0.107 1.156 0.011 0.296 10.123 0.087 -0.388 35.118 0.151 -0.040 0.763 0.002 0.159 22.886 0.025 -0.002 0.009 0.000 

classification error rate -0.727 20.203 0.528 0.527 12.706 0.278 0.262 4.405 0.069 0.196 3.884 0.039 0.247 7.058 0.061 -0.052 0.638 0.003 -0.076 2.677 0.006 -0.040 1.484 0.002 0.125 46.946 0.016 

relative classification error 

rate 
-0.713 19.450 0.509 0.427 8.315 0.182 0.405 10.522 0.164 0.168 2.843 0.028 0.313 11.312 0.098 0.050 0.594 0.003 0.031 0.443 0.001 0.038 1.288 0.001 -0.123 45.232 0.015 
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 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 

Suppl. continuous 

variables 
coord cos2  coord cos2  coord cos2  coord cos2  coord cos2  coord cos2  coord cos2  coord cos2  coord cos2  

detectability -0.296 0.088  0.336 0.113  -0.074 0.005  -0.402 0.162  -0.197 0.039  -0.357 0.127  -0.021 0.000  -0.036 0.001  0.026 0.001  

relative detectability -0.169 0.029  0.172 0.030  0.231 0.053  -0.545 0.297  -0.007 0.000  -0.193 0.037  0.163 0.027  -0.025 0.001  -0.031 0.001  

reporting probability 0.265 0.070  -0.037 0.001  -0.193 0.037  0.807 0.651  0.087 0.008  0.283 0.080  0.216 0.047  0.023 0.001  0.036 0.001  

Δ AUC ACTIVITY -0.062 0.004  0.398 0.159  0.010 0.000  0.145 0.021  -0.182 0.033  -0.351 0.123  -0.036 0.001  0.129 0.017  0.032 0.001  

Δ AUC DETAIL -0.007 0.000  0.043 0.002  -0.020 0.000  0.100 0.010  -0.117 0.014  -0.036 0.001  0.154 0.024  -0.094 0.009  -0.114 0.013  

Δ AUC VALSTAT -0.061 0.004  -0.059 0.003  0.072 0.005  0.133 0.018  0.039 0.002  -0.148 0.022  0.073 0.005  0.053 0.003  0.067 0.005  

Δ Sensitivity ACTIVITY 0.100 0.010  -0.065 0.004  -0.044 0.002  -0.009 0.000  -0.116 0.013  0.042 0.002  -0.179 0.032  0.051 0.003  0.175 0.031  

Δ Sensitivity DETAIL 0.051 0.003  -0.035 0.001  -0.007 0.000  0.016 0.000  -0.039 0.002  0.183 0.033  -0.042 0.002  0.007 0.000  -0.062 0.004  

Δ Sensitivity VALSTAT 0.083 0.007  -0.097 0.009  -0.069 0.005  0.066 0.004  0.070 0.005  0.054 0.003  -0.082 0.007  0.202 0.041  0.052 0.003  

Δ Specificity ACTIVITY -0.140 0.020  0.095 0.009  0.005 0.000  0.014 0.000  0.068 0.005  -0.079 0.006  0.194 0.038  -0.031 0.001  -0.153 0.023  

Δ Specificity DETAIL -0.069 0.005  0.048 0.002  -0.019 0.000  0.015 0.000  0.002 0.000  -0.204 0.042  0.071 0.005  -0.030 0.001  0.034 0.001  

Δ Specificity VALSTAT -0.119 0.014  0.065 0.004  0.047 0.002  -0.053 0.003  -0.052 0.003  -0.119 0.014  0.090 0.008  -0.157 0.025  -0.034 0.001  

Suppl. categories coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test coord cos2 v.test 

birds 0.476 0.223 3.224 -0.635 0.397 -4.699 0.504 0.250 4.424 -0.192 0.036 -2.109 0.236 0.055 2.779 0.194 0.037 3.240 0.013 0.000 0.302 0.011 0.000 0.366 -0.023 0.001 -1.393 

butterflies -0.102 0.006 -0.368 0.876 0.410 3.456 -0.826 0.365 -3.870 0.228 0.028 1.338 -0.360 0.069 -2.264 -0.250 0.033 -2.229 -0.402 0.086 -5.084 -0.030 0.000 -0.529 0.058 0.002 1.861 

dragonflies -1.586 0.633 -3.967 0.793 0.158 2.169 -0.395 0.039 -1.281 0.305 0.023 1.237 -0.232 0.014 -1.011 -0.273 0.019 -1.686 0.671 0.113 5.876 0.013 0.000 0.152 -0.018 0.000 -0.392 
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Figure J.1. Biplot of the first two dimensions of the PCA with active variables, individuals 

(species) and species profiles. 
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CHAPTER IV 

Appendix K: Exploratory data analysis 

Table K.1. List of considered species with their Red List Status in Flanders (LC = Least 

Concern, NT = Near Threatened, EN = Endangered, CR = Critically Endangered) (Devos et al., 

2016; Jooris et al., 2012; Maes et al., 2017, 2021), Conservation Interest (Habitats (HD) or 

Birds (BD) Directive, Flemish Priority Species (FPS), Habitat Specific Species (HSS) with 

Natura 2000 habitat types), species occurrence in the different landscape contexts (number of 

presences, spatially thinned per observation date at 50 metres and Intensity of the point process), 

r and sat values used in the Geyer interaction process of the Gibbs point process model, and the 

p values of the Diggle-Cressie-Loosmore-Ford (DCLF) goodness-of-fit test. For the DCLF-test, 

simulation envelopes were run based on the fitted models per landscape context. (NA = species 

were excluded, zero presences or models did not converge). 

Species 

English name 

Dutch name 

Red List 

status in 

Flanders 

Conservation 

Interest 

Landscape 

context 

n° 

pres 
Intensity r sat p.DCLF 

Birds  

Anthus trivialis 

Tree Pipit 

Boompieper 

NT HSS 2310 

open 907 4.70E-05 50 2 0.026 

closed 2683 6.54E-05 50 2 0.026 

anthropogenic 137 1.32E-05 50 1 0.103 

Caprimulgus 

europaeus 

European Nightjar 

Nachtzwaluw 

NT 
BD Annex I 

HSS 4030 

open 151 1.25E-05 50 2 0.026 

closed 462 1.59E-05 100 2 0.026 

anthropogenic 26 4.71E-06 100 2 0.026 

Lullula arborea 

Woodlark 

Boomleeuwerik 

NT 
BD Annex I 

HSS 2310, 4030 

open 492 2.95E-05 50 2 0.026 

closed 1213 3.24E-05 50 2 0.026 

anthropogenic 80 8.89E-06 250 1 0.564 

Oenanthe oenanthe 

Northern wheatear 

Tapuit 

CR HSS 2310 NA NA NA NA NA NA 

Saxicola rubicola 

European Stonechat 

Roodborsttapuit 

LC HSS 2310, 4030 

open 935 5.04E-05 50 2 0.026 

closed 1542 3.87E-05 50 2 0.026 

anthropogenic 130 1.41E-05 150 1 0.026 

Butterflies  

Callophrys rubi 

Green Hairstreak 

Groentje 

EN HSS 2310, 4030 

open 265 1.99E-05 100 2 0.026 

closed 321 1.13E-05 50 2 0.026 

anthropogenic 33 1.13E-05 450 0 0.026 

Hesperia comma 

Silver-spotted Skipper 

Kommavlinder 

EN 
FPS 

HSS 2310, 2330, 4030 

open 6 3.79E-06 250 1 0.051 

closed 85 5.44E-06 100 2 0.026 

anthropogenic 35 5.22E-06 450 1 0.103 

Hipparchia semele 

Grayling 

Heivlinder 

EN 
FPS 

HSS 2310, 2330, 4030 

open 302 1.98E-05 50 2 0.026 

closed 330 1.00E-05 100 2 0.026 

anthropogenic 485 6.15E-05 100 2 0.026 

Plebejus argus EN HSS 4030 open 621 4.34E-05 50 2 0.026 
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Species 

English name 

Dutch name 

Red List 

status in 

Flanders 

Conservation 

Interest 

Landscape 

context 

n° 

pres 
Intensity r sat p.DCLF 

Silver-studded Blue 

Heideblauwtje 
closed 483 1.70E-05 50 2 0.026 

anthropogenic 23 3.48E-06 50 2 0.026 

Pyrgus malvae 

Grizzled skipper 

Aardbeivlinder 

EN FPS 

open NA NA 

NA NA NA closed 44 1.04E-06 

anthropogenic NA NA 

Grasshoppers  

Chorthippus mollis 

Lesser Field 

Grasshopper 

Snortikker 

LC HSS 2310, 2330, 4030 

open 10 1.98E-05 350 2  

closed 9 1.23E-06 400 2 NA 

anth 3 4.11E-06 300 2  

Ephippiger diurnus 

Bush cricket 

Zadelsprinkhaan 

EN 
FPS 

HSS 2310, 4030 

open 52 1.87E-05 300 2  

closed 51 6.65E-06 350 1 NA 

anth 30 7.89E-05 150 1  

Gryllus campestris 

Field Cricket 

Veldkrekel 

EN HSS 2310, 2330 

open 118 7.94E-06 100 2 0.026 

closed 324 8.84E-06 100 2 0.026 

anth 135 1.66E-05 450 1 0.026 

Metrioptera 

brachyptera 

Bog bush cricket 

Heidesabelsprinkhaan 

LC FPS 

open 30 2.83E-06 100 2 0.026 

closed 27 1.19E-06 400 2 0.487 

anth 13 6.65E-06 150 1 0.026 

Myrmeleotettix 

maculatus 

Mottled grasshopper 

Knopsprietje 

LC HSS 2310, 2330 

open 68 4.39E-06 50 2 0.026 

closed 243 7.14E-06 100 2 0.026 

anth 82 8.88E-06 100 1 0.026 

Oedipoda caerulescens 

Blue Winged 

Grasshopper 

Blauwvleugelsprinkhaan 

LC HSS 2310, 4030 

open 112 1.49E-05 200 2 0.026 

closed 296 9.97E-06 50 2 0.026 

anth 189 1.99E-05 50 2 0.026 

Omocestus rufipes 

Woodland Grasshopper 

Zwart Wekkertje 

NT 
FPS 

HSS 2310 

open 59 8.34E-06 200 2 0.026 

closed 35 1.70E-06 100 2 0.333 

anth 18 7.24E-06 250 1 0.026 

Reptiles  

Coronella austriaca 

Smooth Snake 

Gladde Slang 

EN 
HD Annex IV 

HSS 2310, 4030 

open 32 6.46E-06 150 2 0.026 

closed 51 2.33E-06 50 2 0.051 

anth 0 0 NA NA NA 

Zootoca vivipara 

Common Lizard 

Levendbarende Hagedis 

LC HSS 4030 

open 18 1.61E-06 50 1 0.103 

closed 37 1.41E-06 50 1 0.205 

anth 17 2.23E-06 350 2 0.026 
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Figure K.1. Values of the model predictors in the three landscape contexts (open, closed and 

anthropogenic). Correlations between landscape context and each of the predictors were tested 

in an ANOVA test (results under predictor) and correlations between the values in each 

landscape context with a Wilcoxon rank test (results in graph area). (**** = p < 0.0001, *** = 

p < 0.001, ** = p < 0.01, * = p < 0.05). 
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Table K.2. Pearson correlations between the predictor variables per species (only the selected 

species in the final analysis) and landscape context. 

species open closed anth 

heathland size - vegetation structure 

Anthus trivialis -0.41 -0.22 -0.20 

Callophrys rubi -0.12 -0.20  

Caprimulgus europaeus -0.17 -0.22  

Gryllus campestris -0.46 -0.41  

Hipparchia semele -0.35 -0.21 -0.34 

Lullula arborea -0.37 -0.21 -0.37 

Myrmeleotettix maculatus -0.45 -0.19 -0.48 

Oedipoda caerulescens -0.06 -0.03 -0.46 

Plebejus argus -0.14 -0.30  

Saxicola rubicola -0.45 -0.27 -0.21 

heathland size - heathland heterogeneity 

Anthus trivialis 0.01 0.34 0.19 

Callophrys rubi 0.32 0.36  

Caprimulgus europaeus 0.08 0.31  

Gryllus campestris 0.14 0.04  

Hipparchia semele 0.43 0.34 0.39 

Lullula arborea 0.16 0.34 0.22 

Myrmeleotettix maculatus 0.28 0.36 0.35 

Oedipoda caerulescens 0.05 0.10 0.16 

Plebejus argus -0.01 0.06  

Saxicola rubicola -0.02 0.27 0.15 

vegetation structure - heathland heterogeneity 

Anthus trivialis 0.05 0.03 -0.16 

Callophrys rubi 0.03 0.12  

Caprimulgus europaeus 0.15 -0.04  

Gryllus campestris -0.17 0.07  

Hipparchia semele -0.26 -0.03 -0.25 

Lullula arborea 0.01 -0.01 -0.01 

Myrmeleotettix maculatus -0.07 0.02 -0.16 

Oedipoda caerulescens -0.05 0.14 -0.10 

Plebejus argus 0.27 0.22  

Saxicola rubicola 0.11 -0.01 -0.09 

heathland size - accessibility 

Anthus trivialis -0.08 -0.06 -0.03 

Callophrys rubi 0.08 -0.16  

Caprimulgus europaeus -0.21 -0.28  

Gryllus campestris -0.16 -0.32  

Hipparchia semele 0.20 -0.34 -0.69 

Lullula arborea 0.15 -0.13 -0.27 

Myrmeleotettix maculatus 0.02 -0.22 -0.59 

Oedipoda caerulescens -0.02 -0.03 -0.65 

Plebejus argus 0.09 -0.10  

Saxicola rubicola 0.10 -0.12 -0.19 

heathland size - search effort 

Anthus trivialis 0.00 -0.08 -0.15 

Caprimulgus europaeus 0.32 0.10  

Lullula arborea -0.12 -0.06 -0.21 

Saxicola rubicola -0.21 -0.20 -0.36 

Callophrys rubi -0.20 -0.08  

Hipparchia semele -0.09 0.04 -0.23 

Plebejus argus -0.44 -0.26  

Gryllus campestris -0.08 -0.31  

Myrmeleotettix maculatus 0.02 -0.03 0.01 

Oedipoda caerulescens -0.14 -0.10 -0.11 

species open closed anth 

vegetation structure - accessibility 

Anthus trivialis 0.18 0.17 0.20 

Callophrys rubi 0.05 0.21  

Caprimulgus europaeus 0.24 0.26  

Gryllus campestris 0.35 0.31  

Hipparchia semele -0.05 0.29 0.41 

Lullula arborea -0.10 0.25 0.29 

Myrmeleotettix maculatus 0.24 0.32 0.39 

Oedipoda caerulescens 0.22 0.20 0.48 

Plebejus argus -0.02 0.19  

Saxicola rubicola 0.16 0.15 0.30 

vegetation structure - search effort 

Anthus trivialis 0.05 0.16 -0.07 

Caprimulgus europaeus 0.07 0.20  

Lullula arborea 0.09 0.20 0.07 

Saxicola rubicola 0.12 0.29 0.08 

Callophrys rubi 0.13 0.05  

Hipparchia semele -0.19 -0.16 -0.06 

Plebejus argus 0.07 0.30  

Gryllus campestris 0.21 0.24  

Myrmeleotettix maculatus 0.10 0.17 -0.19 

Oedipoda caerulescens 0.14 0.21 -0.12 

heathland heterogeneity - accessibility 

Anthus trivialis -0.17 0.04 -0.16 

Callophrys rubi 0.02 0.07  

Caprimulgus europaeus 0.05 -0.17  

Gryllus campestris 0.02 0.03  

Hipparchia semele 0.02 -0.04 -0.30 

Lullula arborea -0.27 -0.01 0.18 

Myrmeleotettix maculatus -0.08 0.03 -0.25 

Oedipoda caerulescens 0.01 -0.07 -0.10 

Plebejus argus -0.10 0.03  

Saxicola rubicola -0.04 -0.03 -0.03 

heathland heterogeneity - search effort 

Anthus trivialis 0.01 -0.15 -0.32 

Caprimulgus europaeus -0.01 -0.18  

Lullula arborea -0.16 -0.14 0.13 

Saxicola rubicola -0.07 -0.18 0.06 

Callophrys rubi 0.02 -0.11  

Hipparchia semele 0.05 -0.04 -0.12 

Plebejus argus -0.04 0.10  

Gryllus campestris 0.05 0.21  

Myrmeleotettix maculatus 0.00 0.01 -0.02 

Oedipoda caerulescens -0.16 0.12 -0.15 

accessibility - search effort 

Anthus trivialis -0.01 0.14 0.01 

Caprimulgus europaeus 0.17 0.11  

Lullula arborea 0.03 0.13 0.18 

Saxicola rubicola 0.15 0.26 0.08 

Callophrys rubi 0.51 0.02  

Hipparchia semele 0.14 -0.13 0.07 

Plebejus argus 0.46 0.16  

Gryllus campestris 0.27 -0.01  

Myrmeleotettix maculatus 0.14 0.04 0.20 

Oedipoda caerulescens -0.06 -0.04 0.00 
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Figures K.2 to K.11. Inhomogeneous pair correlation functions ginhom(r) in each landscape 

context for the point processes of the selected model training sets per species. Upward 

deviations from the horizontal intercept y = 1 indicate clustering and downward deviations 

indicate inhibition. Values near zero cannot be interpreted (see page 229 in Baddeley et al., 

2015). 

 

Figure K.2  

 

Figure K.3   
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Figure K.4  

 

Figure K.5  

 

Figure K.6  
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Figure K.7  

 

Figure K.8  

 

Figure K.9  



 

207 

 

 

Figure K.10  

 

Figure K.11  
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Appendix L: Model performance per species 

Table L.7. Model evaluation results from spatial-block cross-validation (AUC = Area Under 

the receiver operating Curve, CBI = Continuous Boyce Index, SENS = sensitivity, NA = models 

based on subsets of the training data could not be fitted). 

 AUC SENS CBI AUC SENS CBI AUC SENS CBI 

SPECIES open closed anthropogenic 

ALL 0.76 ± 0.12 0.71 ± 0.18 0.61 ± 0.44 0.71 ± 0.1 0.68 ± 0.18 0.75 ± 0.30 0.81 ± 0.09 0.77 ± 0.14 0.74 ± 0.32 

BIRDS 0.82 ± 0.07 0.75 ± 0.13 0.75 ± 0.12 0.78 ± 0.06 0.73 ± 0.09 0.79 ± 0.17 0.83 ± 0.1 0.76 ± 0.17 0.81 ± 0.19 

ANTHUS  

TRIVIALIS 
0.83 ± 0.07 0.74 ± 0.09 0.80 ± 0.06 0.77 ± 0.03 0.7 ± 0.06 0.88 ± 0.06 0.84 ± 0.10 0.76 ± 0.20 0.87 ± 0.10 

CAPRIMULGUS 

EUROPAEUS 
0.79 ± 0.09 0.77 ± 0.15 0.73 ± 0.11 0.79 ± 0.06 0.74 ± 0.09 0.72 ± 0.30 NA NA NA 

LULLULA  

ARBOREA 
0.83 ± 0.07 0.81 ± 0.12 0.77 ± 0.12 0.77 ± 0.06 0.73 ± 0.11 0.77 ± 0.09 0.82 ± 0.10 0.76 ± 0.14 0.75 ± 0.25 

SAXICOLA 

RUBICOLA 
0.82 ± 0.03 0.67 ± 0.13 0.72 ± 0.18 0.80 ± 0.07 0.74 ± 0.09 0.78 ± 0.09 NA NA NA 

BUTTERFLIES 0.69 ± 0.11 0.69 ± 0.21 0.42 ± 0.57 0.64 ± 0.09 0.61 ± 0.25 0.67 ± 0.42 0.76 ± 0.06 0.78 ± 0.09 0.60 ± 0.46 

CALLOPHRYS  

RUBI 
0.74 ± 0.07 0.66 ± 0.20 0.69 ± 0.24 0.72 ± 0.08 0.72 ± 0.20 0.70 ± 0.28 NA NA NA 

HIPPARCHIA 

SEMELE 
0.71 ± 0.11 0.84 ± 0.14 0.05 ± 0.68 0.69 ± 0.05 0.59 ± 0.21 0.65 ± 0.41 0.76 ± 0.06 0.78 ± 0.09 0.60 ± 0.46 

PLEBEJUS  

ARGUS 
0.62 ± 0.11 0.59 ± 0.20 0.52 ± 0.54 0.56 ± 0.07 0.58 ± 0.30 0.68 ± 0.51 NA NA NA 

GRASSHOPPERS 0.72 ± 0.16 0.67 ± 0.22 0.60 ± 0.55 0.66 ± 0.1 0.65 ± 0.21 0.75 ± 0.33 NA NA NA 

GRYLLUS 

CAMPESTRIS 
0.60 ± 0.29 0.60 ± 0.36 0.03 ± 0.93 0.59 ± 0.03 0.54 ± 0.20 0.94 ± 0.11 NA NA NA 

MYRMELEOTETTIX 

MACULATUS 
0.80 ± 0.08 0.80 ± 0.17 0.75 ± 0.15 0.67 ± 0.13 0.70 ± 0.23 0.70 ± 0.25 NA NA NA 

OEDIPODA 

CAERULESCENS 
0.75 ± 0.06 0.64 ± 0.16 0.81 ± 0.16 0.69 ± 0.07 0.64 ± 0.20 0.68 ± 0.53 NA NA NA 
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Appendix M: The impact of vegetation structure and heathland heterogeneity 

on the relative habitat suitability per species 

For every species, we show the impact of vegetation structure and heathland heterogeneity on 

the relative habitat suitability of species in different landscape contexts and for different (classes 

of) heathland sizes.  

Figures M.1 to M.3 show the log-transformed predictions of the Gibbs point process models 

with Geyer saturation process, including two-way interactions between heathland size and 

vegetation structure/heathland heterogeneity. Heathland size is divided into three classes: (1) 

small patches (≤ 10 hectares), i.e. mostly small and isolated patches with an occasional 

heathland patch edge largely surrounded by different land cover, (2) intermediate patches/patch 

edges (10-30 hectares), i.e. mostly edges of large heathland patches with an occasional medium-

sized patch, and (3) large patches (> 30 hectares), i.e. core areas of large heathland patches. 

Figures M.4 to M.6 show the model coefficients, with dots and bars representing mean 

estimates of the trend coefficients and Johnson-Neyman intervals for 2-way interactions 

(calculated in the R package ‘interactions’ version 1.1.5). Heathland size ranges from 5 to 50 

hectares in steps of 5 hectares, with colours indicating the three classes: purple = small patches 

(≤ 10 hectares); yellow = intermediate patches/patch edges (10-30 hectares); green = large 

patches (> 30 hectares).
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Figure M.1. Model predictions for birds (Relative habitat suitability: blue = low, orange = high) 
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Figure M.2. Model predictions for butterflies (Relative habitat suitability: blue = low, orange 

= high) 
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Figure M.3. Model predictions for grasshoppers (Relative habitat suitability: blue = low, 

orange = high)  
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Figure M.4. Model coefficients for birds 

 

Figure M.5. Model coefficients for butterflies 

 

NA NA 

NA 
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Figure M.6. Model coefficients for grasshoppers 

  

NA 
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Appendix N: Recommendations for vegetation management per species 

Table N.1. Vegetation management recommendations per species to increase habitat 

suitability in heathlands of different sizes in different landscape contexts  (HH = heathland 

heterogeneity, VS = vegetation structure) 

LANDSCAPE CONTEXT: OPEN CLOSED ANTHROPOGENIC 

BIRDS 

Anthus trivialis 

Tree Pipit 

Boompieper  

High HH 

High HH 

Low VS in small 

patches 

High HH in small patches 

High VS in large patches 

Caprimulgus europaeus 

Nightjar 

Nachtzwaluw 

Low VS in small 

patches 

High HH in 

intermediate 

patches/patch edges 

High HH and high VS 

in large patches  

High HH in 

intermediate 

patches/patch 

edges and large 

patches 

NA 

Lullula arborea 

Woodlark 

Boomleeuwerik 

High HH 

High HH 

Low VS in small 

patches 

High VS in large 

patches 

High VS and high HH in 

large patches 

Saxicola rubicola 

European Stonechat 

Roodborsttapuit 

Low VS and high HH 

in small and 

intermediate 

patches/patch edges 

High HH in large 

patches 

Low VS and high 

HH in small 

patches 

High VS and high HH in 

large patches 

BUTTERFLIES 

Callophrys rubi 

Green Hairstreak 

Groentje 

Low VS in small 

patches 

High VS in large 

patches 

High VS in large 

patches 
NA 

Hipparchia semele 

Grayling 

Heivlinder 

High VS and HH in 

large patches 

High VS in small 

patches 
High HH in large patches 

Plebejus argus 

Silver-studded Blue 

Heideblauwtje 

Low VS in small 

patches 

High VS and HH in 

large patches 

Low VS and high 

HH in small 

patches 

NA 

GRASSHOPPERS 

Gryllus campestris 

Field cricket 

Veldkrekel 

High VS in small 

patches 

Low HH  

High HH NA 

Myrmeleotettix maculatus 

Mottled grasshopper 

Knopsprietje  

High HH in large 

patches 

High HH and high 

VS in 

intermediate 

patches/patch 

edges and large 

patches 

High HH and high VS in 

large patches 

Oedipoda caerulescens 

Blue Winged Grasshopper 

Blauwvleugelsprinkhaan 

High VS in large 

patches  

High VS in large 

patches  

High VS and HH, 

especially in large 

patches 
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CHAPTER VI 

Appendix O: Application potential in biodiversity conservation policy in 

Flanders. 

Table O.1. Species used in the case studies for illustrating the application potential of the 

research. The list includes 14 randomly selected Flemish priority species and 19 farmland 

species, arranged by their IUCN Red list status. The weights were used to generate biodiversity 

scores, i.e. by multiplying the predicted relative occurrence rate by the weighting factor and 

summing the result per 500 x 500 m grid in the study area (Flanders). The number of presences 

is the number of cleansed (removing bad coordinates, wrong observations and observations 

with a precision of more than 250 metres), spatially thinned and quality filtered (chapters II and 

III) opportunistic presence-only records retrieved from the waarnemingen.be database for the 

period 2018-2022. 

group Scientific name Dutch name 

IUCN Red 

List Status weight 

Number of 

presences 

14 FLEMISH PRIORITY SPECIES  

Amphibians Hyla arborea Boomkikker CR 80 220 

Butterflies Melitaea cinxia Veldparelmoervlinder CR 80 143 

Dragonflies Leucorrhinia pectoralis Gevlekte witsnuitlibel CR 80 122 

Reptiles Coronella austriaca Gladde Slang EN 50 164 

Amphibians Epidalea calamita Rugstreeppad VU 30 375 

Amphibians Rana arvalis Heikikker VU 30 241 

Amphibians Salamandra salamandra Vuursalamander VU 30 129 

Amphibians Triturus cristatus Kamsalamander VU 30 173 

Butterflies Cyaniris semiargus Klaverblauwtje VU 30 130 

Mammals Castor fiber Europese Bever VU 30 1541 

Mammals Meles meles Das VU 30 312 

Amphibians Pelophylax lessonae Poelkikker NT 20 471 

Breeding Birds Limosa limosa Grutto LC 1 886 

Butterflies Lasiommata megera Argusvlinder LC 1 350 

19 FARMLAND SPECIES  

Breeding Birds Circus pygargus Grauwe Kiekendief CR 80 191 

Breeding Birds Emberiza calandra Grauwe gors CR 80 211 

Breeding Birds Circus aeruginosus Bruine kiekendief EN 50 2984 

Breeding Birds Emberiza citrinella Geelgors EN 50 2406 

Breeding Birds Passer montanus Ringmus EN 50 620 

Breeding Birds Vanellus vanellus Kievit EN 50 7287 

Breeding Birds Alauda arvensis Veldleeuwerik VU 30 4324 

Breeding Birds Hirundo rustica Boerenzwaluw VU 30 7423 

Breeding Birds Perdix perdix Patrijs VU 30 3536 

Mammals Meles meles Das VU 30 312 

Breeding Birds Motacilla flava Gele kwikstaart NT 20 2897 

Mammals Lepus europaeus Haas NT 20 3665 

Mammals Microtus subterraneus 
Ondergrondse 

woelmuis 
NT 20 109 

Breeding Birds Athene noctua Steenuil LC 1 2119 

Breeding Birds Columba palumbus Houtduif LC 1 6932 

Breeding Birds Coturnix coturnix Kwartel LC 1 1553 

Breeding Birds Falco tinnunculus Torenvalk LC 1 
1070

7 

Breeding Birds Haematopus ostralegus Scholekster LC 1 4165 

Breeding Birds Tyto alba Kerkuil LC 1 482 
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