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Abstract

Natural language processing is the study of processing language data to perform
human language-related tasks. With the advance of machine learning models,
such as deep neural networks, natural language processing technologies have
been applied to many use cases, including document classification, sentiment
analysis, and information extraction. Deep neural networks perform a target
task by learning from data without human intervention for inference. However,
their power comes at the cost of large, labelled training data which require a
lot of human labour.

In this dissertation, we investigate and propose data-efficient methods
for training neural networks-based natural language processing models for
healthcare applications, where data and labels are scarce. Our four main
contributions demonstrate how data-efficient methods that maximise the utility
of labelled and unlabelled data and exploit knowledge can be used to train neural
networks-based natural language processing models in data- and label-scarce
settings.

Firstly, we present a data-efficient method that combines a data augmentation
technique and a semi-supervised learning approach to a setting where there is
a small labelled dataset and a relatively large unlabelled dataset. The data
augmentation method applies text editing operations to input texts, and the
semi-supervised learning method utilises a trained model’s predictions as pseudo-
labels. We evaluate our method on a custom dataset containing user complaints
about their sleep and analysed the effect of the proposed method.

Secondly, we focus on active learning methods, particularly pool-based active
learning, which is when there is a relatively large amount of unlabelled data and
a small amount of labelled data at the beginning, and the fixed number of data
points are iteratively labelled and added to the labelled set. We first analyse
the limitations of existing active learning methods and proposed a label-efficient
training method that mitigates them. The proposed method combines the
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strength of self-supervised learning, data augmentation, and active learning to
fully utilise both unlabelled and labelled data. We evaluate our method on our
custom dataset and a benchmark dataset and find that the proposed method
outperforms the existing state-of-the-art methods.

Thirdly, we study how to add numeracy skills into a language model by using
synthetic data for a temporal information extraction task. We propose a
rule-based synthetic data generation method that can increase the size of
the training data and a novel multi-task model architecture that can extract
temporal expressions and normalise them into standard formats. We evaluate
our methods on a custom dataset containing free text sleep diaries. We find
that multi-task learning that includes an auxiliary task, which is related to the
target task, can contribute to the target performance improvement when using
synthetic data for training.

Lastly, we investigate the opportunities of applying the data-efficient methods
to a clinical NLP application and discussed the important problem of bias. We
first study the underlying bias in the public benchmark dataset and analyse the
effect of bias on the model’s behaviour. We find that the benchmark-trained
model performs differently across demographic groups because the benchmark
dataset is imbalanced. We then propose novel approaches to mitigate this
problem. We evaluate our methods on the clinical benchmark dataset and show
that the proposed method can achieve better fairness scores resulting in equal
performances across different demographic groups.

The main conclusion of this dissertation is that the proposed data-efficient
methods are the most effective in low-resource settings when there is a small-
sized training data set or a small subset of the training dataset is labelled. The
contributions of this dissertation are a starting point for future research into
developing deep neural networks-based natural language processing systems for
low-resource application domains.



Beknopte samenvatting

Natuurlijke taalverwerking is de studie van het verwerken van taalgegevens
om menselijke taalgerelateerde taken uit te voeren. Met de opmars van
machine learning-modellen, zoals diepe neurale netwerken, zijn natuurlijke
taalverwerkingstechnologieën toegepast op veel gebruiksscenario’s, waaronder
documentclassificatie, sentimentanalyse en informatie-extractie. Diepe neurale
netwerken voeren een doeltaak uit door te leren van gegevens zonder menselijke
tussenkomst voor gevolgtrekking. Hun kracht gaat echter ten koste van grote,
gelabelde trainingsgegevens die veel menselijke arbeid vergen.

In dit proefschrift onderzoeken en stellen we data-efficiënte methoden
voor voor het trainen van op neurale netwerken gebaseerde natuurlijke
taalverwerkingsmodellen voor toepassingen in de gezondheidszorg, waar data
en labels schaars zijn. Onze vier belangrijkste bijdragen laten zien hoe
data-efficiënte methoden die het nut van gelabelde en niet-gelabelde data
maximaliseren en kennis exploiteren, kunnen worden gebruikt om op neurale
netwerken gebaseerde natuurlijke taalverwerkingsmodellen te trainen in data-
en label- schaarse omgevingen.

Ten eerste presenteren we een data-efficiënte methode die een techniek voor
data-augmentatie en een semi-gesuperviseerde leerbenadering combineert in een
omgeving met een kleine gelabelde dataset en een relatief grote ongelabelde
dataset. De methode voor gegevensvergroting past tekstbewerkingsbewerkingen
toe op invoerteksten en de methode voor semi-gesuperviseerd leren gebruikt de
voorspellingen van een getraind model als pseudo-labels. We evalueren onze
methode op een aangepaste dataset met klachten van gebruikers over hun slaap
en analyseerden het effect van de voorgestelde methode.

Ten tweede richten we ons op actieve leermethoden, met name op pool-gebaseerd
actief leren, dat is wanneer er een relatief grote hoeveelheid niet-gelabelde
gegevens en een kleine hoeveelheid gelabelde gegevens aan het begin zijn,
en het vaste aantal gegevenspunten iteratief worden gelabeld en toegevoegd
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aan de gelabelde set. We analyseren eerst de beperkingen van bestaande
actieve leermethoden en stelden een label-efficiënte trainingsmethode voor die
ze verzacht. De voorgestelde methode combineert de kracht van zelfgestuurd
leren, gegevensvergroting en actief leren om zowel ongelabelde als gelabelde
gegevens volledig te benutten. We evalueren onze methode op onze aangepaste
dataset en een benchmark-dataset en stellen vast dat de voorgestelde methode
beter presteert dan de bestaande state-of-the-art methoden.

Ten derde bestuderen we hoe rekenvaardigheden kunnen worden toegevoegd
aan een taalmodel door synthetische gegevens te gebruiken voor een tijdelijke
informatie-extractietaak. We stellen een op regels gebaseerde methode voor het
genereren van synthetische gegevens voor die de omvang van de trainingsgegevens
kan vergroten en een nieuwe multi-task modelarchitectuur die tijdelijke
uitdrukkingen kan extraheren en normaliseren in standaardformaten. We
evalueren onze methoden op een aangepaste dataset met slaapdagboeken met
vrije tekst. We vinden dat multi-task leren met een hulptaak, die gerelateerd is
aan de doeltaak, kan bijdragen aan de prestatieverbetering van het doel bij het
gebruik van synthetische data voor training.

Ten slotte onderzoeken we de mogelijkheden om de data-efficiënte methoden
toe te passen op een klinische NLP-toepassing en bespraken we het belangrijke
probleem van vooringenomenheid. We bestuderen eerst de onderliggende bias
in de openbare benchmarkdataset en analyseren het effect van bias op het
gedrag van het model. We constateren dat het benchmark-getrainde model
verschillend presteert tussen demografische groepen, omdat de benchmark-
dataset onevenwichtig is. Vervolgens stellen we nieuwe benaderingen voor om
dit probleem te verminderen. We evalueren onze methoden op basis van de
klinische benchmarkgegevensset en laten zien dat de voorgestelde aanpak betere
eerlijkheidsscores kan behalen in termen van gelijke prestaties in verschillende
demografische groepen.

De belangrijkste conclusie van dit proefschrift is dat de voorgestelde data-
efficiënte methoden het meest effectief zijn in omgevingen met weinig middelen,
wanneer er een kleine trainingsdataset is of een kleine subset van de
trainingsdataset is gelabeld. De bijdragen in dit proefschrift zijn een startpunt
voor toekomstig onderzoek naar de ontwikkeling van op diepe neurale netwerken
gebaseerde natuurlijke taalverwerkingssystemen voor toepassingsdomeinen met
weinig middelen.
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Chapter 1

Introduction

1.1 Motivation

Language is a medium of communication that allows humans to share
information and interact with each other. Language is difficult because it
is ambiguous, contextual, and highly nuanced, and it changes constantly across
space and time. Therefore, understanding and using language are some of
the most fundamental abilities of human intelligence. Because of language’s
complexity, building a computer system with language understanding skills is
one of the most challenging tasks in the field of artificial intelligence (AI). The
progress of natural language processing (NLP), the study of processing language
data, often in written formats (text), to perform human language-related tasks,
has been falling behind other fields of AI that outperform humans in game
playing (Silver et al., 2016) or image recognition tasks (He et al., 2016).

Over the past few years, the performance of NLP systems has exponentially
improved and achieved groundbreaking results in multiple NLP benchmark
tasks (Vaswani et al., 2017; Devlin et al., 2019). This recent progress in NLP
has been powered by deep neural networks (DNN) (Krizhevsky et al., 2012;
Goodfellow et al., 2016) that can learn how to extract meaningful features for
the target tasks from the labelled training data, which is called supervised
learning. Moreover, self-supervised learning, which learns from unlabelled by
using inherent learning signals1, enables the use of a large, unlabelled corpus
for pre-training neural networks. Further, many researchers have demonstrated

1For example, raw text can be used to train a system that can predict the next word given
in the previous words because it does not require additional annotation.

1
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that pre-trained neural network models, such as word embeddings (Mikolov
et al., 2013; Pennington et al., 2014a; Bojanowski et al., 2017) and language
models (Peters et al., 2018; Howard and Ruder, 2018), can be easily fine-tuned
to various down-stream applications. This two-step training (i.e., first pre-
training and then fine-tuning) is a type of transfer learning (Pan and Yang,
2009) and is becoming the standard workflow in NLP. The success of transfer
learning has continued and has resulted in the era of large pre-trained language
models with hundreds of millions of parameters, such as bidirectional encoder
representations from Transformers (BERT) (Devlin et al., 2019), GPT (Radford
et al., 2018), and T5 (Raffel et al., 2020). These neural NLP models benefit
various downstream NLP tasks (Rogers et al., 2020), such as language translation
(Bahdanau et al., 2015) and text generation (Brown et al., 2020).

In this dissertation, we investigate how NLP technologies can be applied to a
healthcare domain. Specifically, we focus on a personal healthcare domain that
aims to empower people to live healthy lifestyles and encourages people to engage
actively in the healthcare process. Our goal is to develop digital healthcare
tools that can make healthcare services more accessible and personalised. By
using digital healthcare tools, users can receive healthcare services in out-of-
hospital settings. Moreover, users can actively engage in healthcare services
by logging their statuses and monitoring their progress. Allowing people to
describe their experiences in their own words is especially critical because people
can directly report their issues and are not limited to multiple choice responses.
The use of natural language also gives healthcare providers insight into user-
specific circumstances that are difficult to capture with sensor devices. NLP
technologies enable the analysis of user-generated texts and will play a key role
in understanding healthcare recipients’ experiences.

There are some challenges in applying NLP technologies, especially neural
NLP models, to the personal healthcare application domain. First, existing
pre-trained language models have been trained with a general corpus, obtained
from books (Zhu et al., 2015), online encyclopaedias (i.e., English Wikipedia),
or websites, all of which differ from data obtained within personal healthcare
use cases. A language model needs to be pre-trained with a corpus from a target
domain (Gururangan et al., 2020), especially for use cases with domain-specific
texts, such as texts from biomedical domain (Lee et al., 2020b). Unfortunately,
it is difficult to obtain a large corpus from each target application domain.
Especially since the introduction of the General Data Protection Regulation
(GDPR), collecting a large amount of data from personal healthcare users could
be challenging or might not be possible because of privacy issues.

Another option is to fine-tune large pre-trained language models rather than pre-
training from scratch. The remaining issue, however, is that large pre-trained
language models still require labelled, task-specific datasets for fine-tuning.
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Moreover, it is well known that the performance of neural models depends on
the size of the training datasets (Wang et al., 2020; Qi and Luo, 2020). Further,
fine-tuning a large pre-trained model on a downstream task with small datasets
is unstable and prone to degenerating performance (Phang et al., 2018; Lee
et al., 2020a). In other words, a large training dataset is still required for
a target downstream task to fully exploit the power of pre-trained language
models, even after by fine-tuning (Adadi, 2021).

This dependency on large training datasets creates two challenges when applying
neural NLP models in a personal healthcare domain. The first challenge is data
scarcity (when there is a lack of training data). Data scarcity can be caused
by the inherent problem of real-world data that can be not equally distributed.
For example, imbalanced data (when there are many more data points for one
label category than others) is a common feature of real-world datasets (He
and Garcia, 2009). In an imbalanced dataset, data with rare labels are scarce.
Moreover, the issue of data scarcity is inevitable when collecting rare event
data. For example, in the clinical domain, there are rare diseases that affect a
small percentage of the population. Compiling large datasets for rare diseases
is practically impossible.

The second challenge is label scarcity (when there is a limited amount of labelled
data). Data labelling is a time-consuming and unscalable process that requires
significant human resources (Chui et al., 2018). Crowdsourcing could be an
alternative to obtaining a large amount of labelled data in a short time by
hiring multiple annotators. However, the limitation of crowdsourcing is the
noise associated with labels from multiple ordinary annotators (Rodrigues and
Pereira, 2018). Further, because of privacy concerns, such a practice could be
limited to the use of crowdsourcing platforms for data labelling. Especially
in fields that require domain-specific knowledge, such as the clinical domain,
crowdsourcing might not be possible and data labelling could be very expensive.
Moreover, in real-world scenarios, the labelling scheme may be changed after
deployment. For example, when developing a classifier (e.g., a disease classifier),
new labels might need to be added after development because of the emergence
of new categories (e.g., COVID-19). Therefore, scalable data labelling is critical
when building applications in a real-world setting.

Data-efficient methods promise to mitigate these gaps by maximising the
utility of training data, using efficient learning strategies, or exploiting external
resources. Data-efficient methods have been a fundamental element of many
machine learning development pipelines. For example, data augmentation has
been widely used in the image recognition domain (Shorten and Khoshgoftaar,
2019). Another label-efficient learning strategy, such as semi-supervised learning,
which utilises unlabelled data in a supervised learning setting, has been widely
studied in the machine learning field (Zhu, 2005). Active learning (Settles,
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2009), which is an iterative learning framework that selects the most informative
data points to be manually labelled, is also a particular type of label-efficient
learning strategy. Another line of work to mitigate data scarcity or label scarcity
is to utilise external resources or knowledge. For example, several knowledge
bases, which are structured data systems, exist that can be used to improve
supervised learning with limited target data, especially when domain knowledge
is important. Knowledge can also be injected into machine learning models via
additional loss terms or by generating synthetic data. Specifically, synthetic
data generation is a promising data-efficient method that can mitigate data
scarcity issues (von Rueden et al., 2021).

In this dissertation, we investigate how to fine-tune large pre-trained language
models for various downstream tasks to achieve better performance when data
or labels are scarce in target application domains. To this end, we develop novel
data-efficient methods that allow models to generalise better with less training
data or labelled data for a variety of use cases. We demonstrate that models
employing the proposed methods outperform both models without data-efficient
methods as well as existing data-efficient methods. We expect many application
areas, especially in domains where data and labels are scarce, can benefit from
these data-efficient methods.

In the remainder of this chapter, we describe the research context, the research
objectives, and research questions. Further, we provide the thesis outline and
summarise the main contributions of this work.

1.2 Research Context

In this dissertation, we study three use cases that originated from the business
context of Philips Research. Specifically, we consider a personal healthcare
domain that aim to empower people to live healthy lifestyles and encourage
people to engage actively in the healthcare process. Within these use cases,
NLP technologies play a key role by enabling better interfaces where people
can provide inputs (e.g., health-related issues) in their own words.

Also, the research in this dissertation was pursued in the context of the HEART
project: "HEalth related Activity Recognition system based on IoT" (EU Horizon
2020 MSCA No. 766139). The HEART project aims to build a system for
remotely monitoring human activities and extracting health-related information
from data, including user-reported health measures (e.g., weights) and free-form
inputs (e.g., free texts) in an out-of-hospital setting. This dissertation includes
the research works on processing the user-generated free-text data to extract not
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only objective but subjective and contextual information that can be difficult
to obtain from sensor data.

1.3 Research Questions

This thesis studies data-efficient methods for fine-tuning neural NLP models,
such as large pre-trained language models when one has small-sized training
datasets for target tasks or when the datasets are not fully labelled, while
minimally impacting performances.

We argue that data-efficient methods support supervised learning for fine-tuning
large pre-trained language models in resource-scarce settings. Since the main
focus of this thesis is the data-hungry issue of current deep neural models,
resources in this context refer to data used for fine-tuning. More specifically,
we consider the following resource-scarce settings:

1. Data-scarcity: When there is not enough training data from a target
application domain.

2. Label-scarcity: When there is a large amount of training data from a
target application domain but these data are not yet labelled.

Overall, we pose three research questions that are addressed by the approaches
proposed in this thesis:

RQ1. How can we fine-tune a pre-trained language model when only a small-
sized training set for the target task is available?

RQ2. How can we fine-tune a pre-trained language model when only a small
subset of the target dataset is labelled?

RQ3. Can we exploit other resources (e.g., knowledge, databases, et cetera)
during fine-tuning to improve the performance of a pre-trained language model?

1.4 Outline of Thesis

Figure 1.1 illustrates an overview of the present thesis. Throughout the thesis, we
consider three novel NLP use cases in a personal healthcare domain. Specifically,
we focus on potential applications for a sleep coaching program, from assessment
to coaching and monitoring. Additionally, we consider one clinical application



6 INTRODUCTION

Figure 1.1: The overview of the thesis.

(i.e., medical code prediction) and use a benchmark dataset from a clinical
domain to validate the usability of the proposed data-efficient methods. We use
BERT (Devlin et al., 2019), which is a well-known pre-trained language model,
as a baseline model architecture in this dissertation, except in the last chapter.
In the last chapter we focus on a clinical use case, and convolutional neural
networks (CNNs) with pre-trained word embeddings (word2vec) are used.

In the following sections, we outline the chapters by describing the context, the
research questions, and our contribution to each use case.

Ch 3. Assessment: Sleep Issue Classification

In Chapter 3, we introduce a use case that involves understanding participants’
complaints based on free text. For this use case, we aim to build a machine
learning model that can classify user-generated free texts into pre-defined sleep
issue categories. Since a machine learning model learns from data, it requires
a dataset before the model can be developed. We will likely not have enough
training data for model building at the beginning of a development process.
Considering the development cycle of a machine learning model, we can obtain
a new batch of data after the initial model deployment. Then we can use the
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new data to train an improved model. Since the new data do not contain labels,
however, manual labelling is needed.

To this end, we study two questions: The first is how to train a large neural
network model with a small-sized training dataset. The second is how to utilise
unlabelled data without manually labelling them. The first question is linked to
the RQ1, and the second question is linked to the RQ2 mentioned in Ch 1.3.

To address these questions, we propose a method which combines data
augmentation and semi-supervised learning. The proposed data augmentation
technique increases the size of the labelled data set. The proposed semi-
supervised learning is an iterative learning framework that annotates unlabelled
data based on the trained model’s predictions. We study the effect of data
augmentation and semi-supervised learning while varying the size of the initial
training set. We find that data augmentation improves performance significantly,
especially when the initial training set is small. Experimental results also indicate
that semi-supervised learning can provide further performance improvements.
Another interesting finding is that data augmentation is beneficial to the minority
label classes when the dataset is imbalanced.

Ch 4. Coaching: Aspect-Based Sentiment Analysis

In Chapter 4, we introduce a use case of understanding each participant’s
experience with the coaching program by analysing their reviews. We aim to
build an aspect-based sentiment analysis system that can analyse these reviews
to understand what people liked and disliked. For example, a system can detect
the expressed sentiment values (i.e., positive, neutral, negative) when a review
text contains multiple opinions associated with different aspects (e.g., "My
sleep quality has been improved (positive) but I did not like decaffeinated coffee
(negative)"). In this use case, we consider a real-world scenario when we obtain
a series of new data batches, but the labelling budget is limited and the data
sets are imbalanced in terms of label classes. Therefore, we aim to develop an
active learning framework with the goal of iteratively annotating unlabelled
data by selecting the most informative data points. We also aim to train a
model to perform equally well for both frequent and rare label classes.

In other words, there are two goals: the first is to use the labelling budget
efficiently to improve performance, which is linked to the RQ2. The other
goal is to deal with an imbalanced dataset that causes performance differences
between frequent and rare label classes, which is linked to the RQ1.

To this end, we propose a label-efficient training scheme. The proposed method
utilises unlabelled data by employing self-supervised pre-training. This method
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also increases the size of samples with rare labels by using a novel label
augmentation technique. Lastly, the proposed active learning algorithm selects
data points by using two different uncertainty scores to handle performance
differences between frequent and rare classes. We experimentally prove the
effectiveness of the proposed method using a custom dataset and a benchmark
dataset. The results suggest that the proposed method can achieve competitive
performance with only half or even a third of labelled samples in label-scarce
settings. Moreover, the proposed method can improve model generalisation by
increasing performance with the same amount of labelled data compared to
other models trained without the proposed methods.

Ch 5. Monitoring: Temporal Information Extraction

In Chapter 5, we introduce a use case for monitoring sleep activity using a free-
text sleep diary tool. This use case focuses on extracting temporal information
related to sleep events from free text. A traditional method solves temporal
information extraction tasks with a two-stage approach: temporal expression
detection, which is a task to extract mentioned temporal expressions (e.g., "10
in the evening") from text, and temporal expression normalisation, which is a
task to translate the extracted temporal expressions into standard formats (e.g.,
22:00). To exploit the pre-trained language model, we reformulate the temporal
information extraction task as a question and answer task (Given document:
sleep diary text, Q: when did the user go to bed last night? A: "at midnight"
(00:00)). One challenge is that pre-trained language models lack numeracy
skills that apply numerical concepts for extracting temporal information from
text. Collecting more data and training a model with them is one of the most
intuitive approaches. Another approach could be utilising human knowledge,
such as common structures (i.e., "ten to twelve" (11:50), "ten thirty" (10:30)),
common-sense (i.e., "ten in the evening" (22:00)), or constraints (i.e., the value
of hour h ∈ [0, 24], the value of minute m ∈ [0, 60)) of temporal expressions.

In other words, we study the following questions: the first is how to train a large
language model to learn numeracy skills when only a small amount of training
data is available. This question is linked to the RQ1. The other question is
how to inject human knowledge of temporal expressions into a machine learning
model. This question is linked to the RQ3.

To answer these questions, we formulate the following hypothesis: we can
first use human knowledge of typical temporal expressions to program regular
expressions for generating synthetic data. The generated synthetic data can then
be used to inject numeracy skills into a language model for extracting temporal
information from text. To this end, we propose a synthetic data generation
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algorithm to augment the training data. We also propose a multi-task learning
approach by introducing an auxiliary task, which is related to the target task, to
utilise additional training signals. Experimental results indicate that synthetic
data can improve the performance of temporal information extraction tasks that
require numeracy skills. We also find that training a model with an auxiliary
task can improve its performance on the target task when synthetic data are
used for training.

Ch 6. Medical Code Prediction: Multi-Label Classification

In the final study of this dissertation, we validate the usability of the previously
proposed methods for a clinical use case of medical code prediction. In Chapter
6, we investigate the underlying bias in a clinical benchmark dataset. Since the
benchmark dataset contains patient data, we focus on the patient demographics
to find demographic imbalances and study their effect on a benchmark-trained
model’s performance. Specifically, we aim to address the issue of an unfair
model which performs differently across different demographic groups, which is
caused by a demographically imbalanced training dataset.

In this investigation, we study how to address the performance differences caused
by imbalanced data, which is linked to the RQ1. We also explore whether we
can utilise additional resources, such as knowledge of data, label information,
or an external clinical database, to further improve the model’s performance,
which is linked to the RQ3.

In our first data analysis study (Ch 6.1), we analyse the benchmark dataset to
identify an existing gap and find that the benchmark dataset is imbalanced in
terms of patient demographics. This data imbalance creates performance
differences across different demographic groups. In the following model
development study (Ch 6.2), we propose two approaches to address these
performance differences. The first method is an ensemble approach that aims
to build multiple group-specific models. We propose a novel distribution-aware
weighted loss function that utilises knowledge of label distribution for group-
specific weighting. The second approach formulates the medical coding task,
which is multi-label classification, as binary classification. We propose a novel
model architecture that utilises label information as an input. We also utilise
an external clinical database for data augmentation. Experimental results
demonstrate that the ensemble approach with the proposed loss function can
improve global performance and the proposed binary classification approach
can help a model perform equally well across different demographic groups.
However, experimental results indicate that the proposed data augmentation
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using the clinical database harms the performance of a binary classification
model.

1.5 List of Publications

The work in this dissertation primarily relates to the following peer-reviewed
journal articles and conference proceedings (in order of publication) :

Journal Articles

1. Shim, H., Lowet, D., Luca, S.,& Vanrumste, B. (2021). LETS: A Label-
Efficient Training Scheme for Aspect-Based Sentiment Analysis by Using
a Pre-Trained Language Model. IEEE Access.

Conference Proceedings

1. Shim, H., Lowet, D., Luca, S., & Vanrumste, B. (2022). An exploratory
data analysis: the performance differences of a medical code prediction
system on different demographic groups. In Proceedings of the NAACL
2022 Clinical NLP Workshop.

2. Shim, H., Lowet, D., Luca, S., & Vanrumste, B. (2021). Synthetic Data
Generation and Multi-Task Learning for Extracting Temporal Information
from Health-Related Narrative Text. In Proceedings of the EMNLP 2021
W-NUT Workshop: The Seventh Workshop on Noisy User-generated Text.

3. Shim, H., Luca, S., Lowet, D., & Vanrumste, B. (2020). Data
augmentation and semi-supervised learning for deep neural networks-
based text classifier. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing.

The following peer-reviewed conference proceedings and journal article are
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1. Shim, H. (2022). Data-Efficient Algorithms and Neural Natural Language
Processing: Applications in the Healthcare Domain. In Proceedings of the
IJCAI-ECAI. Doctoral Consortium.
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over the course of the PhD as a result of supervising master students:
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Shim, H. (2020). Intelligent Analyses on Storytelling for Impact
Measurement. In Proceedings of the 2021 EMNLP Workshop W-NUT:
The Sixth Workshop on Noisy User-generated Text.





Chapter 2

Fundamentals

In this chapter, we provide background knowledge to set the stage for the
following chapters. We start by providing a brief introduction to artificial
neural networks, as all models in the thesis can be considered neural networks.
Afterwards, we introduce word embeddings that are used to represent words
as high-dimensional vectors. Lastly, we describe the progress in the modern
neural architectures with the emphasis on Transformer-based models, including
BERT which is the backbone architecture of the proposed models in the thesis
(Chapters 3, 4, 5).

2.1 Artificial Neural Networks

Artificial neural networks (ANN) are a subset of machine learning models that
are inspired by the biological neural networks in animal brains, mimicking the
way that biological neurons signal to one another. ANN consist of an input layer,
one or more hidden layers, and an output layer. As illustrated in Figure 2.1,
each neuron, takes a number of inputs x = {x1, ..., xN} with corresponding
weights w = {w1, ..., wN} and a bias b. The output of a single neuron y is a
weighted sum of the inputs, followed by an activation function:

y = f(
N∑

i=1
xiwi + b) (2.1)

13
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Figure 2.1: Illustration of a neuron that takes a number of inputs x =
{x1, ..., xN} with corresponding weights w = {w1, ..., wN}, and produce y
as an output. A bias term b is omitted in the illustration.

where f(·) is an activation function. A classical option for an activation function
is the logistic sigmoid function defined as:

σ(x) = 1
1 + e−x

(2.2)

which squashes the input values from [−∞,∞] into the interval [0, 1] that is
often interpreted as output probability p(y = 1|x) for a binary classification
problem. For a multi-label classification problem, the softmax function is used
as an activation function in the final classification layer. Softmax function takes
a vector x = {x1, ..., xK}, as defined as:

softmax(x)i = exi∑K
j=1 exj

(2.3)

where all the output values of the function sum to 1, thus is often considered as
a probability distribution over multiple classes.

Figure 2.2 illustrates the example of ANN with an input layer, two hidden
layers, and an output layer, also called feed-forward neural networks (FFNN)
or multi-layer perceptrons (MLP). If there is more than one hidden layer, the
depth of networks is regarded as "deep".

2.2 Word Representations

Word representation, also called word embedding, is proposed to allow computers
to process language data effectively. Unlike image or audio signals which
naturally capture the information of data and can be represented as vectors,
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Figure 2.2: An example of feed-forward neural networks, consisting of two
hidden layers, each with four nodes. Bias terms and activation functions are
not shown.

words have been regarded as discrete atomic symbols. Therefore, how to
represent a word plays a critical role in NLP.

2.2.1 Sparse Representations

A classical approach is to create a one-hot vector whose size is |V |, where
V = {w1, w2, ..., wn} is a pre-defined dictionary containing n words. The
drawback of this approach is that these one-hot vectors capture no semantic
meaning. Also, since the size of the vocabulary increases linearly as the number
of words is growing, increasing vocabulary can cause a curse of dimensionality.
Therefore the utility of these one-hot vectors is limited.

2.2.2 Dense Representations

To overcome the limitation of one-hot representation, Bengio et al. (2003)
proposed a neural language model to produce distributed representations for
words, which are called word embeddings. Following works on creating word
embeddings by training neural networks with a large corpus show that the trained
word embeddings can be used for various downstream NLP tasks (Collobert
and Weston, 2008; Mikolov et al., 2013; Pennington et al., 2014b). However, the
limitation of these pre-trained word embeddings is that they produce the same
representations for the same words that are used to deliver different meanings.
In other words, these pre-trained embeddings fail at capturing the context of
the text.
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2.2.3 Contextualised Representations

Contextualised word embeddings are proposed to mitigate the limitation of
dense word embeddings by producing different representations for the same
words that are used in different contexts. For example, a word bank can be used
to deliver different meanings, such as either "the land alongside or sloping down
to a river or lake" or "a financial establishment that uses money deposited by
customers for investment." Early approaches use bidirectional Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) to learn contextualised
word vectors by combining sequential representations that are conditioned on
forward and backward directions (Melamud et al., 2016; Peters et al., 2017;
McCann et al., 2017; Peters et al., 2018). Following works (Radford et al., 2018;
Devlin et al., 2019) use Transformer architecture (Vaswani et al., 2017) that is
built from attention mechanism (Bahdanau et al., 2015; Luong et al., 2015) to
improve the long-term dependency and parallelise training process.

2.3 Modern Neural Architectures

In this section, we will briefly the recent progress modern neural network
architectures that play critical roles in NLP.

2.3.1 Sequential models

Text data consists of a sequence of words or characters. Several neural network
models are particularly designed for sequential modelling, such as recurrent
neural networks (RNN)(Rumelhart et al., 1985). The main idea of RNN is
to use a loop (recurrent connection) that allows information to be passed to
the next time step for sequential modelling. However, one problem of RNN is
that it has limited long-term dependency because of gradient vanishing. The
gradient vanishing issue means that the training signals become too small as the
length of the sequence becomes longer and a model fails at learning long-term
relationships in the data.

To address this, LSTM (Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Unit (GRU) (Cho et al., 2014b) are proposed. The key idea of
LSTM and GRU is to use multiple gates (e.g., forget gate and input gate) to
decide how much information should be kept or removed while passed to the
next step. Thanks to this gating mechanism, LSTM variants are widely used
for sequential modelling problems (Greff et al., 2016).
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Figure 2.3: Illustration of a sequence-to-sequence architecture consisting of an
encoder and a decoder. <bos> and <eos> refer special tokens for beginning of
sentence and end of sentence, respectively.

2.3.2 Sequence-to-Sequence Models

Another important model architecture in the NLP domain is sequence-to-
sequence (seq2seq) architecture. Seq2seq architecture is proposed for a task
where a sequence of input is mapped to a sequence of output, such as machine
translation task (Sutskever et al., 2014). Figure 2.3 illustrates an example
of seq2seq architecture. Basic seq2seq architecture consists of two separate
sequential models (e.g., RNN or LSTM), called an encoder and a decoder,
respectively. An encoder takes the entire input sequence and compresses it into
a fixed length vector, which is called a context vector. Then a decoder takes
the context vector and produces a sequence of outputs in an auto-regressive
way. The drawback of this approach is that the input information is encoded
into one vector requiring a large compression when the input sequence is long.
Therefore, a decoder is required to re-cover a lot of information from a single
vector.

2.3.3 Attention Mechanism

Attention mechanism (Bahdanau et al., 2015) is proposed to address the problem
of a single context vector that captures the entire input sequence in a sequence-
to-sequence setting. A key concept is to produce a different context vector
for each output element by using weights, which are often called attention
scores. For example, an attention layer, which is parameterised by a simple
feed-forward network, produces weights and the produced weights are used to
create a context vector, which is a weighted average of a sequence of input, per
each output element.
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Formally, a seq2seq model consisting of an encoder and a decoder network
takes a input sequence x = [x1, x2, ..., xn], and produces a output sequence
y = [y1, y2, ..., ym]. The encoder network (e.g., RNN) produce a sequence of
hidden state h = [h1, h2, ..., hn]. The decoder network (e.g., RNN) produce
a hidden state st = f(st−1, yt−1, ct) at time step t ∈ {1, ..., m}, where the
context vector ct is a sum of hidden states of the input sequence hi, weighted
by alignment scores at,i:

ct =
n∑

i=1
at,ihi (2.4)

where alignment scores at,i are computed by an attention layer. The attention
layer calculates how well current output yt and inputs xi are aligned by
computing attention scores at,i for pairs (yt, xi):

at,i = align(yt, xi) (2.5)

= escore(st−1,hi)∑n
j=1(escore(st−1,hj))

(2.6)

There are many variants of scoring functions (Luong et al., 2015; Vaswani et al.,
2017). In the original attention paper by Bahdanau et al. (2015), the scoring
function is parameterised as a feed-forward neural network and defined as:

score(st−1, hi) = vT
a tanh(Wa[st−1; hi]) (2.7)

where va and Wa are trainable weight matrices which are jointly trained with
the sequence-to-sequence model during training.

Attention mechanism becomes very successful not only in machine translation
but also in computer vision field (Xu et al., 2015).

2.3.4 Transformer

Transformer (Vaswani et al., 2017) is also a seq2se2 model that follows an
encoder-decoder structure. The main difference between Transformer and other
seq2seq models is that Transformer removes recurrent connections to rely entirely
on an attention mechanism to capture global dependencies between input and
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Figure 2.4: The transformer architecture. The left half shows the encoder part
and the right half shows the decoder part. More details can be found in the
original paper (Devlin et al., 2019)

output. This eliminates the sequential nature and allows parallelization of the
training procedure, which results in an improvement in batching.

Figure 2.4 illustrates an overview of the transformer architecture. The encoder
of the Transformer consists of N = 6 identical layers of which each layer has two
sub-layers including multi-head self-attention mechanism and a position-wise
fully connected feed-forward network. There is a residual connection (He et al.,
2016) around each of the two sub-layers, followed by layer normalisation (Ba
et al., 2016). The decoder of the Transformer also consists of N = 6 identical
layers of which each layer contains three sub-layers.

The encoder’s input vector xi ∈ Rd is used to create three vectors, a query
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vector qi ∈ Rdk , a key vector ki ∈ Rdk , and a value vector vi ∈ Rdv . These
vectors are created by multiplying the input vectors by three trainable matrices
(i.e., Wq ∈ Rd×dq , Wk ∈ Rd×dk , and Wv ∈ Rd×dv ) that we trained during the
training process. For computation efficiency, matrices of queries Q, keys K, and
values V are used to compute the attention function. Transformer uses scaled
dot-product attention, which is defined as:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.8)

This attention function is deployed multiple times by using h different heads,
which is called multi-head attention. Each head has a learned linear projection
layer that takes queries, keys, and values and maps another feature space. Then
Attention function in each head is applied to these projected queries, keys and
values. The final output of multi-head attention is the concatenation of the
attention output of each head. The benefit of multi-head attention is that it
encourages the model to attend to information at different positions.

Similar to other seq2seq models, Transformers also utilises the learned
embeddings to translate a token into a vector representation. However, attention-
based architecture lacks the sequential information of the input since it eliminates
the recurrent connections. To mitigate this, Transformer uses positional
encoding to indicate the position of an entity in an input sequence by using sine
and cosine functions of different frequencies. Then these positional embeddings
are added into word embeddings to inject information about the position of
each token in the sequence.

2.3.5 BERT

BERT is built from an encoder part of Transformer to create bi-directional
representations. BERT can be easily adapted to downstream tasks achieving
state-of-the-art results in various benchmarks (Devlin et al., 2019). Because of
its ability to be fine-tuned to a wide range of downstream tasks, BERT became
a model of choice in the past few years (Rogers et al., 2020).

The strength of BERT comes from two novel pre-training tasks that encourage
a model to learn how to produce deep contextualised representations. Figure 2.5
illustrates the two pre-training tasks of BERT. One pre-training task is masked
language modelling (MLM) which asks a system to predict randomly masked
input tokens. MLM forces a system to focus on information within the sentence
by utilising information from surrounding words. The other pre-training task
is next sentence prediction (NSP) which asks a system to predict whether two
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(a) Masked language modelling task.

(b) Next sentence prediction task.

Figure 2.5: Illustrations of pre-training tasks of BERT. [CLS] and [SEP] are special
tokens used for classification and separation, respectively. Final classification layers,
which are parameterised as single-layer feedforward neural networks, are omitted in
the images.

input sentences are adjacent to each other or not. NSP encourages a system to
learn coherency by capturing the relation between sentences.

The input and output formulation of BERT is as follows: each input word is
tokenized into sub-word tokens by using Wordpiece tokeniser (Wu et al., 2016).
A special token ([CLS]) is inserted at the beginning of each input sequence.
When creating sequence pairs for NSP, two sequences are combined with a
special token ([SEP]) in between. Then three embedding layers are employed
to create token embeddings, segmentation embeddings, and position embedding,
respectively. The final embeddings are the sum of these three embeddings.

For fine-tuning, a fully connected layer is added on top of the final encoder layer.
Typically, the output of the final encoder layer corresponding to a [CLS] token
is used for classification. Therefore, the final representation of [CLS] token is
fed into a final classification layer. Figure 2.6 summarises different fine-tuning
tasks in this dissertation. For multi-label classification, sigmoid functions are
used as activation functions in the final classification layer with multiple neurons
(Ch. 3). For sentence-pair classification and multi-class classification, softmax
function is used as an activation function in the final classification layer (Ch. 4,
Ch. 5). For a binary classification approach, a softmax function is used for the
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(a) Multi-label classification (Ch. 3). (b) Sentence-pair classification (Ch. 4).

(c) Multi-class classification (Ch. 5). (d) Binary classification (Ch. 6).

Figure 2.6: Illustrations of different fine-tuning tasks in this dissertation.

final classification layer with two neurons (i.e., True or False) (Ch. 6)1.

1Please note that the CNN model is used in the final chapter (Ch. 6) because clinical
documents are typically very long and the computational complexity increases quadratically
as the length of the input sentence increases when using BERT.



Chapter 3

Assessment: Sleep Issue
Classification

This chapter was previously published as:

Shim, H., Luca, S., Lowet, D., & Vanrumste, B. (2020, March). Data
augmentation and semi-supervised learning for deep neural networks-based
text classifier. In Proceedings of the 35th Annual ACM Symposium on Applied
Computing, pp. 1119-1126.

In this chapter, we introduce a use case of sleep issue assessment and study
how to train a neural networks model to extract mentioned sleep issues and
parse them into a set of pre-defined issue categories. Specifically, we aim to
train the model in a low-resource setting when a small-sized labelled set is
given as an initial training set and a large-sized unlabelled set is additionally
given as an additional training set. For this, we study how to exploit both
labelled data and unlabelled data without an additional labelling budget by
using data-efficient methods. Moreover, we investigate when and how data-
efficient methods are beneficial in terms of performance improvement and how
they affect the performance of the model.

For this study, we collected a custom dataset that contains free-text data about
sleep issues for experiments and empirically evaluated different data-efficient
methods (i.e., data augmentation and semi-supervised learning) by varying the
size of the initial training set. We show that each data-efficient method can
improve the performance of the model. Finally, we propose the best model,

23
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which is a combination of data augmentation and semi-supervised learning.
Performance analyses show that increasing the size of samples with minority
classes is critical for performance improvement.

This chapter studies the following research questions:

RQ1. How can we fine-tune a pre-trained language model when only a
small-sized training set for the target task is available?

RQ2. How can we fine-tune a pre-trained language model when only a
small subset of the target dataset is labelled?

3.1 Introduction

User feedback contains rich information about the users and is essential for user-
driven development. Many products are providing in-app survey and collecting
feedbacks from the users to identify their needs for the better quality of service
and support. Especially, open-ended questions are good for understanding
user-specific problems. Unlike a closed-ended question that provides pre-defined
options limiting the users’ answer, the open-ended questions allow the users to
answer it in free-text format such that they can answer based on their situation
and feeling (Dohrenwend, 1965). The answers to these open-ended questions
can be used to obtain detailed information on the users.

One of the biggest challenges with analysing free-text is how to automate the
process. Manually analysing free-text is labour-intensive and not suitable as
the amount of user feedback is increasing. In this case, developing a free-text
analysis tool with the help of recent advances of deep neural networks could be
a solution. However, there are technical challenges in applying the deep neural
networks to the real-world application: one is labelling data for training the
model. Data labelling is a time-consuming and tedious task and it requires a lot
of human and financial resources (Chui et al., 2018). Moreover, since the labels
are prone to be added or deleted as a new batch of user feedback is obtained,
the data labelling process is expected to be repeated frequently throughout
product development. Minimised manual labelling could mitigate these issues.

In this paper, we focus on the topic of sleep. The goal is to understand user-
specific situations and problems via free-text to provide personalised coaching
service to users who want to optimise their nights of sleep. As the first step, we
collected experimental data containing pairs of a free-text sentence and a set of
sleep issues via a web-based survey (Section 3.3). To automate analysing these
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Figure 3.1: Overview of the proposed approach.

free-text data, we aim to build a neural networks-based text classifier with the
limited number of labelled data. In this paper, we propose a method which
is a combination of data augmentation and semi-supervised learning as shown
in Figure 3.1 (Section 3.4). We evaluate our method and show the proposed
method achieves similar performance while reducing the amount of labelled
data (Section 3.5). Also, we analyse the error of the model and investigate the
effects of the proposed method (Section 3.6).

3.2 Related Work

Neural Language Model for NLP Tasks

One of the breakthroughs in neural networks based natural language processing
(NLP) is attention mechanism (Bahdanau et al., 2015; Luong et al., 2015).
The attention mechanism is firstly proposed to solve long term dependency
problems of sequential models (Hochreiter and Schmidhuber, 1997; Cho et al.,
2014a) that use a single context vector compressing every input from previous
time steps. Attention mechanism allows the models to take hidden states from
several time steps as inputs and calculate the degree of importance regarding
the current time step’s input. After Vaswani et al. (2017) proposed Transformer
architecture with sorely attention mechanisms, Transformer architecture has
been widely used for language models (Radford et al., 2018; Devlin et al., 2019)
to capture complex linguistic patterns. These pre-trained language models
can be easily fine-tuned on various downstream NLP tasks (Yang et al., 2019;
Wu and Hu, 2018; Liu et al., 2019). However, it is widely accepted that the
performance of the neural networks-based model is highly dependent on the
size and the quality of training data.
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Data Augmentation for Language Data

Data augmentation is a technique that can increase the size of a data. Many
researchers have been working on data augmentation in various fields, including
vision (Krizhevsky et al., 2012) and speech (Ragni et al., 2014). Compared
to these fields, data augmentation for language is less studied and there is no
standard method yet. Some researchers proposed data augmentation methods for
language data, including synonym replacement by using a thesaurus (Zhang and
Wallace, 2017), similar word replacement by using a pre-trained word embedding
(Wang and Yang, 2015), contextual word replacement by using a pre-trained
language model (Kobayashi, 2018), and sentence rephrase by back-translation
(Sennrich et al., 2016). However, these techniques are computationally expensive
compared to their performance gain. Because of this reason, simple text
editing operations are commonly used in practice. Recent research empirically
shows that simple text editing operations could contribute substantially to
improvements in various text classification tasks (Wei and Zou, 2019). We will
explain this simple text editing method in Section 3.4.2

Semi-Supervised Learning

Semi-supervised learning focuses on leveraging both labelled and unlabelled
data to build a better classifier. Pseudo-labelling, also known as self-training, is
a type of semi-supervised learning methods which is used to add more labels
with iterative training. In spite of its simplicity, using these pseudo-labels can
improve classifier’s performance, especially when there are little labelled training
data (Lee, 2013). However, since the classifier uses its predictions to teach itself,
pseudo-labelling might reinforce the initial model’s error (Zhu, 2005).

3.3 Data

For experiments, free-text data was collected via a web-based survey.
Participants was asked to fill in questionnaires in free-text sentences and select
sentences representing to their answers. The free-text responses to the open-
ended questions will be used as input for the classification model, while the
selected sentences will be used as ground truth labels to train and validate the
model. In the following subsections, we explain the data collection protocol and
provide initial data analysis result.
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Table 3.1: Example of question and answer. Red coloured text shows a spelling
error.

Question What is going on with your sleep?
Answer I mainly have tow problems. The first is that it’s hard for me

to stay asleep for more than about an hour without waking up.
The other problem is I sometimes have trouble either going to
sleep or getting back to sleep once I wake up.

3.3.1 Participants

We recruited American adults for the survey by using Amazon’s Mechanical
Turk (MTurk) platform. Before participating in the survey, participants were
informed of the background, purpose, and legal basis of the survey and their
rights. When participants signed up for participating in the study, they received
the link to the web page hosting the survey. Additional inclusion criteria were
applicable:

Inclusion criteria for subject selection

• They are 18 years or older

• They have an MTurk-approval rate of 97% or higher (this means that at
least 97% of the prior tasks they completed on MTurk were of acceptable
quality)

• They are proficient in English

• They are willing and able to provide informed consent

3.3.2 Survey Questions

Participants described issues related to their sleep with at least one complete
sentence. Beforehand, the participants were provided with a guide to imagine
that they are sitting at the doctor’s office because they are having some sleep
issues. Table 3.1 illustrates an example of the question and a user’s answer. As
we can see, the answer contains spelling errors. After describing sleep-related
issues, participants were asked to select at most 3 sentences that capture the
meaning of their answers from Table 3.2. Labels of the selected sentences are
used as ground truth labels in experiments.
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Table 3.2: Options for selecting matched sentences.

Label Sentence
troubleFallingAsleep I lie in bed awake have trouble falling asleep
troubleStyaingAsleep I have been waking up frequently
wakeUpTooEarly I am waking up too early (before I want/have

to)
staysUpLate I am staying up (too) late
sleepsInLater I am sleeping in (too) late
problemWakingUp I have trouble waking up
SnoringBothersMe I am bothered by my snoring
SnoringBothersOthers Others are bothered by my snoring
SnoringStoppedBreathing I stop breathing during the night
otherIssue I have another concern
goodSleep I have no sleep concern

3.3.3 Data Analysis

In total 16,096 sentences were collected. We split data into train and test set:
the train set consists of 14,363 samples and the test set consists of 1,733 samples.
Figure 3.2 illustrates the label distribution of train set. It is observed that
the data distribution is highly skewed: it has imbalances between labels and
between single- and multiple-labelled data.

3.4 Method

3.4.1 Classification Model

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019) is used as a baseline text classifier. We use a pre-trained BERT model
and fine-tune on our data to detect multiple sleep issues from the given free-text
input. As it is illustrated in Figure 3.3, we add a dense layer on the top of
the pre-trained BERT model and the final hidden vector of the classification
token [CLS] is fed into this dense layer. To perform multi-label classification,
the sigmoid function is used for an activation function and binary cross-entropy
is used as a loss function. For more details on tokenization and BERT model,
please refer the original paper (Devlin et al., 2019).
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Figure 3.2: Label distribution of the train set. Blue graphs represent when
the sample is single-labelled and orange graphs represents when the sample is
multi-labelled.

Figure 3.3: Overview of the BERT model for multi-label classification.
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Table 3.3: Examples of text editing operations.

Operation Text
Original I snore a lot.
Synonym replacement I snore a lot entirely.
Random noise injection I snoret a lot.
Random swap snore I a lot.
Random deletion I snore a lot.

3.4.2 Data Augmentation

We use Easy Data Augmentation (EDA) technique (Wei and Zou, 2019) which
consists of four different text editing operations:

• Synonym replacement: N words are randomly selected from the
sentence and replaced with one of its synonyms chosen at random.

• Random noise injection: N words are randomly selected from the
sentence and a single character of each word is replaced with a random
alphabetical character.

• Random swap: we randomly choose two words in the sentence and swap
their positions and repeat N times.

• Random deletion: N words from the sentence are randomly chosen and
removed from the sentence.

The value of N is decided based on the length of each sentence. We set a
percentage p = 0.1 and calculated p× len(sentence), where the number words
in the sentence is used as a length of the sentence. Rounded up value of
p× len(sentence) is used as the value of N .

During data augmentation, we select sample sentences consisting of more than
5 words to avoid too short sentences. Four operations are applied separately to
each sentence. For synonym replacement, we only select a word that contains
more than two characters to avoid selecting too short words. Also, unlike the
original paper (Wei and Zou, 2019), we insert random noise rather than a
synonym. This can be seen as introducing misspelling to make the model robust
to a spelling error, which is common in user-generated free-text. Table 3.3
illustrates examples of text editing operations.



EXPERIMENTS AND RESULTS 31

3.4.3 Pseudo-Labelling

We use pseudo-labelling (Zhu, 2005) as a semi-supervised learning method.
During pseudo-labelling procedure, a classifier is trained on the initial labelled
data and then the trained model is used to do classify unlabelled data. The
predicted labels with a high confidence score, which are called pseudo-labels,
are then added to the new training set. For selecting pseudo-labels, we set a
threshold value of 0.6. Then the classifier is re-trained with the new training
set consisting of the initial labelled and the pseudo-labelled data. This process
is repeated until it reaches a certain termination condition. In this paper, we
set the termination condition based on the number of iterations and the size
of the pseudo-labelled data. Until the number of iterations reaches the limit,
which is set as 5, we check the size of the pseudo-labelled data. If the size
of the pseudo-labelled data is not bigger than the pseudo-labelled data from
the previous step, the pseudo-labelling process is terminated. Algorithm 1
illustrates the pseudo-labelling procedure.

Algorithm 1: Pseudo-labelling procedure
Data: Training set Dt, labelled set Dl, unlabelled set Du

Result: New training set D̂t, trained model Mi

1 Dt ← Dl

2 i = 0
3 termination condition ← False
4 while termination condition == False do
5 Mi ← train(Dt)
6 predictions ← inference(Mi, Du)
7 Dp ← thresholding(predictions)
8 D̂t ← Dt + Dp

9 termination condition ← check condition(Dp, i)
10 if termination condition == False then
11 Dt ← D̂t

12 i+ = 1
13 end
14 end

3.5 Experiments and Results

To validate our method, 4 experiments were conducted: Firstly, we check the
baseline model’s performance without data augmentation and pseudo-labelling.
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Secondly, we apply data augmentation and train the model with augmented
data. Thirdly, we apply pseudo-labelling and iteratively train the model. Lastly,
we train the initial model with augmented data and iteratively train the model
with pseudo-labels. The purpose of these experiments is to evaluate how the
proposed method can contribute to performance improvement.

Evaluation Metric

In our experiment, we use f1 score for each label as an evaluation metric, which
is defined as follows:

Precision = tp

tp + fp

Recall = tp

tp + fn

F1 = 2× precision× recall

precision + recall

(3.1)

where tp, fp, and fn represent true positive, false positive, and false negative of
each label, respectively.

Additionally, we use marco-, micro-averaged f1 scores (Sorower, 2010). Macro-
averaged f1 is per label averaged and does not take label imbalance into
account. Micro-averaged f1 is calculated by counting the total true positives,
false negatives, and false positives so that it would be more affected by the
performance of the classes which has more examples.

Settings

All experiments were performed on the Windows 10 operating system. The
detailed specification of hardware and software is summarized in Table 3.4. We
used PyTorch version of BERT (Huggingface). The smallest model, whose size of
the final hidden vector of classification token is 512, was used for the experiments
with pre-trained model weights. Softmax function in the final output layer was
changed to sigmoid function to perform multi-label classification. We did not
change other hyperparameter settings except the number of training epochs:
we trained the model on training datasets for 10 epochs.
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Table 3.4: Detailed implementation specification.

Item Specification
CPU Intel®Xeon®W-2123 CPU @ 3.60 GHz
GPU NVIDIA GeForce GTX 1080 ti, 11 GB memory
Graphic driver NVIDIA graphic driver version 416.34
CUDA Version 10.0
OS Windows 10, 64-bit
Python Version 3.6.6
Pytorch Version 1.0.1

3.5.1 Baseline Model

We trained the BERT with the entire training data. Table 3.5 shows the result.
It is observed that the trained model achieved varying performances over labels:
it achieves relatively high performance on some labels (e.g., troubleFallingAsleep,
troubleFallingAsleep, and goodSleep) that occurred more in train set than other
labels (e.g.,otherIssue and snoringBothersMe) where the model achieves low
performances. This result implies that the trained model tends to performs
well on some labels with more training data compared to other labels with
less training data. We call these labels with relatively few training samples as
minority labels. This results in a large difference between macro- and micro-
averaged performances. In our case, the macro-averaged f1 score is suitable
for evaluating the model’s performance. Because micro-averaged performance
might mislead interpretation that the trained model works well even though it
misclassifies minority labels.

We further investigate how the size of the training set affects the model’s
performance. We trained model with the following training set fractions (%):
{10, 30, 50, 70, 90, 100} whose sizes (k) are: {1.4, 4.3, 7.2, 10.0, 12.9, 14.3}.
In Figure 3.4, the red dashed line shows the performance of the model based
on the size of the training set. Interestingly, the model achieves nearly 90% of
performance upper limit - that can be achieved when around 14,300 samples are
used - with only using around 4,300 samples. Also, we can see that the size of
the training set does not have a significant impact on the model’s performance
after around 7,200. This shows that after some number of data, the performance
tends to be saturated. Details of the training set size and its performance are
described in the following Section 3.6.2.
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Table 3.5: Classification results when using entire training data.

Label Precision Recall F1
troubleFallingAsleep 0.79 0.84 0.82
troubleStayingAsleep 0.78 0.79 0.79
wakeUpTooEarly 0.74 0.68 0.71
staysUpLate 0.74 0.65 0.69
problemWakingUp 0.75 0.74 0.75
sleepsInLater 0.64 0.57 0.60
snoringBothersOthers 0.82 0.65 0.73
snoringBothersMe 0.67 0.38 0.49
snoringStoppedBreathing 0.78 0.56 0.65
goodSleep 0.97 0.94 0.96
otherIssue 0.42 0.25 0.31
Macro-averaged 0.74 0.64 0.68
Micro-averaged 0.79 0.75 0.77

Figure 3.4: Performances based on various dataset sizes. X-axis represents the
size data used for training. Y-axis represents macro-averaged f1 score.
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3.5.2 Data Augmentation

We investigated the effect of data augmentation while varying the size of the
training data. In Figure 3.4, the green line shows the performance of the
model with data augmentation. From Figure 3.4, it can be seen that the data
augmentation provides the largest performance increase when the training data
is the smallest: it is observed that macro-f1 score is increased from 39.13% to
59.7% when only using 1,400 samples. However, the amount of performance
improvement decreases as the training size increases. This suggests that the
best scenario to apply data augmentation is when the only small size of data
is available for training. Details of additional training data made by data
augmentation are given in the following Section 3.6.2.

3.5.3 Pseudo-Labelling

We iteratively trained a model with a subset of training data as a labelled
data and the remaining as an unlabelled data by applying pseudo-labelling.
We investigate how the size of the labelled training data could affect the final
model’s performance. In Figure 3.4, the orange line shows the performance of the
model trained with pseudo-labelling. Similar to the data augmentation result,
the performance improvement tends to decrease as the size of labelled data
increases. The largest improvement is observed when around 4,300 samples are
given as labelled data: the model use 10,000 of unlablled data with pseudo-labels
achieves a macro-f1 score of 64.8% while the model trained without pseudo-
labels achieves 58.9%. One noticeable thing is that when only around 1,400
samples are given as a labelled data, there is almost no performance increase
even after iterative training with 12,900 unlabelled samples with pseuo-labels:
it only increases from 39.1% to 41.1%. We will discuss this in the following
Section 3.6.3.

3.5.4 Data Augmentation + Pseudo-Labelling

We apply data augmentation to the initially given labelled data and iteratively
train the model by using unlabelled data with pseudo-labels. As it can be
seen from the Table 3.6, the baseline model, without data augmentation and
pseudo-labelling, achieves macro-averaged f1 of 39.1% when around 1,400 of
labelled data are given for training. If we train the model with 1,400 of labelled
data and 11,900 of unlabelled data with pseudo-labels, it slightly improves the
performance to 41.2%. Compared to this, if data augmentation is applied to the
1,400 of labelled data and the model is iteratively add more training data with
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Table 3.6: Details of models’ training data sizes and compared performances.
Comparison between a baseline model (BASE), PL (a model with pseudo-
labelling), DA (model with data augmentation), and DA +PL (a model with
data augmentation and pseudo-labelling)

Model Labelled Augmented Unlabelled Macro-f1
BASE 1,436 0 0 0.39
PL 1,436 0 12,927 0.41
DA 1,436 5,607 0 0.60
DA + PL 1,436 5,607 12,927 0.63

pseudo-labels, it achieves macro-averaged f1 score of 62.7%. However, it can be
interpreted that this improvement is mainly derived from data augmentation,
because the model trained with 1,400 of labelled data and additional augmented
data without pseudo-labels already achieves macro-averaged f1 score of 59.7%.
In other words, data augmentation can contribute to performance improvement
significantly when there is a little amount of labelled data. On top of that,
pseudo-labelling can provide additional performance increase by using unlabelled
data.

3.6 Discussion

3.6.1 Misclassification Analysis

To analyse the misclassification, firstly we plot a confusion matrix based on
predictions made by the baseline model from Section 3.5.1. Since our case
is multi-label classification, we select samples whose ground truth label set
contains only single labels. We added otherMisclassification label, which means
that the trained model predicted more than one labels. As it is shown in
Figure 3.5, misclassification happens more often in between similar labels: the
trained model often misclassifies snoringBothersMe as snoringBothersOthers
and sometimes fails to distinguish problemWakingUp and sleepsInLater. We
speculate that this is because samples with these labels are too close to be
distinguished from each other. This suggests avoiding pre-defining too similar
labels for classification.
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Figure 3.5: Normalised confusion matrix of the trained model’s predictions.
A row represents target label, whereas a column represents predicted label.
The values of the diagonal elements represent the degree of correctly predicted
classes.

3.6.2 Data Augmentation Result Analysis

We investigate the effects of the size of the training set and data augmentation
on the model’s performance. Table 3.7 shows the size of each fraction with and
without data augmentation and performance with each dataset. To analyse
the effect of data augmentation, two comparisons are given: model trained
with augmented data when (1) data augmentation is only applied to training
samples of minority labels or (2) data augmentation is applied to entire data.
Minority labels mean the labels with relatively few training samples, including
snoringBothersMe, snoringBothersOthers, snoringStoppedBreathing, otherIssue,
sleepsInLater, and problemWakingUp. In Table 3.7, min and max represent a
minimum and a maximum number of training samples per label, respectively.
For example, in 10% of data, the smallest label set (snoringBothersMe) consists
of 29 samples and the largest label set (troubleFallingAsleep) consists of 399
samples. From the Table 3.7, we can see that even when data augmentation is
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Table 3.7: Size of training set and data augmentation result and trained model’s
performance.

Percent of dataset Min Max Total Macro-f1
10% 29 399 1436 0.39
30% 98 1,221 4309 0.59
50% 167 2,044 7,182 0.65
70% 219 2,829 10,054 0.66
90% 297 3,623 12,927 0.66
100% 317 4,073 14,363 0.68
Data augmentation on data of minority labels
10% + data augmentation 133 486 2,555 0.56
30% + data augmentation 460 1,376 7,170 0.60
50% + data augmentation 774 2,126 11,385 0.64
70% + data augmentation 1,005 2,750 15,326 0.66
90% + data augmentation 1,331 3,371 18,970 0.65
100% + data augmentation 1,551 5,260 26,206 0.68
Data augmentation on entire data
10% + data augmentation 133 1,946 7,043 0.60
30% + data augmentation 458 5,913 20,809 0.65
50% + data augmentation 776 9,708 34,059 0.66
70% + data augmentation 1,006 13248 47,024 0.66
90% + data augmentation 1,335 16749 59,595 0.68
100% + data augmentation 1,557 20,283 71,377 0.69

applied to only data of minority labels, the model’s performance is similar to
when data augmentation is applied to entire data which means that there are
more than two times many training samples. This implies that what plays a
key role in data augmentation is the number of training samples of minority
labels, not the total size of the training set.

3.6.3 Pseudo-Labelling Result Analysis

In previous Section 3.5.3, we showed that the model trained with 1,400 labelled
data and 12,900 unlabelled data with pseudo-labels achieves the almost same
performance of the model trained without pseudo-labels. We hypothesise that
this is because the initial model trained with 1,400 samples with ground truth is
not robust enough to get sufficient pseudo-labels. To validate this, we investigate
the number of pseudo-labels obtained by using the initial model. As it is shown
in Figure 3.6, there is almost no pseudo-labelled data of minority labels. This
means that no additional samples of minority labels will be added to the new
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Figure 3.6: The number of pseudo-labelled data obtained by using the initial
model trained with 1,400 labelled data.

training set for the next iteration. This could enhance the data imbalance and
result in poor performance at the end of iterative training. This suggests that
the initial model’s performance, especially for minority labels, is critical in the
pseudo-labelling method.

Another observation from analysing pseudo-labelling result is that the
termination condition of the size of pseudo-labelled data is not strict enough: as
shown in Table 3.8, during the iterative training the size of pseudo-labelled data
is increasing, but with negligible margin after the first iteration. Therefore, the
iteration was repeated until it met the termination condition of the iteration
number, which is set as 5 times in this paper. In future work, adding a margin
for the termination condition of the size of pseudo-labelled data is foreseen to
avoid unnecessary iterations.
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Table 3.8: The number of pseudo-labels and increase over iterative training.

Iteration Pseudo-labels Increase
1 10,059 10,059
2 11,705 1,646
3 12,139 434
4 12,344 205
5 12,451 107

Table 3.9: Details of each model’s training set, approximated training time, and
performance. Comparison between a baseline model (BASE), PL (a model with
pseudo-labelling), DA (model with data augmentation), and DA with PL (a
model with data augmentation and pseudo-labelling).

Model #. train data Time Macro-f1
BASE with 100% of data 14,363 45m 0.68
DA on 100% of data 71,377 3h30m 0.69
BASE with 10% of data 1,436 5m 0.39
DA on 10% of data 7,043 20m 0.60
PL with 10% of data ≤ 14,363 ≤ 45m 0.41
DA on 10% of data + PL ≤ 19,970 ≤ 20m + 45m 0.63

3.6.4 Data Augmentation and Pseudo-Labelling Efficiency
Analysis

To evaluate the efficiency of the proposed method, we investigate the
computation power required to train each model. Table 3.9 summarises the
required training time for each model and its training data. For pseudo-labelling,
the values of training set and training time are for a single iteration and the
value of the performance is the final model’s performance. It is observed that
data augmentation on 100% of data does not contribute to performance increase
significantly when considering its increase of training time. Unlikely, data
augmentation on 10% of data provides a relatively high performance boost
with only around 15 minutes of training time increase. For pseudo-labelling, it
seems not efficient compared to data augmentation, because it requires multiple
training sessions. As it is described in Section 3.6.3, considering the number of
newly added pseudo-labels sharply decreases after the first iteration, the best
scenario is to train the model with augmented data and conduct pseudo-labelling
only 1-2 times.
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3.7 Conclusion

In this paper, we propose a method which is a combination of data augmentation
and semi-supervised learning to reduce manual data labelling process for
developing a deep neural networks-based text classification model. To
validate our method, experiments on how each method could contribute to
the performance improvement with various settings were conducted. We
experimentally showed that applying data augmentation can improve the model’s
performance, especially when there is little training data. Also, the result shows
that the size of minority labels is critical to the model’s performance when
the training data is imbalanced. Furthermore, using unlabelled data with
pseudo-labels can provide additional performance improvement. However, for
the pseudo-labelling, the training time increases as the training sessions are
iterated. These results suggest two possible scenarios: Firstly, develop an
initial model with augmented data when there is little training data. Secondly,
apply pseudo-labelling when there is additional data which is not labelled yet
and iterate the process only 1-2 times. We expect this method can boost the
development process by reducing manual data labelling.





Chapter 4

Coaching: Aspect-Based
Sentiment Analysis

This chapter was previously published as:

Shim, H., Lowet, D., Luca, S.,& Vanrumste, B. (2021). LETS: A Label-
Efficient Training Scheme for Aspect-Based Sentiment Analysis by Using a
Pre-Trained Language Model. IEEE Access, 9, pp. 115563-115578.

In this chapter, we introduce a use case for analysing user reviews of a behaviour
change coaching programme. There are two goals: one is to understand fine-
grained user experience (i.e., sentiment polarities towards multiple pre-defined
aspects). The other is to build a scalable data labelling algorithm so that we
can train a machine learning model with a limited labelling budget. Since a
scalable data labelling algorithm is also beneficial when the labelling scheme
is updated (i.e., adding or deleting labels) after the training, we expect that
an active learning framework can address the low-resource issue by effectively
improving the performance. To this end, we design experiments to test this
hypothesis.

Firstly, we analyse the general active learning frameworks and identify that
active learning algorithms do not utilise unlabelled data or labelled data for
fine-tuning. Another interesting observation is that active learning algorithms
perform poorly when the amount of labelled data is small, which is referred to as
a cold-start issue. In addition to this, when the training dataset is imbalanced,
there might be performance differences between majority classes, frequent label

43
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classes in the training set, and minority label classes, rare label classes in the
training set. We observed that these performance differences result in biased
sample selection when an active learning algorithm uses a trained model’s
prediction. In other words, the active learning algorithm fails to select the
informative samples with rare label classes since a model is not fully trained to
classify rare classes.

To this end, we propose a novel active learning framework that consists of
multiple components for not only effectively reducing manual labelling efforts but
also maximising the utility of data. Experimental results show that the proposed
method outperforms other the-state-of-the-art active learning algorithms by
achieving 2 times faster performance improvement in a low-resource setting
and better generalisability. Lastly, we apply the proposed method to another
benchmark dataset from another domain and show the effectiveness of the
proposed method.

This chapter studies the following research questions:

RQ1. How can we fine-tune a pre-trained language model when only a
small-sized training set for the target task is available?

RQ2. How can we fine-tune a pre-trained language model when only a
small subset of the target dataset is labelled?

4.1 Introduction

Recently proposed pre-trained language models (Devlin et al., 2019; Radford
et al., 2018; Yang et al., 2019) have shown their ability to learn contextualised
language representations and can be easily fine-tuned to a wide range of
downstream tasks. Even though these language models can be trained without
manually labelled data thanks to the self-supervised pre-training paradigm,
large-scale labelled datasets are required for fine-tuning to downstream tasks.
Data labelling can be labour-intensive and time-consuming creating a bottleneck
in the development process of machine learning applications. Moreover, in real-
world scenarios, the labelling scheme can be changed by adding or changing
labels after deployment. Therefore, it is critical to be able to fine-tune the
model with a limited number of labelled data to reduce manual labelling efforts
and foster fast machine learning applications development.

One of the possible solutions is to apply active learning to reduce manual
labelling efforts. Active learning is an algorithm designed to effectively minimise
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manual data labelling by querying the most informative samples for training
(Settles, 2009). Active learning has been extensively studied (Dasgupta and Hsu,
2008; Settles, 2009) and applied to various applications, from image recognition
(Wang et al., 2016b; Gal et al., 2017) to natural language processing (NLP)
tasks (Shen et al., 2017; Siddhant and Lipton, 2018). Even though active
learning guides how to strategically annotate unlabelled data, it does not utilise
the unlabelled data or labelled data for fine-tuning. For example, unlabelled
data points can be used for self-supervised learning or already labelled data
points can be further utilised during supervised learning, such as by using data
augmentation techniques.

To not only effectively reduce manual labelling efforts but also maximise the
utility of data, we propose a novel Label-Efficient Training Scheme, LETs in
short. The proposed LETS integrates three elements as illustrated in Fig. 4.1:
(i) a task-specific pre-training to exploit unlabelled task-specific corpus data;
(ii) label augmentation to maximise the utility of labelled data; and (iii) active
learning to strategically prioritise unlabelled data points to be labelled. In
this paper, we apply LETS to a novel aspect-based sentiment analysis (ABSA)
use-case for analysing the reviews of a mobile-based health-related program.
The introduced health-related program is designed to support people to improve
their sleep quality by restricting sleep-related behaviour. We aim to provide
a tailored program by analysing reviews of individual experience. To the best
of our knowledge, this is the first attempt to implement an automated ABSA
system for health-related program reviews. To illustrate the success of the
novel use-case, we have collected a new dataset and experimentally show the
effectiveness of the proposed LETS with the collected dataset and a benchmarks
dataset.

The main contributions of this paper include the followings:

• A novel use-case of natural language processing and machine learning
techniques for the healthcare domain is introduced (Sec. 4.3);

• A novel label-efficient training scheme that integrates multiple components
is proposed (Sec. 4.4);

• A label augmentation technique is proposed to maximise the utility of
labelled data (Sec. 4.4.2);

• A new query function is proposed to search different boundaries with
two uncertainty scores for active learning with the imbalanced dataset
(Sec. 15);
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Figure 4.1: Overview of the proposed Label-Efficient Training Scheme (LETS).
Task-specific pre-training utilises unlabelled task-specific corpus data set Dc.
Label augmentation exploits labelled data set Dl. Active learning algorithm
selects data from the unlabelled data set Du for manual labelling.

• A new evaluation metric for an ABSA system is proposed to correctly
evaluate the performance of a system in the end-to-end framework
(Sec. 4.5.3).

4.2 Related Work

4.2.1 Aspect-Based Sentiment Analysis

ABSA is a special type of sentiment analysis that aims to detect opinion toward
fine-grained aspects. Since ABSA can capture insights about user experiences,
ABSA has been widely studied in various industries, from consumer product
sector (Xu et al., 2019; Do et al., 2019) to service sector (Ruder et al., 2016;
Wang et al., 2016c; Brun and Nikoulina, 2018; Sun et al., 2019a). ABSA entails
two steps: aspect category detection and aspect sentiment classification (Pontiki
et al., 2014). During the first step, Aspect Category Detection (ACD), a system
aims to detect a set of the pre-defined aspect categories that are described in the
given text. For example, in the domain of restaurant review, the pre-defined set
of aspects can be {Food, Price, Service, Ambience, Anecdotes/Miscellaneous}
and the task is to detect {Price, Food} out of the text “This is not a cheap
place but the food is worth to pay”. During the second step, Aspect Category
Polarity (ACP), a system aims to classify a text into one of sentiment polarity
labels (i.e., Positive, Negative, Neutral, etc) given a pair of text and aspect
categories. For example, the task to produce a set of pairs, such as {(Price,
Negative), (Food, Positive)} given the set of ground truth categories {Price,
Food} and the text.
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There has been significant improvement in ABSA systems over the past few
years thanks to the recent progress of deep neural network (DNN) based
NLP models, (Ruder et al., 2016; Wang et al., 2016c; Xue and Li, 2018; Xu
et al., 2019; Sun et al., 2019a). For example, Sun et al. (2019a) propose a
Bidirectional Embedding Representations from Transformers (BERT) (Devlin
et al., 2019) based ABSA system by casting an ABSA task as a sentence-
pair classification task. Even though this sentence-pair approach shows the
state-of-the-art performance by exploiting the expanded labelled data set with
sentence-aspect conversion1 (Sun et al., 2019a), it still requires a large amount
of labelled data.

Later, Xu et al. (2019) propose a post-training to utilise unlabelled corpus
datasets to further train a pre-trained model for ABSA. The proposed post-
training exploits both the general-purpose corpus dataset (i.e., texts from
Wikipedia) and task-related corpus dataset (i.e., reading comprehension dataset)
for the end task (i.e., review reading comprehension). Xu et al. (2019) showed
utilising multiple unlabelled corpus datasets can enhance the performance of
the end task. Extensive studies on utilising unlabelled corpus for further pre-
training showed that the importance of using domain-relevant data (Sun et al.,
2019b; Gururangan et al., 2020). However, domain-related corpus datasets for
further pre-training are possibly not available in some domain (e.g., healthcare)
because of privacy issue2.

4.2.2 Active Learning Algorithm

Active learning that aims to select the most informative data to be labelled has
been extensive studied (Lewis and Gale, 1994; Lewis and Catlett, 1994; Dasgupta
and Hsu, 2008; Settles, 2009). The core of active learning is a query function
that computes score for each data point to be labelled. Existing approaches
include uncertainty-based (Shelmanov et al., 2019; Dor et al., 2020), ensemble-
based (Lakshminarayanan et al., 2017; Beluch et al., 2018), and expected model
change-based methods (Settles, 2009). Thanks to their simplicity, uncertainty-
based methods belong to the most popular ones. Uncertainty-based methods
can use least confidence scores (Shen et al., 2017; Wu et al., 2020; Lewis and
Gale, 1994), max margin scores (Balcan et al., 2007; Gonsior et al., 2020), or
max entropy scores (Shannon, 1948) for querying.

1As it is described in the original paper (Sun et al., 2019a), a sentence si in the original
data set can be expanded into multiple sentence-aspect pairs (si, a1), (si, a2), · · · , (si,
aN ) in the sentence pair classification task, with aspect categories an where n ∈ {1, 2, .., N}.

2For example, General Data Protection Regulation (GDPR) includes the purpose limitation
principle mentioning that personal data be collected for specified, explicit, and legitimate
purposes, and not be processed further in a manner incompatible with those purposes (Article
5(1)(b), GDPR).
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One of the earliest studies of active learning with DNN is by Wang et al. (2016b)
for image classification. They proposed a Cost-Effective Active Learning (CEAL)
framework that uses two different scores for querying. One is an uncertainty
score to select samples to be manually labelled. And the other is a certainty score
to select samples to be labelled with pseudo-labels which are their predictions.
Both scores are computed based on the output of DNN. Wang et al. (2016b)
showed that the proposed CEAL works consistently well compared to the random
sampling, while there is no significant difference in the choice of uncertainty
measures, among the least confidence, max-margin, and max entropy.

However, other researchers claim that using the output of DNN to model
uncertainty could be misleading (Gal and Ghahramani, 2016; Gal et al.,
2017). To model uncertainty in DNN, Gal and Ghahramani (2016) proposed
Monte Carlo (MC) dropout as Bayesian approximation that performs dropout
(Srivastava et al., 2014) during inference phase. Later, Gal et al. (2017)
incorporated uncertainty obtained by MC dropout with Bayesian Active
Learning by Disagreement (BALD) (Houlsby et al., 2011) to demonstrate a
real-world application of active learning for image classification. Also, Shen et al.
(2017) applied BALD to an NLP task and experimentally showed that BALD
slightly outperforms the traditional uncertainty method that uses the least
confidence scores. The results from the large-scale empirical study by Siddhant
and Lipton (2018) also showed the effectiveness of BALD for various NLP tasks.
Even though BALD outperforms the random sampling method, the differences
between BALD and active learning methods with the traditional uncertainty
scores (i.e., least confidence, max margin, and max entropy) are marginal (Shen
et al., 2017; Siddhant and Lipton, 2018). Also, BALD is computationally more
expensive than the traditional methods because it requires multiple forward
passes. Therefore, the traditional uncertainty scores are reasonable options
when deploying active learning in a real-world setting.

Practical concerns on how to implement active learning in real-world settings
include the issue that a model can perform poorly when the amount of labelled
data is minimal (Reker, 2020). This issue is referred to as the cold-start issue.
Ideally, active learning could be most useful in low-resource settings. In practice,
however, it is more likely that the model might work poorly with the limited
number of labelled data at the beginning of active learning (Yuan et al., 2020).
Therefore, introducing a component to ensures a certain level of performance
with the limited labelled data is important to address the cold-start issue.
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Table 4.1: An example of aspect-based sentiment analysis based on the free-text
user review of a health-related program.

Example
Free-text I noticed that I was losing weight, but I missed the mid-

afternoon caffeine boost most days. I slogged my way
through work in the afternoon hours and missed the
caffeine then, although I did sleep better.

Aspect Energy: Negative
Missing caffeine: Negative
Sleep quality: Positive

4.3 Aspect-Based Sentiment Analysis for Health-
Related Program Reviews

This section describes a mobile-based health-related program use-case that
we call Caffeine Challenge. To conduct aspect-based sentiment analysis on
the reviews of Caffeine Challenge, an experimental dataset is collected and
annotated. The next subsections explain the details of the use-case, data
collection protocol, and data labelling scheme with the initial data analysis
result.

4.3.1 Caffeine Challenge Use-Case

In this study, we introduce a health-related program that is designed to help
people improve their sleep quality by restricting behaviour that might negatively
affect their sleep quality. Having caffeinated beverage or desserts during the
late afternoon and evening is selected as a target behaviour for this study. A
challenge rule is restricting a caffeine intake after 13:00 for two weeks. During
the program, participants use a mobile application to log their progress and
receive notifications and recommendations of relevant information. At the end
of the program, an in-app chatbot (conversational agent) asks about challenge
experience and the participants are allowed to provide answers in free-text
sentences. Our goal is to understand users’ sentiments towards different aspects
of the program by analysing the review data. To this end, we aim to develop
an automated ABSA system for health-related program reviews as illustrated
in Table. 4.1 where a system detects opinions (sentiment polarity) expressed
towards multiple aspects. Since the ABSA system can capture detailed user
opinions, it can be used to tailor the health-related program to individual users.
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4.3.2 Experimental Data collection

(a) Sentiment class distribution per aspect
category. Due to limited space, we use
the following abbreviations: Sleep Quality
(SQ), Energy (E), Mood (M), Missing
Caffeine (MC), Difficulty Level (DL),
Physical Withdrawal Symptoms (PWS),
and App Experience (AE). Green, yellow,
red, and grey bars indicate the number of
samples with Positive, Neutral, Negative,
and Not mentioned labels, respectively.

(b) Distribution of the number of aspect-
sentiment labels per text excluding Not
mentioned labels. The number of aspect-
sentiment labels per sentence indicates the
number of aspect categories mentioned in
the sentence.

Figure 4.2: Annotation result of the collected Caffeine Challenge dataset. Sentiment
class distribution per aspect category (a) and the number of aspect-sentiment labels
per text (b) are shown.

In the real-world machine learning application implementation process, multiple
cycles on iterative development are often required: firstly, implementing a
baseline model with experimental data and then gradually updating the model
with real-world data. To develop the first version of the ABSA system, we
conducted a pilot study with a semi-realistic dataset that is collected from an
online survey via a crowd-sourcing platform (Amazon Mturk). At the beginning
of the survey, an instruction containing details of the Caffeine Challenge (i.e., its
purpose, goal, procedure, and consent form), is given to the survey participants.
Then each participant has received a questionnaire regarding the experience
of the Caffeine Challenge. Then the participants have requested to answer the
questions by imagining that they have done this challenge. In total, we recruited
1,000 participants and collected 12,000 answers and examples of collected data
are shown in Appendix 4.A.
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4.3.3 Data Labelling

We annotated a random subset of the collected data for aspect-based sentiment
analysis. Based on both health-related program and app development
perspectives, seven different aspects are defined:

1. Sleep Quality (SQ)

2. Energy (E)

3. Mood (M)

4. Missing Caffeine (MC)

5. Difficulty Level (DL)

6. Physical Withdrawal Symptoms (PWS)

7. App Experience (AE)

Each aspect category is annotated with one of the sentiment values as follows:
Positive, Neutral, Negative, and Not Mentioned. Not Mentioned class is
introduced as a placeholder for an empty sentiment value. For example, when
a sample does not describe any opinion towards a specific aspect, then it is
labelled as Not Mentioned for that aspect category. A labelling scheme of each
aspect category is given in Appendix 4.B.

Fig. 4.2 illustrates annotation results and Fig. 4.3 shows the example of
annotated data point. As it is shown in Fig. 4.2a, the majority of sentiment
label within all aspect categories is an empty sentiment label (Not Mentioned).
Some categories (Sleep Quality, Energy, and Mood) appeared more frequently
compared to other categories (Missing Caffeine, Difficulty Level, Physical
Withdrawal Symptoms, and App Experience). The former group is denoted as
majority aspect categories and the latter group is denoted as minority aspect
categories. Fig. 4.2b shows the distribution of the number of aspect-sentiment
labels per text, excluding Not Mentioned labels. It is observed that most of the
annotated texts have either one or two aspect-sentiment labels and only a few
have more than three aspect-sentiment labels.

4.4 Label-Efficient Training Scheme for Aspect-
Based Sentiment Analysis

We develop an automated ABSA system by utilising a pre-trained language
model. Also, a label-efficient training scheme is proposed to reduce effectively
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{
’sentence’:’I noticed that I was losing

weight, but I missed the mid-afternoon
caffeine boost most days. I slogged my
way through work in the afternoon hours
and missed the caffeine then, although
I did sleep better.’,

’labels’: {
’sleep_quality’: ’positive’,
’mood’ : ’not_mentioned’,
’energy’ : ’negative’,
’missing_caffeine’: ’negative’,
’difficulty_level’: ’not_mentioned’

,
’physical_withdrawal_symptoms’: ’

not_mentioned’,
’app_experience’: ’not_mentioned’,

}
}

Figure 4.3: An example of annotated data. Each annotated data point includes
free-text and labels which are pairs of aspect category and sentiment class.

manual labelling efforts. The following subsections will explain the ABSA
system and the proposed label-efficient training scheme in detail.

4.4.1 Aspect-Based Sentiment Analysis System

Similar to the previous work by Sun et al. (2019a), we reformulate ABSA task
as sentence-pair classification by using a pre-trained language model, BERT
(Devlin et al., 2019). Fig. 4.4 illustrates a sentence-pair classification approach
for ABSA. As shown in the figure, the proposed ABSA system produces the
probability distribution over sentiment classes C, including polarised sentiment
classes S (e.g., Positive, Neutral, Negative, etc) and an empty placeholder (e.g.,
Not Mentioned), for the given free-text sentence xi and aspect category ak.
This formalisation allows a single model to perform aspect category detection
and aspect sentiment classification at the same time. Also, adding an aspect
category as the second part of input can be seen as providing a hint to the
model where to attend for creating a contextualised embedding. Moreover, this
formalisation allows expanding the training data set by augmenting labelled
data, which will be explained in the following section (Sec. 4.4.2).

Formally, an input is transformed into a format of xk
i = [[CLS], xi, [SEP],

ak, [SEP]], where xi = [w1
i , w2

i , ..., wni
i ] is the tokenised i-th free-text,
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Figure 4.4: Illustration of aspect-based sentiment analysis (ABSA) as a sentence-
pair classification by using Bidirectional Embedding Representations from
Transformer (BERT).

ak = [a1
k, a2

k, ..., amk

k ] is the tokenised k-th aspect category in K aspect
categories, and [CLS] and [SEP] are special tokens indicating classification
and separation, respectively. Then the input is fed to the BERT model (fθ)
that produces contextualised embeddings for each token by using multi-head
attention mechanism (Devlin et al., 2019). The contextualised embedding vector
ek

i ∈ Rd×1, corresponding to the classification token [CLS], is used as the final
representation of the given input xk

i . Then a classification layer projects ek
i

into the space of the target classes:

ek
i = fθ(xk

i ) (4.1)

ŷk
i = softmax(W · ek

i + b) (4.2)

where ŷk
i ∈ [0, 1]|C| is the estimated probability distribution over the sentiment

classes C for the given free-text sample xi and aspect category ak pair, and fθ,
W ∈ R|C|×d, and b ∈ R|C| are trainable parameters.

4.4.2 Label-Efficient Training Scheme

One of the bottlenecks in developing an ABSA system with a pre-trained
language model is to create a large-scale labelled task-specific dataset for fine-
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tuning which requires a labour-intensive manual labelling process. To mitigate
this issue, we propose a Label-Efficient Training Scheme, which we refer as
LETS. The proposed LETS consists of three elements to effectively reduce
manual labelling efforts by utilising both unlabelled and labelled data. Fig. 4.1
illustrates the overview of the proposed LETS. The first element is task-specific
pre-training to exploit the unlabelled task-specific corpus data. The second
element is label augmentation to maximise the utility of the labelled data. The
third element is active learning to efficiently prioritise the unlabelled data for
manual labelling. The followings will describe the details of each element.

Task-specific pre-training

Task-specific pre-training is used to exploit the unlabelled task-specific corpus
data. We adopt a novel pre-training strategy of Masked Language Modelling
(MLM) from BERT (Devlin et al., 2019) to train an Attention-based model
to capture bidirectional representations within a sentence. More specifically,
during the MLM training procedure, the input is formulated with a sequence
of tokens that are randomly masked out with a special token [MASK] at a
certain percentage p. Then the training objective is to predict those masked
tokens. Since ground truth labels are original tokens, MLM training can proceed
without manual labelling.

Label augmentation

Label augmentation is proposed to not only address the cold-start issue in
active learning but also to maximise the utility of the labelled data. The
proposed label augmentation algorithm multiplies the labelled data set by
replacing aspect categories with similar words. This might look similar to
common data augmentation techniques proposed by Wei and Zou (2019) that
includes synonym replacement, random insertion, random swap, and random
deletion. Our method, however, modifies only the second part of the input
(i.e., aspect category) while keeping the original free-text part. The proposed
label augmentation technique is applied to pre-defined aspect categories with
polarised sentiment classes S (e.g., Positive, Neutral, Negative, etc). Algorithm 2
summarises the proposed label augmentation technique.

Active learning

Active learning is used to prioritise the unlabelled data points to be manually
labelled and added to the training pool. The core of active learning is a query
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Algorithm 2: Label augmentation
Data: Labelled training set Dl, a dictionary of similar words per aspect

category Dict, polarised sentiment classes S
Result: Augmented training set D̂l

1 D̂l ← Dl

2 for dl ∈ Dl do
3 txt ← getFreeText(dl)
4 asps ← getAspects(dl)
5 for asp ∈ asps do
6 senti ← getSentimentLabel(dl, asp)
7 if senti ∈ S then
8 ˆasps ← Dict(asp)
9 for ˆasp ∈ ˆasps do

10 d̂l ← (txt, ˆasp, senti)
11 D̂l ← addData(d̂l)
12 end
13 end
14 end
15 end

function that scores the data points to use a labelling budget effectively in terms
of performance improvement.

Even though most of the existing active learning methods consider balanced
datasets, one typical feature of a real-world dataset is that it can be imbalanced
(Ertekin et al., 2007). As it is shown in Sec. 4.3.3, the collected dataset is also
highly imbalanced: there are majority aspect categories that more often appear
in the training set and minority aspect categories that less often appear in the
training set. We observe that a fine-tuned ABSA model performs differently
towards majority and minority aspect classes. For example, Fig. 4.5 illustrates
the vector representations before the final classification layer3 plotted into
2-dimensional space by using a dimensionality reduction algorithm (Van der
Maaten and Hinton, 2008). From the figure, it is observed that the fine-tuned
model can create distinctive representations between sentiment labels within
the Sleep Quality aspect category, while the model fails to learn to differentiate
data points among sentiment classes and empty sentiment class within the App
Experience aspect category. This shows that a fine-tuned ABSA model performs
relatively well towards majority aspect categories and its prediction is reliable,

3The fine-tuned model at the initial step of active learning experiment (Sec. 4.5.4) is used.
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whereas a model works poorly towards minority aspect categories and it tends
to fail to even detect the aspect categories.

(a) (b)

Figure 4.5: The final vector representations of inputs plotted in 2-dimensional space
for Sleep Quality (a) and App Experience (b) aspect categories. Green, yellow, red,
and grey colour indicate inputs with Positive, Neutral, Negative, and Not Mentioned
sentiment labels, respectively. All data points were not used during the training phase.

Therefore, we propose two uncertainty measures for majority aspect categories
and minority aspect categories, respectively:

umajor = 1 − P r(ŷk
i = arg max

c∈C
(ŷk

i )|xk
i ) (4.3)

uminor = 1 − |P r(ŷk
i = nm|xk

i ) −
∑

S

(P r(ŷk
i = s|xk

i ))| (4.4)

= 1 − |1 − 2P r(ŷk
i = nm|xk

i )| (4.5)

where Pr(ŷk
i = arg max

c∈C
(ŷk

i )|xk
i ) is the highest probability in the estimated

probability distribution over sentiment classes given xk
i , nm refers Not

Mentioned, and S refers a polarised sentiment classes set (e.g., Positive, Neutral,
Negative, etc). umajor is the traditional least confidence score and uminor is the
margin of confidence score between an empty placeholder (i.e., Not Mentioned)
and sum of other sentiment classes. As it is shown in (4.5), uminor treats
the model’s prediction as binary classification result (i.e., Not Mentioned or
Mentioned) producing high uncertainty scores when Pr(ŷk

i = nm|xk
i ) is close

to 0.5. The intuition of introducing uminor is allowing a model to focus on
detecting whether the aspect category is mentioned or not. The proposed two
uncertainty measures allow the model to search different boundaries during
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active learning: the boundaries where the model is uncertain about its aspect
category sentiment classification result towards majority classes is described by
umajor. And the boundary where the model is uncertain about aspect category
detection result towards minority classes is described by uminor.

Algorithm 3 shows the proposed LETS that integrates three elements. Firstly, a
pre-trained model is further pre-trained with an unlabelled task-specific corpus
data set. Then the task-specific pre-trained model is used for initialisation
during active learning iterations. Active learning is repeated t times and each
time a model is fine-tuned with the labelled data set that is augmented by the
proposed label augmentation technique. At the end of each iteration step, n
samples are queried from the unlabelled set for manual labelling. For querying,
each Query function Qmajor and Qminor select n/2 samples where umajor and
uminor are the highest, respectively.

Algorithm 3: Label-efficient training scheme (LETS)
Data: Pre-trained model Mpt, unlabelled task-specific corpus data set Dc,

initial training set Dl, unlabelled training set Du, total iteration t,
labelling budget n, query function for majority categories Qmajor,
query function for minority categories Qminor

Result: Fine-tuned model Mt, Labelled data set Dt

1 Mtspt ← task-specificPre-train(Mpt, Dc,)
2 i = 0
3 Di ← Dl

4 while i < t & |Du| > 0 do
5 D′

i ← augmentLabel(Di)
6 Mi ← fineTune(Mtspt, D′

i)
7 dmajor ← Qmajor(Du, Mi, n/2)
8 dminor ← Qminor(Du, Mi, n/2)
9 Di+1 ← Di

10 Di+1 ← addData(addLabels(dmajor ∪ dminor))
11 Du ← Du − {dmajor ∪ dminor}
12 i+ = 1
13 end
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4.5 Experiments

4.5.1 Datasets

We evaluate the proposed method on two datasets. One is the custom dataset
that we collected for the Caffeine Challenge use-case. The other is SemEval-2014
(Pontiki et al., 2014) task 4 dataset4 that is the most widely used benchmark
dataset for aspect-based sentiment analysis.

Custom dataset: Caffeine Challenge

The custom dataset, which is described in Sec. 4.3, is named as a Caffeine
Challenge dataset. We annotate a random subset of the Caffeine Challenge
dataset with 7 different aspect categories (i.e., Sleep Quality, Energy, Mood,
Missing Caffeine, Difficulty Level, Physical Withdrawal Symptoms, App
Experience) and 3 sentiment labels S ={Positive, Neutral, Negative} and
an empty placeholder (i.e., Not Mentioned). The aspect categories distribution
of the Caffeine Challenge dataset is imbalanced as described in Sec. 4.3. Aspect
categories are divided into subgroups of majority and minority aspect categories
based on the frequency in a training set: {Sleep Quality, Energy, Mood} as
majority aspect categories and {Missing Caffeine, Difficulty Level, Physical
Withdrawal Symptoms, and App Experience} as minority aspect categories.

The unlabelled corpus data set are used for task-specific pre-training and the
annotated data set is used for fine-tuning. Table 4.2 summarises the sizes
of the Caffeine Challenge dataset used for the experiments. For task-specific
pre-training, sentences from the unlabelled corpus data set are used. For the
fine-tuning, 5-fold cross-validation splits are created at the sentence level and
sentence-aspect pairs are used for training.

Benchmark dataset: SemEval

The SemEval-2014 task 4 dataset contains restaurant reviews annotated with 5
aspect categories (Food, Price, Service, Ambience, Anecdotes/Miscellaneous)
and 4 sentiment labels S ={Positive, Neutral, Negative, Conflict5}. Since
the SemEval dataset is also imbalanced, as illustrated in Appendix. 4.C, we
define majority and minority categories: {Food, Anecdotes/Miscellaneous}

4https://alt.qcri.org/semeval2014/task4/
5The conflict label applies when both positive and negative sentiment is expressed about

an aspect category (Pontiki et al., 2014)
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Table 4.2: Size of Caffeine Challenge dataset used for the experiments. Sentences
from the unlabelled corpus data set used as the task-specific corpus data for
task-specific pre-training. S-A pairs indicate sentence-aspect pairs and sentence-
aspect pairs from the training set are used for fine-tuning.

Data set Sentence S-A pairs
Unlabelled corpus 22,577 -
Training 325 2,275
Test 87 609
Total Fine-tuning 412 2,884

Table 4.3: Size of SemEval dataset used for the experiments. Sentences from
the training set are used as the task-specific corpus data for task-specific pre-
training. S-A pairs indicate sentence-aspect pairs and sentence-aspect pairs
from the training set are used for fine-tuning.

Data set Sentences S-A pairs
Training 2,435 12,175
Test 609 3,045
Total 3,044 15,220

and {Service, Ambience, Price} as majority and minority aspect categories,
respectively.

We used the original SemEval train set for the experiments to create 5-fold
cross-validation splits. Table 4.3 summarises the size of SemEval dataset used
for the experiments. For task-specific pre-training, sentences from the training
set are used. For the fine-tuning, sentence-aspect pairs are created with an
empty placeholder (Not Mentioned) for the sentences that do not contain a
sentiment label towards specific aspect categories.

4.5.2 Experimental Settings

Task-specific pre-training and fine-tuning

We use the pre-trained uncased BERT-base model as the pre-trained model
(PT). The task-specific pre-trained model (TSPT) is created by further training
the pre-trained model on the task-specific corpus data with the masked-
language modelling (MLM) objective with masking probability p = 0.15.
The TSPT is used to initialise the proposed method and the PT is used
to initialise other methods during the active learning process. For fine-
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tuning, the final classification layer is added and entire model parameters
are updated. More detailed implementation and hyperparameter settings are
given in Appendix. 4.D.

Label augmentation

Label augmentation multiplies the amount of labelled data by generating
synthesised pairs of sentence and aspect categories by replacing aspect categories
with similar words. The pre-defined dictionary containing a list of similar words
is used for label augmentation and label augmentation is applied to the only
minority aspect categories to avoid inefficient augmentation. The pre-defined
dictionaries are given in Appendix 4.E.

Active learning

Active learning experiments are repeated 5 times with 5-fold cross-validation
splits. At each fold, the initial labelled data set (i.e., seed data) is randomly
selected from the training set at the sentence level and transformed into sentence-
aspect pairs. For the Caffeine Challenge dataset, 20% of the training set (n=455)
is used as seed data (Dl) and the remaining data is used as unlabelled data
(Du). For the SemEval dataset, 10% of the training set (n=1,220) is used as
seed data (Dl) and the remaining data is used as unlabelled data (Du). Active
learning is iterated with 10 steps with a fixed labelling budget (n=|Du|/10). At
the initial iteration step (t=0), a model is trained on the seed data. During
active learning steps, more data are iteratively added to the training set by
selecting unlabelled data.

For comparison, we implemented BALD by using MC dropout (Gal and
Ghahramani, 2016), Cost-Effective Active Learning (CEAL) (Wang et al.,
2016b), least confidence scores, and random sampling. For BALD, we use the
same approximation by Siddhant and Lipton (2018) to compute uncertainty
score as the fraction of models which disagreed with the most popular choice.
The number of stochastic forward passes for BALD is set to 10. For CEAL, the
least confidence score is used for calculating uncertainty and the threshold for
pseudo-labelling is set to 0.05 with a decay rate of 0.0033. Since pseudo-labels
are not included in the labelling budget, the active learning with CEAL can be
terminated early when there is no more data for manual labelling. More details
of these methods can be found in the original papers (Siddhant and Lipton,
2018; Wang et al., 2016b).
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Table 4.4: Types of error used to compute aspect category sentiment
classification (ACSC) scores. TP, NA, FN1, FN2, FP refer to true positive, not
applicable, false negative type 1, false negative type 2, false positive, respectively.
TARG and PRED refer to a target sentiment class and a predicted sentiment
class where S is a set of polarised sentiment classes (e.g., Positive, Neutral,
Negative, etc).

Error type Target Prediction Comparison
TP TARG ∈ S PRED ∈ S TARG = PRED
NA Not Mentioned Not Mentioned TARG = PRED
FN1 TARG ∈ S Not Mentioned TARG ̸= PRED
FN2 TARG ∈ S PRED ∈ S TARG ̸= PRED
FP Not Mentioned PRED ∈ S TARG ̸= PRED

4.5.3 Evaluation Metrics

In this paper, we used two different metrics to evaluate the performance of an
ABSA system. One metric is aspect category detection (ACD) and the other
metric is aspect category sentiment classification (ACSC). Aspect category
detection (ACD) is proposed by Pontiki et al. (2014) and limited to evaluating
aspect category detection ignoring the performance of aspect category sentiment
classification. Aspect category polarity (ACP) metric is proposed to assess the
sentiment classification performance of a system (Pontiki et al., 2014). However,
as it is mentioned in the previous study by Brun and Nikoulina (2018), the
ACP metric presumes the ground truth aspect categories and cannot be used
to correctly evaluate an ABSA system end-to-end. To address this issue, we
introduce a new metric of aspect category sentiment classification (ACSC)
which is the modified version of ACP taking into account false aspect category
detection results.

Aspect category detection (ACD)

ACD is used to evaluate how a system accurately detects a set of aspect
categories mentioned in the input text. F1 score is used which is defined as:

F1 = 2 · P ·R
P + R

where precision (P) and recall (R) are:
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P = |E ∩G|
|E|

, R = |E ∩G|
|G|

where | ∗ | denotes the cardinality of a set *, E is the set of aspect categories
that a system estimates for each input, and G is the set of the target aspect
categories. Micro-F1 scores are calculated at sentence-level and averaged over all
inputs and macro-F1 scores are calculated and averaged at aspect category-level.

Aspect category sentiment classification (ACSC)

ACSC is used to evaluate the performance of an ABSA system end-to-end. Since
the proposed ABSA system produces multiple sentence-pair predictions for a
single text input, the predictions are aggregated to compute (aspect, polarity)
pairs at sentence-level while eliminating the pairs that contain Not Mentioned
as a target as well as a predicted sentiment class. F1 scores are calculated on
the (aspect, polarity) pairs at aspect-level following:

P = TP

TP + FP
, R = TP

TP + FN1 + FN2

where TP, FP, FN1, and FN2 are defined as in Table 4.4. Similar to ACD, both
micro- and macro-averaged F1 are used.

4.5.4 Results and Analysis

Exp 1: Caffeine Challenge

Fig. 4.6 illustrates the active learning results with the Caffeine Challenge dataset.
Active learning results in ACD metrics are illustrated in Fig. 4.6a and Fig. 4.6b.
All active learning methods show better performance improvement than random
sampling. It is observed that all models achieve much lower performances in
macro-averaged scores than micro-averaged scores. These results show that
the models perform worse towards minority aspect categories in the Caffeine
Challenge dataset. In micro-averaged ACD score, LETS outperforms other
active learning methods in general. In macro-averaged ACD score, CEAL
achieves slightly better performance than LETS. However, the ACD metrics
are incomplete because they ignore sentiment classification results.

ACSC metric is proposed to address the limitation of the ACD metric and
correctly evaluate the ABSA system end-to-end. Fig. 4.6c and Fig. 4.6d illustrate
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(a) Micro-averaged (b) Macro-averaged

(c) Micro-averaged (d) Macro-averaged

Figure 4.6: Active learning results with the Caffeine Challenge dataset. Aspect
category dectection (ACD) scores ((a), (b)). Aspect category sentiment classification
(ACSC) scores ((c), (d)). Each line indicates averaged 5-fold results with standard
deviation as shade. The bottom X-axis indicates the active learning iteration step
and the top x-axis indicates the number of manually labelled training data. Y-axis
indicates the performance score.

active learning results with the respect to the ACSC metrics. From the figures,
it is observed that the performances of all models decrease compared to the
observations from the ACD metrics. Similar to the results with the ACD
metrics, LETS shows better performance improvement compared to other active
learning methods. Specifically, from iteration step 0 to 1, the performance of
LETS increases from 35.1% to 48.2%, while other method increase from 33.7%
up to 47.1% in macro-averaged ACSC metric. The most significant difference is
observed between LETS and random sampling. For example, random sampling
achieves a similar performance of 48.2% at iteration step 2-4. Moreover, the
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(a) Micro-averaged (b) Macro-averaged

(c) Micro-averaged (d) Macro-averaged

Figure 4.7: Active learning results with the SemEval dataset. Aspect category
dectection (ACD) scores ((a), (b)). Aspect category sentiment classification (ACSC)
scores ((c), (d)). Each line indicates averaged 5-fold results with standard deviation
as shade. The bottom X-axis indicates the active learning iteration step and the top
x-axis indicates the number of manually labelled training data. Y-axis indicates the
performance score.

difference between LETS and random sampling increases over iteration steps.
The random sampling method at iteration step 6-7 and LETS at iteration 2
show similar performances in terms of macro-average ACSC metric. These
results suggest that LETS can reduce manual labelling efforts 2-3 times better
compared to the random sampling method. Also, LETS slightly outperforms
other active learning methods at the beginning of the iteration step with the
respect to the ACSC metrics. This result shows that the task-specific and the
proposed label augmentation can contribute to better generalisability with the
Caffeine Challenge data set.
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Performance differences between LETS and random sampling method are
statistically significant (Wilcoxon signed-rank test with p < .05) from iteration
step 1 to 7 and iteration step 2 to 5 in micro-and macro-averaged ACSC
metrics, respectively. However, performance differences between LETS and
active learning methods are not statistically significant (p > .05) throughout
the entire iteration steps. In general, all methods show high variances of
performances.

One interesting observation is CEAL achieves lower performances than LETS
in terms of micro-averaged ACSC metric, especially in the later iteration
steps. This is different from the observation from the micro-averaged ACD
metric. A possible explanation for this is as follows: CEAL uses pseudo-labels.
These pseudo-labels might not correct in terms of sentiment classes and errors
might propagate throughout the iteration steps. Since the ACD metrics ignore
sentiment classification results, this error might not be detected. Results with
the macro-averaged ACSC metric show similar trends to the results with the
macro-averaged ACD metric. These results suggest LETS slightly outperforms
CEAL in terms of end-to-end evaluation metric.

Exp 2: SemEval

Fig. 4.7 illustrates the active learning results with SemEval benchmark dataset.
Compared to the results with the Caffeine Challenge dataset, it is observed that
the results with the SemEval dataset show less fluctuated learning curves in
general. It is potentially because the SemEval dataset contains fewer aspect
categories with more training data.

As illustrated in Fig. 4.7a and Fig. 4.7b, LETS shows slightly faster learning
curves compared to other methods in terms of the ACD metrics. The random
sampling method shows better learning curves compared to other active learning
methods (i.e., BALD, CEAL, least confidence) in the ACD metrics. However,
this does not imply that the random sampling method outperforms other active
learning methods because the ACD metrics ignore sentiment classification
results.

Fig. 4.7c and Fig. 4.7d show the active learning results in terms of the ACSC
metrics. It is observed that the performances of all models decrease compared
to the observations from the ACD metrics because the ACSC metrics consider
sentiment classification results. From the figures, we can also see that the
random sampling method achieves slower learning curves compared to the
active learning methods. These results are opposite from the results with the
ACD metrics and imply that the model trained with randomly sampled data
tends to more misclassify sentiment labels.
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In the ACSC metrics, it is observed that LETS substantially outperforms
other active learning methods and random sampling method by showing fast
performance improvement. For example, from iteration step 0 to 1, the
performance of LETS substantially increases from 45.5% to 61.6%, while the
performances of other methods only increase from 38.3% to around 50.8% in
macro-averaged ACSC metric. Other methods achieve a similar performance
of 61.6% at iteration step 2-3, which means that LETS can reduce manual
labelling effort 2-3 times better with the SemEval dataset. Moreover, it is worth
mentioning that LETS achieves significantly (Wilcoxon signed-rank test with
p < .05) better performances than other methods at the beginning and the
end of iteration thanks to the task-specific pre-training and label augmentation.
Similar trends are also observed in the micro-averaged ACSC metric. Similar
to the result with the Caffeine Challenge dataset, this result shows that the
task-specific and the proposed label augmentation can also contribute to better
generalisability with the SemEval dataset.

Performance differences between LETS and random sampling method are
statistically significant (p < .05) throughout entire iteration steps in both micro-
and macro-averaged ACSC metrics. Also, performance differences between
LETS and other active learning methods are statistically significant (p < .05)
from iteration 0 to 4 for BALD and from iteration step 0 to 2 for CEAL and
least confidence methods, respectively, in both micro and macro-averaged ACSC
metrics.

4.5.5 Discussion

The proposed LETS integrates multiple components, including task-specific
pre-training, label augmentation, and active learning. To investigate the effect of
task-specific pre-training with label augmentation separately, we further analyse
the performances of a pre-trained model (PT) and task-specific pre-trained
model (TSPT) by ablating the label augmentation (LA) component. Fig. 4.8
and Fig. 4.9 summarise the ablation study with the Caffeine Challenge dataset
and the SemEval dataset, respectively. Note that all models use the proposed
active learning method.

From the Fig. 4.8 and Fig. 4.9, it is observed that each task-specific pre-training
and label augmentation provides performance improvement in the ACSC metrics.
Nonetheless, more consistent improvement is observed when both components
are applied together. For example, the results from the Caffeine Challenge
dataset, as illustrated in Fig. 4.8, show that task-specific pre-training can
contribute to performance improvement and label augmentation can further
provide performance boost, especially in early iteration steps.
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Similar trends are also observed in the results from the SemEval dataset as
illustrated Fig. 4.9. The major differences are the results from the SemEval
dataset are more stable throughout the iteration steps. The results from
the Semeval dataset, as illustrated in Fig. 4.9, show significant differences
(p < .05) between the task-specific pre-trained model with label augmentation
(TSPT+LA) and the pre-trained model (PT) from iteration step 0 to step
4. This suggests that the combination of task-specific pre-training and label
augmentation can contribute statistically significant performance improvement
for the SemEval dataset, in early iteration steps. Interestingly, each task-
specific pre-training and label augmentation can also contribute to the similar
performance improvement of combining both of them. This suggests that
applying either ask-specific pre-training or label augmentation can be also
beneficial for the SemEval dataset.

4.6 Limitations and future studies

Even though we show the effectiveness of the proposed method by validating
with two different datasets, some points can be further studied. Firstly, the
Caffeine Challenge dataset is semi-realistic and not collected from actual users
of a mobile application. This is mainly because the goal of this paper was to
conduct a pilot study of developing an aspect-based sentiment analysis system for
the healthcare domain prior to having a mobile application available. Therefore,
further study is needed to collect real-world data and conduct experiments
to validate the developed system. Since the real-world data are not labelled
and the main contribution of this paper is proposing a label-efficient training
scheme, we argue that the proposed method can be used to efficiently label the
real-world data to further train the system.

The second limitation is the handcrafted rules of the proposed methods. The
majority and minority classes were defined based on the frequency in the training
sets. Further study could explore an algorithmic approach to distinguish between
majority and minority classes. For example, in the active learning setting,
minority classes can be dynamically defined based on the labelled data set of the
previous iteration step. Also, the proposed label augmentation uses handcrafted
dictionaries. A synonym search algorithm by using a lexical database, such as
WordNet (Miller, 1995), or a knowledge graph, such as ConceptNet (Speer et al.,
2017), could be used for automatically creating dictionaries for the proposed
label augmentation.

Thirdly, a remaining difficulty in applying this work is to know when to start
and when to stop active learning iterations. For example, in our experiments
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(a) Micro-averaged (b) Macro-averaged

(c) Micro-averaged (d) Macro-averaged

Figure 4.8: Compared active learning results for ablation study with the Caffeine
Challenge dataset. Aspect category dectection (ACD) scores ((a), (b)). Aspect
category sentiment classification (ACSC) scores ((c), (d)). Each line indicates averaged
5-fold results with standard deviation as shade. The bottom X-axis indicates the
active learning iteration step and the top x-axis indicates the number of manually
labelled training data. Y-axis indicates the performance score. PT and TSTP refer
to the model with pre-training and task-specific pre-training, respectively. Masked
language modelling is used for task-specific pre-training objective. +LA indicates that
label augmentation is applied during the active learning process. All models use the
proposed active learning method.

(Sec. 4.5), the size of seed data is set to 20% of the training set for the Caffeine
Challenge dataset while it is set to 10% of the training set for the SemEval
dataset. It is decided based on heuristics and future studies could investigate
the optimal size of the seed data. Also, even though the proposed method
achieves fast performance improvements at the beginning, it reaches a plateau
in the middle of the active learning process. This is because we consider a
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(a) Micro-averaged (b) Macro-averaged

(c) Micro-averaged (d) Macro-averaged

Figure 4.9: Compared active learning results for ablation study with the SemEval
dataset. Aspect category dectection (ACD) scores ((a), (b)). Aspect category
sentiment classification (ACSC) scores ((c), (d)). Each line indicates averaged 5-
fold results with standard deviation as shade. The bottom X-axis indicates the
active learning iteration step and the top x-axis indicates the number of manually
labelled training data. Y-axis indicates the performance score. PT and TSTP refer
to the model with pre-training and task-specific pre-training, respectively. Masked
language modelling is used for task-specific pre-training objective. +LA indicates that
label augmentation is applied during the active learning process. All models use the
proposed active learning method

pool-based active learning scenario, which assumes a large amount of unlabelled
data at the beginning of the process and the active learning iteration ends when
there is no more data to be labelled. To avoid unnecessary iteration steps, a
stopping strategy is needed. Potentially, stopping strategy can be defined based
on the stabilisation of predictions (Bloodgood and Vijay-Shanker, 2009) or the
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certainty scores of predictions (Zhu et al., 2010).

4.7 Conclusion

In this paper, we introduce a new potential application of ABSA applied to
health-related program reviews. To achieve this, we collected a new dataset and
developed an ABSA system. Also, we propose a novel label-efficient training
scheme to reduce manual labelling efforts. The proposed label-efficient training
scheme consists of the following elements: (i) task-specific pre-training to utilise
unlabelled task-specific corpus data, (ii) label augmentation to exploits the
labelled data, and (iii) active learning to strategically reduce manual labelling.

The effectiveness of the proposed method is examined via experiments with
two datasets. We experimentally demonstrated the proposed method shows
faster performance improvement and achieves better performances over existing
active learning methods, especially in terms of the end-to-end evaluation
metrics. More specifically, experimental results show that the proposed
method can reduce manual labelling effort 2-3 times compared to labelling with
random sampling on both datasets. The proposed method also shows better
performance improvements than the existing state-of-the-art active learning
methods. Furthermore, the proposed method shows better generalisability than
other methods thanks to the task-specific pre-training and the proposed label
augmentation.

As future work, we expect to collect actual user data from a mobile application
and implement the developed ABSA system with the proposed label-efficient
training scheme. Moreover, we will investigate a stopping strategy to terminate
the active learning process to avoid unnecessary iteration steps.

Appendix

4.A Examples of the Collected Data

Table 4.5 shows examples of the collected data used for experiments.
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Table 4.5: Example of question and answers. This example shows 12 different
responses from a single participant.

Imagine you successfully finished the challenge.
Q1: How was your experience with this challenge and why?
Answer (pos): My experience was great. I felt that my experience was
personalized and I really was able to fall asleep faster and stay asleep longer
by giving up caffeine after 1pm. It was a lot easier than expected.
Answer (neu): It was okay. While I did find it helpful to give up caffeine
after 1pm to help with my sleep, it was difficult for me to give up and almost
felt as if I were detoxing from caffeine.
Answer (neg): My experience was not very good. While I was able to
give up caffeine after 1pm, it gave me a headache as I must have been going
through withdrawals and in turn, these headaches kept me up later than I
would have wanted.
Q2: Could you tell me how reducing caffeine affected you?
Answer (pos): Reducing caffeine really affected me positively. I was easily
able to give the caffeine up after 1pm and in turn, I fell asleep much faster
and didn’t wake up throughout the night as I normally would.
Answer (neu): It was an okay experience. While I slept better, it was
difficult for me to give up the caffeine, especially chocolate when I crave a
snack after work.
Answer (neg): My experience was not very good. Because I gave up
caffeine, I think my wellbeing was negatively affected because I then had a
headache which made getting to sleep difficult. I think I actually lost sleep
due to this.
Imagine you was not able to complete the challenge.
Q1: How was your experience with this challenge and why?
Answer (pos): While it was difficult for me to give up my afternoon and
evening caffeine so I could not complete the challenge, I still had a positive
experience as I did sleep better on the nights that I did successfully complete
the challenge for the day.
Answer (neu): The experience was just okay for me. Because I did not
successfully complete the challenge, I am not sure that I saw all of the benefits.
I would like to try again in the future.
Answer (neg): I didn’t like having to give up the caffeine. I kept getting
headaches and for that reason I went back to the caffeine and did not
successfully complete the challenge.
Q2: Could you tell me how reducing caffeine affected you?
Answer (pos): Reducing caffeine affected me by allowing me to go to sleep
earlier and stay asleep longer. Therefore, I felt better and more refreshed
when I woke up in the morning.
Answer (neu): It affected me in an okay way. While my sleep did tend to
be better, I struggled with actually giving up the caffeine. This is something
I would have to work at.
Answer (neg): It affected me negatively because while I was giving up the
caffeine, I actually saw an increase in headaches and because of this, I also
saw a lack of sleep.
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Table 4.6: Explanation and examples of aspect categories.

Aspect Explanation/Examples
Sleep
quality

Impact on sleep quality. Positive: Sleep quality has improved.
Negative: Sleep quality has been worsened.

Mood Experience related to mental state. Positive: became calm or
relaxed. Negative – felt nervous/anxious, experienced mental
drain, or negative thoughts.

Energy Impact on energy and concentration. Positive: Had/felt ore
energy during day. Negative: Tired during the day or couldn’t
concentrate at work.

Missing
caffeine

Feeling of caffeine deprivation. Positive: Did not miss caffeine
products. Negative: Missed the taste of caffeine or didn’t like
decaffeinated alternatives.

Difficulty
level

Difficulty of the challenge. Positive: Challenge was easy/easier
than thought. Negative: Too difficult to change the habit.

Physical
withdrawal
symptoms

Impact on physical state. Positive: Physical state has improved.
Negative: Experienced headache, stomach aches, or any other
physical withdrawal symptoms.

App
experience

Experience with app. Positive: App was supportive or
reminder/recommender was helpful. Negative: User experience
of app was bad or the reminder was annoying.

4.B Explanation of Aspect Categories

Table 4.6 summarises the explanation and examples of aspect categories used
in the paper.

4.C Aspect Category Distribution of the SemEval
Dataset

Fig. 4.10 illustrates the aspect category distribution of the training set from
the SemEval dataset used for the experiments. As it is shown in the figure, the
SemEval dataset is imbalanced and we define {Food, Anecdotes/Miscellaneous}
and {Service, Ambience, Price} as majority and minority aspect categories,
respectively.
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Figure 4.10: Aspect category distribution of the training set from the SemEval
dataset. Anecd/Misc refers Anecdotes/Miscellaneous aspect category.

Table 4.7: Detailed implementation specification.

Item Specification
CPU Intel®Xeon®W-2123 CPU @ 3.60 GHz
GPU NVIDIA GeForce GTX 1080 ti, 11 GB memory
Graphic driver NVIDIA graphic driver version 416.34
CUDA Version 10.0
OS Windows 10, 64-bit
Python Version 3.6.6
Pytorch Version 1.5.1

4.D Implementation and Training Settings

All experiments were performed on the Windows 10 operating system and the
detailed specification of hardware and software is summarised in Table 4.7. For
model implementation, PyTorch version of BERT with the pre-trained weights
(bert-base-uncased) (Wolf et al., 2019) was used as the pre-trained model
(PT). During task-specific pre-training, the pre-trained model is further trained
on the end task corpus. For task-specific pre-training, we adopt masked language
modelling (Devlin et al., 2019) with masking probablity p = 0.15. During task-
specific pre-training, randomly sampled 10% of training data is used as a
validation set for early-stopping.

For fine-tuning, 5-fold cross validation splits are created by using K-Folds
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cross-validator function from scikit-learn library6. Also, a final dense layer with
softmax function is added and cross entropy loss is used. Since the focus of
this paper is active learning experiments, we did not conduct hyperparameter
tuning experiments but used hyperparameter values based on the recent study
(Sun et al., 2019b) as summaries in Table 4.8.

Table 4.8: Hyperparameters for task-specific pre-training (top) and fine-tuning
(bottom).

Hyperparameter Assignment
training epoch 4
batch size 32
learning rate 2e− 5
drop out 0.1
optimizer AdamW
training epoch 4
batch size 32
learning rate 2e− 5
drop out 0.1
optimizer AdamW
classification layer feed-forward network

4.E Pre-defined Dictionaries for Label Augmenta-
tion

Pre-defined dictionaries were used for label augmentation. For the Caffeine
Challenge dataset, the list of minority aspect categories and the list of similar
words for each aspect categories are defined as:

• Missing caffeine: [Missing caffeine, Dislike decaffeine, Need caffeine,
Caffeine addiction]

• Difficulty level: [Difficulty level, Hard to finish, cannot complete, Too
difficult]

• Physical withdrawal symptoms: [Physical withdrawal symptoms, Head-
ache, Pain, Jitter]

6https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.KFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
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• App experience: [App experience, UI, UX, Design]

For SemEval dataset, the list of minority aspect categories and the list of similar
words for each aspect categories are defined as:

• Service: [Service, Staff]7

• Ambience: [Ambience, Atmosphere, Decor]

• Price: [Price, Bill, Quality8]

7During experiments, we observed that adding more labels for Service aspect category
harms the performance.

8Quality is not a similar word for price but it is used because the training data set contains
reviews mentioning price-quality relationship.





Chapter 5

Monitoring: Temporal
Information Extraction and
Normalisation

This chapter was previously published as:

Shim, H., Lowet, D., Luca, S., & Vanrumste, B. (2021, November). Synthetic
Data Generation and Multi-Task Learning for Extracting Temporal Information
from Health-Related Narrative Text. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, The Seventh Workshop on
Noisy User-generated Text, pp. 260-273.

This chapter includes a study on a free text sleep diary tool for monitoring sleep
behaviour. The goal of the free text sleep diary tool is to extract structured
temporal information from unstructured sleep diaries. To achieve this, a
system can not only extract temporal expressions (e.g., "8 in the evening") but
also normalise them into standard formats (e.g., 20:00 (HH:MM)). Temporal
expression understanding requires both numeracy skills (e.g., "half past nine" =
09:00 + 00:30 = 09:30) and language understanding skills (e.g., "half past nine
in the evening" = 21:00 + 00:30 = 21:30) which is not trivial. On one hand,
a rule-based approach works well with the standard expressions but cannot
handle noisy data (e.g., misspelt expressions, uncommon expressions, etc) and
ambiguous expressions (e.g., "I went to bed at 10" –> 10:00 or 22:00). On
the other hand, a language model can generalise well at extraction task but

77
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it lacks numeracy that is required for normalisation. Therefore, we aim to
combine the power of the rule-based approach and language model. Specifically,
we investigate how to enhance the numeracy of a language model with a low-
resource setting when there is no large dataset for training a model for temporal
information extraction.

For this, we study how to utilise synthetic data to inject knowledge into
a language model. To utilise a language model, we reformulate temporal
information extraction and normalisation tasks as a question and answering
task. The main hypothesis is that we can inject a numeracy skill into a language
model for this temporal information extraction task by utilising synthetic data
generated by the rules. To achieve this, we propose a data augmentation
technique that uses a set of regular expressions for generating synthetic data.
Also, we propose multi-task learning that includes an auxiliary task to receive
more training signals from the existing training data. We empirically evaluate the
proposed methods on a custom dataset of free text sleep diaries. Experimental
results show the effectiveness of using synthetic data and the multi-task approach
can contribute to performance improvement when it utilises the synthetic data
for training.

This chapter studies the following research questions:

RQ1. How can we fine-tune a pre-trained language model when only a
small-sized training set for the target task is available?

RQ3. Can we exploit other resources (e.g., knowledge, databases, et cetera)
during fine-tuning to improve the performance of a pre-trained language
model?

5.1 Introduction

Extracting temporal information from text is important linguistic skill to process
health-related text. Also, there are a lot of potential applications of temporal
information extraction in the health-related domain, including forecasting
treatment effect (Choi et al., 2016), early detecting diseases (Khanday et al.,
2020), and tracking treatment progress (Demner-Fushman et al., 2021). With
the recent trends of telehealth, an automated system that can extract temporal
information from the health-related narrative text can provide benefits to not
only healthcare professionals but also recipients enabling active engagement,
such as self-monitoring.
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Figure 5.1: Example of free-text sleep diary (top) and the extracted temporal
information (down).

In this paper, we consider the use-case of a sleep diary, which is a summary of
sleep designed to gather information about daily sleep patterns (Carney et al.,
2012). A typical sleep diary consists of a series of close-ended questions to
record the time. By writing sleep diaries, people can keep track of sleep, monitor
sleep habits, and document sleeping problems which can be shared with their
sleep therapists. We focus on extracting temporal information from a free-text
sleep diary, To achieve this, a system should extract temporal expressions from
the unstructured user-generated text and normalise the extracted temporal
expressions into a standard format, as illustrated in Figure 5.1.

Temporal information extraction from user-generated text is a challenging task.
First of all, it requires processing not only text but also numbers (e.g., 11pm or
23:00). But recent pre-trained language models (Devlin et al., 2019; Yang et al.,
2019) have difficulty in processing numbers (Saxton et al., 2018; Ravichander
et al., 2019; Dua et al., 2019) because these language models are pre-trained
with language modelling objectives. Even though there have been recent studies
on training language models to process numerical information (Andor et al.,
2019; Geva et al., 2020), the remaining challenge is how to obtain a large amount
of training data.

A second challenge is that there are various ways of describing the same
normalised time. For example, the normalised time 23:00 can be expressed as
11, 11 pm, 23:00, eleven o’clock, etc. This issue is, even more, severe when
dealing with user-generated text that is typically noisy: the user-generated
text is prone to spelling errors and grammatical errors and contains a lot of
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abbreviations (Petz et al., 2013). To address this, a sufficient amount of training
dataset containing pairs of various temporal expressions and normalised time
values is required.

A third challenge is that there are different types of temporal expressions which
of each is difficult to extract. For example, temporal expressions include not
only standalone times (e.g., 23:00) but also relative times (e.g., 5 minutes after),
counts (e.g., 3 times), duration (e.g., for an hour), and frequencies (e.g., once per
hour). For relative time expressions, the challenge is how to annotate temporal
expressions and model dependencies. For count time expressions, the challenge
is to deal with ambiguous terms, such as ‘several times’ and ‘a few times’.

The last challenge is how to collect large-scale data while developing a proof-of-
concept model to validate the hypothesis. Especially for health-related data,
the data collection requires rigorous process of considering privacy and ethical
aspects, which might result in a slow process. Moreover, typical machine
learning development process includes the multiple cycles of collecting a new
dataset and updating a model to improve the performance of model. Therefore,
the challenge is how to train a machine leanring model when only a low very
low amount of training data is available.

Therefore, the main research question of this paper is how to extract temporal
information from user-generated noisy text with the limited number of training
data. To this end, we propose a synthetic data generation algorithm to augment
the size of training data. We also propose a multi-task model and investigate
whether the multi-task learning strategy is beneficial to the target task by
exploiting additional training signals from the existing training data. The main
contributions of this paper include the followings:

• A new custom dataset has been collected to demonstrate the success of
the free-text sleep diary use-case (Section 5.3).

• The temporal information extraction and normalisation tasks are
reformulated as a question and answering task (Section 5.4.1).

• A novel model that can extract temporal expressions from unstructured
text and normalise them into the standard format is proposed (Sec-
tion 5.4.2).

• Experimental results show that utilising synthetic data and multi-task
learning can be beneficial to performance improvement (Section 5.5.5).

• We also provide further analysis on experimental results to reveal insights
of the model behaviours (Section 5.6).
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5.2 Related Work

There are two lines of approach in temporal information processing. One is rule-
based and the other is machine learning-based. Generally, rule-based systems
achieve high performances in a normalisation task (Chang and Manning, 2012).
However, rule-based systems have difficulties in dealing with ambiguous phrases
or relative expressions (Verhagen et al., 2010; Chang and Manning, 2012).

Another line of approach is machine learning-based approaches. Previous works
have focused on detecting temporal links between entities and classify the
temporal relations between them (Ning et al., 2017; Meng and Rumshisky,
2018) rather than predicting the exact time of events. Recently, Leeuwenberg
and Moens (2020) propose a system that can directly extract start and end-
points for events from the text. However, the remaining gap is that it is not
entirely end-to-end: Leeuwenberg and Moens (2020) used the text with ground
truth event spans and normalized temporal expressions as inputs. Moreover,
even though machine learning models show promising results, the fundamental
challenge is how to obtain data. Not only data acquisition can be difficult but
also data labelling can be time-consuming and expensive.

5.3 Sleep Diary Analysis

This section describes the dataset collected for experiments. The following
subsections explain the details of use-case definition, data collection protocol,
data labelling scheme, and an initial data analysis result.

5.3.1 Use-Case Definition

A sleep diary is a summary of sleep designed to gather information about daily
sleep patterns. A typical sleep diary consists of a series of close-ended questions
to record the time (i.e., the time people went to bed last night, woke up, etc),
factors that may have influenced the way people slept, and how people felt
when they woke up. In this study, we introduce free-text sleep diary use-case
that allows people to describe their nights’ of sleep in text. The goal of this
study is to extract structured information from unstructured sleep diaries, as
described in Figure 5.1.
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Table 5.1: The list of sleep-related event entities used in this study.

Event entity Explanation

bed time The time when the participant went to bed/bedroom.
lights off The time when the participant switched off the lights and

began trying to fall asleep.
sleep time The time when the participant fell asleep
sleep latency The amount of time it took for the participant to fall asleep

after deciding to go to sleep.
sleep
disturbance

The times when the participant’s sleep was disturbed.

wake up The time when the participant woke up from their sleep.
out of bed The time when the participant finally got out of bed to start

their day.
sleep duration The total duration of time the user was asleep.

5.3.2 Data Collection Protocol

We conducted an online survey via Amazon’s Mechanical Turk (MTurk) to
collect experimental data. At the beginning of the survey, the participants were
given a questionnaire with a brief background of the study purpose. Then the
participants were asked to provide information about their sleep of the previous
night via an open-ended question (i.e., “Please describe, in a few lines, your
sleep last night.”). The details of data subject selection criteria and examples
of responses are given in Appendix 5.A. In total, 600 participant inputs are
collected and used for the experiments.

5.3.3 Data Labelling Scheme

To annotate the collected data, several sleep-related event entities are defined
based on sleep study (Carney et al., 2012) as summarised in Table 5.1. Each
event entity text was annotated with its span (i.e., start and end positions in the
text), entity label, expression type (i.e., standalone, relative1, count, frequency2),
and normalised time value. Expression types are used to assign a specific type
value: None, +/-, *, t for standalone, relative, frequency, count, respectively. A
normalised time value includes a type value and 4 digits indicating HH:MM,
except for a count type: for an entity with a count type, a normalised time

1Relative type includes both relative time (e.g., after 5 minutes) and duration (e.g., for 5
minutes).

2Frequency type includes expressions of events occurring periodically (e.g., every 1 hour)
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Figure 5.2: Distribution of the annotated data over the event entities.

value is a cardinal number padded with leading zeros (e.g., 1 becomes 0001).
Also, we set rules for ambiguous expressions. For example, ‘a lot of times’,
‘several times’, and ‘many times’ are annotated as five times (t0005) and ‘a few
times’, ‘a couple times’ are annotated as two times (t0002). The example of an
annotated data point is illustrated in Appendix 5.B.

Figure 5.2 shows the distribution of the collected data set over the sleep-related
event entities. It is observed that sleep_disturbance entity appears more
than other entities. This is because different types of sleep disturbance are
often mentioned together (i.e., “I woke up 1 time to use restroom at midnight”).
Meanwhile, some entities (e.g., lights_off, sleep_latency, out_of_bed,
sleep_duration) are often missing in sleep diary entries. In general,
bed_time and wake_up entities appear once per each sleep diary entry.

5.4 Multi-Task Temporal Information Extraction
Model

5.4.1 Task Formulation

We formulate a temporal information extraction and normalisation task similar
to a question and answering task. Therefore, each data point is transformed
into <entity, text, answer> where the entity is a sleep event entity label, the
text is sleep diary text, and the answer is a normalised time with a type value
and 4 digits. For example, a system is expected to predict a list of answers
[None, 2, 2, 3, 0] given input <bed time, I went to bed at half past 10...>.
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Formally, an entity qj ∈ Q, where Q is the set of the sleep-related event entities
decribed in Table 5.1, is tokenised3 with mj tokens qj = [q1

j , ..., q
mj

j ] and sleep
diary text is tokenised with ni tokens pi = [p1

i , ..., pni
i ]. Then the task is

to predict an answer aij = [atype
ij , at1

ij , at2
ij , at3

ij , at4
ij ] given a sequence of tokens

[[CLS] qj [SEP] pi, [SEP]], where [CLS] and [SEP] are special tokens for
classification and separation, respectively. atype

ij is the ground truth label for the
type value of the normalised time and at1

ij , at2
ij , at3

ij , and at4
ij is the the ground

truth labels for the each digit of the normalised time.

5.4.2 Model Architecture

We propose a multi-task model that utilises a pre-trained language model with
specific heads, motivated by recent works (Andor et al., 2019; Geva et al., 2020).
The overview of the proposed model is illustrated in Figure 5.3.

Firstly, the model computes eij = [ecls
ij , .., e

lij

ij ] which are contextualised
representations for the lij = mj + ni + 3 input tokens ([CLS] qj [SEP] pi,
[SEP]) by using a pre-trained language model BERT (Devlin et al., 2019).
The contextualised embedding vector ecls

ij ∈ Rd×1, corresponding to the
classification token [CLS], is fed to the type classification head (Htype) that
uses a fully-connected layer followed by a softmax to compute distributions
over the type values {None, +, -, *, t}. Then the remaining sequence of
contextualised embedding vectors [e2

ij , .., e
lij

ij ] is used to create pooled embedding
epool

ij ∈ Rd×1 by using average pooling. Then the pooled embedding epool
ij is

passed to normalised time value heads (Ht1, Ht2, Ht3, Ht4). Ht1 head computes a
distribution over the number {0, 1, 2}4 by using a fully-connected layer followed
by a softmax layer. Similarly, Ht2, Ht3, and Ht4 heads compute distributions
over the numbers {0, ..., 9}.

The contextualised embedding vectors [e2
ij , .., e

lij

ij ] are fed to additional answer
span heads, Hstart and Hend, to compute a score for each token, corresponding
to whether that token is the start or the end of the answer span, respectively.
The start and end probability for each token is computed as follow:

pstart
ij = softmax(Hstart(e2

ij), ..., Hstart(elij

ij )) (5.1)

pend
ij = softmax(Hend(e2

ij), ..., Hend(elij

ij )) (5.2)
3Underbars are replaced by whitespace characters during tokenisation.
4Since the answer is formulated as a standard time format (e.g., HH:MM), the first digit

is limited to {0, 1, 2}.
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Figure 5.3: Illustration of the proposed model.

Normalised time prediction loss For normalised time prediction, cross-entropy
between the target answer and the model estimation is used to compute
Lt1 ,Lt2 ,Lt3 ,Lt4 , and Ltype which is a loss function for each head, respectively.
Then the time loss function (Ltime) is defined as the linear combination of the
each loss function, i.e.

Ltime = αLtype + β(Lt1 + Lt2 + Lt3 + Lt4) (5.3)

Answer span detection loss For answer span detection, we follow the previous
work on a question and answering task by using a pre-trained language model
(Devlin et al., 2019) to compute cross-entropy losses for the start Lstart and end
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Lend. Then the span loss function ( Lspan) is defined as the sum of the start
loss and the end loss:

Lspan = Lstart + Lend (5.4)

Multi-task loss The final multi-task loss function ( Lmulti) is defined as the
linear combination of the normalised time prediction and answer span detection
loss functions:

Lmulti = Ltime + γLspan (5.5)

5.4.3 Synthetic data generation

To augment the size of annotated data containing temporal information, we
propose a simple yet effective rule-based synthetic data generation algorithm.
Figure 5.4 illustrates the proposed algorithm. The first step is to create a
template by masking out labelled event entities from the annotated data and
replacing them with placeholders. The second step is to generate random
entity types and corresponding normalised time values. Then the randomly
generated normalised time values are translated into texts by using regular
expressions. The last step is to replace placeholders with the translated texts.
Details of regular expressions and examples of generated texts are given in the
Appendix 5.C.

5.5 Experiments

5.5.1 Dataset

The collected dataset from the Section 5.3 was used for the experiments. We
randomly split the collected data (n = 600) into train, validation, and test sets
with the ratio of 0.8, 0.1, and 0.1. After splitting data sets, we dropped the
data points that do not contain any event entities. During pre-processing, we
lowercased and tokenised data sets by using a WordPiece algorithm Schuster
and Nakajima (2012). Numbers and punctuation symbols were not removed
during pre-processing because they play important role in temporal expressions.
Table 5.2 shows the statistics of each data set after pre-processing.
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Figure 5.4: Illustration of the proposed synthetic data generation algorithm to
augment the size of training data.

Table 5.2: Data set statistics across the different splits

Statistics Train Valid Test
# sleep diaries 467 56 57
Total # tokens 197,695 24,007 23,528
Unique # tokens 1,687 604 585
Avg. # tokens/diary 95.9 101.7 95.3
Total # entities 2061 236 247
Avg. # entities/diary 4.4 4.2 4.3
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The proposed synthetic data generation algorithm is applied to the train set
to augment the size by a factor of k. The validation set is used to check the
training progress and perform early stopping. The test set is used to evaluate
the performance of the trained model.

5.5.2 Settings

We use a pre-trained BERT to implement the proposed model. All heads
are implemented as fully-connected layers with dropout followed by softmax
functions. Also, to investigate the effect of multi-task learning, we implement a
baseline model (BASE) that uses only normalised time prediction loss (Ltime)
and a multi-task model (MULTI) that uses multi-task loss (Lmulti), as defined
as:

Ltime = αLtype + β(Lt1 + Lt2 + Lt3 + Lt4) (5.6)

Lspan = Lstart + Lend (5.7)

Lmulti = Ltime + γLspan (5.8)

α, β, and γ are set to 0.25, 1, and 0.25, respectively. See Appendix 5.D for
more system and training details.

5.5.3 Configuration

To configure the input and output of a model, each data point is expanded
into multiple <entity, text, answer> triples. If a single data point contains the
same entity more than once, the ordinal number is added to an entity label
from the second occurrence. For example, second_sleep_disturbance
will be used for the second sleep_disturbance event in a data point. For
sleep_disturbance entity with a count type, the type is also added to an
entity label, i.e., count_sleep_disturbance will be used. For output, a
special character of a normalised time value (i.e., None, +, -, *, t) is used as
a ground truth type value and each digit of a 4 digit normalised time is used
as a ground truth normalised time value. For the multi-task model, the start
and end position of entity text are used as ground truth value of start and end
position, respectively.
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Table 5.3: The performances of the baseline model (BASE) and the multi-
task model (MULTI) on Normalised time prediction (NTP) and Answer span
detection (ASD) tasks. k refers the augmentation factor. ∗ and ∗∗ indicate
that this result is significantly different (approximate randomisation test (Dror
et al., 2018)) from the result without the synthesised data (the first row in that
column) with p-value < 0.05 and < 0.01, respectively. Best performances are
boldfaced.

BASE MULTI
NTP NTP ASD

k micro-EM macro-EM micro-EM macro-EM EM F1
- 82.0 83.9 66.9 62.9 64.9 82.9
×2 83.3 87.2∗ 86.9∗∗ 88.0∗∗ 66.9 85.1
×3 85.3∗ 85.1 88.6∗∗ 91.9∗∗ 66.1 86.7∗

×5 81.6 81.6 86.1∗∗ 86.8∗∗ 64.5 84.1
×8 82.0 83.2 78.4∗∗ 80.8∗∗ 60.8 79.2∗

× 10 72.2∗∗ 74.7∗∗ 68.6 71.2∗ 53.5∗∗ 75.3∗∗

5.5.4 Evaluation Metrics

Normalised time prediction We use Exact Match (EM) as an evaluation
metric. EM considers only when a model predicts both a correct type value
and correct 4 digits of normalised time values as a correct prediction. Since
the experimental data set has an imbalance over event entities, both micro-and
macro-averaged scores are used: the micro-EM score is computed by taking the
average over inputs and the macro-EM score is computed by taking the average
at the entity level.

Answer span detection Following Rajpurkar et al. (2016), we use Exact Match
(EM) and F1 score for answer span detection: EM measures the percentage of
predictions that match the ground truth answers exactly. F1 score measures
the average overlap between the prediction and ground truth answer. We treat
the prediction and ground truth as bags of tokens, and compute the F1 score
per entity and average over all of the entities. Both metrics consider articles,
numbers, and punctuation symbols.

5.5.5 Results and Analysis

Normalised time prediction Table 5.3 summarises the experimental results.
As expected, models trained on the synthetic training data generally achieve
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Table 5.4: Normalised time prediction results per entity label. +SD indicates
that synthetic data are used. ∗ and ∗∗ indicate that this result is significantly
different from the best result in that row (bolded) with p-value < 0.05 and <
0.01, respectively.

BASE MULTI
- +SD - +SD

sleep disturb. 66.1 80.6 50.0 83.9
bed time 95.1 97.6 95.1 95.1
wake up 86.5 86.5 65.4 88.5
sleep time 75.0 69.4 72.2 75.0
lights off 100. 93.3 93.3 100.
sleep latency 95.2 100. 66.7 100.
out of bed 78.6 78.6 35.7 92.9
sleep dur. 75.0 75.0 25.0 100.
micro-EM 82.0∗∗ 85.3∗ 66.9∗∗ 88.6
macro-EM 83.9∗∗ 85.1∗ 62.9∗∗ 91.9

Table 5.5: Normalised time prediction results per expression type. +SD
indicates that synthetic data are used. Best performances are boldfaced.

BASE MULTI
- +SD - +SD

Standalone 86.8 86.3 72.0 90.1
Relative 78.7 78.7 55.3 83.0
Count 37.5 93.8 43.8 87.5

higher performances. Results show that the benefit of using synthetic data
for training shows a peak at k = 3 for both models and the improvements are
statistically significant. However, the benefit of using synthetic data decreases
afterwards. It can even harm the performance of the baseline model when
k = 10.

To further investigate the effects of using synthetic data for training, we calculate
the performance per event entity label as shown in Table 5.4 and the performance
per expression type as shown in Table 5.5. The models trained on synthetic
data with the factor of k = 3 are used for comparison. Table 5.4 shows
that using synthetic data generally improves the performance of almost all
event entities. From both models, the biggest improvements are observed at
sleep_disturbance entity, which is the most frequent entity label in the
training set. However, as shown in Table 5.5, the biggest improvements in terms
of expression type are observed at the count type, which is one of the least
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frequent expression types in the training set. It is worth mentioning that the
count type is only included in sleep_disturbance entity label, as illustrated
in Figure 5.2. These results imply that using synthetic data can be the most
beneficial to both models in terms of predicting normalised time values with
the count type.

Answer span detection The answer span detection results of the multi-task
model are also summarised in Table 5.3. Similar to the normalised time
prediction results, the performances tend to increase till k = 3 and decrease
afterwards. It is observed that the utilising synthetic data with the augmentation
factor k = 3 can provide the significant improvement in terms of F1 measure.
But the effect to the EM measure is not statistically significant (p>.05). It is
also observed that using synthetic data with augmentation factor k = 10 can
significantly harm the performances.

5.6 Discussion

Effects of using synthetic data The first row of Table 5.3 shows that the multi-
task learning model achieves lower normalised time prediction performances than
the baseline model when no synthetic data is used for training. However, when
the multi-task model utilises an appropriate amount of synthetic data (k = 3),
as it is shown in the last two rows in Table 5.4, the multi-task model significantly
outperforms (p < .01) the baseline model without synthetic data. These results
imply two things: 1) multi-task learning can be beneficial to improve the target
performances of normalised time prediction. However, training the multi-task
model may require a larger training set; and 2) the proposed synthetic data
generation algorithm can mitigate this issue to a certain degree. Also, as shown
in the last two rows in Table 5.4, when the same amount of synthetic data
(k = 3) are used for both models, the multi-task model significantly outperforms
(p < .05) the baseline model in terms of normalised time prediction. This result
may not be so surprising since the multi-task model receives additional training
signals during training.

Effects of using multi-task learning To get a further understanding of the
effect of multi-task learning, we conduct a qualitative analysis. In Table 5.6,
we highlight some examples of the predictions of the proposed models. In the
first example, it is observed that both models can process the combination of
number and text (9 pm) and an ambiguous expression (10 ), correctly predicting
corresponding the normalised time values (21:00 and 22:00). It is also observed
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Table 5.6: Qualitative examples showing the outputs of the proposed models.
Underline indicates temporal expressions and red colour indicates wrong
predictions. Due to limited space, we use the following abbreviations: sleep
disturbance (dstb.), the count of sleep disturbance (cnt. dstb.), and the second
occurrence of events (2nd).

Sleep Diary: I went to bed about 9 pm. we sleep with the lights on for
my toddler who co-sleeps. I was asleep about 10. I woke up a lot of times in
the night to blow my nose or to try and get comfortable. I got out of bed at
2:30 am. Sleep was terrible. I feel exhausted today.

BASE MULTI Ground Truth
time time text time text

bed 21:00 21:00 9 pm 21:00 9 pm
sleep 22:00 22:00 about 10 22:00 about 10
cnt. dstb. t0005 t0002 a lot of

times
t0005 a lot of

times
out of bed 02:30 02:30 2:30 am 02:30 2:30 am

Sleep Diary: I turned the lights off at 9:30 layed down in bed at 10 pm. I
fell alseep around 11pm I woke up at 1am to turn on my other side. I fell
back to sleep until 4 am to use the rest room went back to sleep until 5:30 am.

BASE MULTI Ground Truth
time time text time text

lights off 21:30 21:30 9:30 21:30 9:30
bed 22:00 22:00 10 pm 22:00 10 pm
sleep 23:00 23:00 11pm 23:00 11pm
dstb. 01:00 01:00 1am 01:00 1am
2nd dstb. 01:00 04:00 4 am 04:00 4 am
wake up 05:00 05:30 5:30 am 05:30 5:30 am

Sleep Diary: I went to bed around 10p. m. I read for about 30 minutes.
Put my kindle away and was asleep by 10:30. I woke up at 1a. m. and it
took me around 20 minutes to fall back asleep. I woke up at 2:45 and used
the bathroom. I went back to sleep until 4 which is when I normally get up.

BASE MULTI Ground Truth
time time text time text

bed 22:00 22:00 10p. m. 22:00 10p. m.
sleep 22:30 22:30 10:30 22:30 10:30
dstb. 01:00 01:00 1a. m 01:00 1a. m
2nd
sleep

01:00 00:20 1a. m.
and it took
me around
20 minutes

+00:20 20 minutes

2nd dstb. 01:00 01:45 1a. m. 02:45 2:45
wake up 02:45 04:45 - 04:00 until 4
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that the baseline model correctly predicts a normalised time value of a cardinal
number (t0005) from the text-only temporal expression (a lot of times). The
multi-task model fails at predicting the correct normalised time value but
extracts the correct answer span (a lot of times). Based on this observation,
it seems that answer span detection results can be useful to decide how to
synthesise training data, such as generating pairs of <‘a lot of times’, t0005>.

In the second example, it is observed that the baseline model correctly predicts
only the first occurrence of sleep_disturbance entity, predicting the
identical timestamps for the second occurrences. Meanwhile, the multi-task
model correctly predicts both occurrences with correct answer spans. We found
that the multi-task model generally performs better on extracting normalised
time values that occur multiple times in the text. However, in general, both
models have difficulties in dealing with entities that occur several times in a
single sleep diary. It is also observed that the normalised time value heads
(Htype, Ht1, Ht2, Ht3, Ht4) and the answer span heads (Hstart, Hend) of the multi-
task model are not fully aligned: as shown in the third example, the multi-task
model estimates the second sleep disturbance as 01:45 while extracting the
answer span as ‘1a.m’. This error is challenging because the current model is a
black box model so that we do not know where the error occurs and how the
error propagates. To address this issue, one interesting area for future work
may be in investigating shared information between the normalised time value
heads and the answer span heads.

Limitations and Future Work Even though we show the effectiveness of the
proposed method by validating on the collected dataset, some points can be
further studied. First of all, the proposed models estimate a normalised time
value conditioned on an input which is a pair of sleep diary text and sleep-related
event entity label. However, since most sleep diary texts do not contain all
the event entities, an additional module is required to detect which entities are
mentioned in the given text and how many times each entity is mentioned in the
given text. Similar to the previous work by Liu et al. (2020), the answer span
detection head of the proposed multi-task model can be used as a detection
module.

Secondly, even though the proposed models can handle relative expressions by
using specific type values (i.e., +, -), a linking algorithm is currently missing. A
potential solution is to add a head that can predict a starting point, similarly
to the previous work by Leeuwenberg and Moens (2018).

The third limitation is that the proposed models process only temporal
information. To completely analyse sleep diary, extracting contextual and
qualitative information is required (Ibáñez et al., 2018). In the future study, we
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will train a model to extract both temporal and other information from text
data. To achieve this, we will collect more data that are longer and contain rich
information about the context of the night and sleep.

5.7 Conclusions

In this paper, we propose a model that can extract temporal information from
health-related narrative text. We conducted experiments to investigate how to
utilise synthetic data and multi-task learning to improve the performance of
normalised time prediction. Experimental results show that utilising synthetic
data for training can contribute to performance improvement the most when
the augmentation factor is set to 3. The results also show that when multi-task
learning is used with synthetic data appropriately, the performance can be
significantly improved. In the future study, we will extend the current work
to extract not only temporal information but also contextual and qualitative
information from text.

5.8 Ethical Considerations

Table 5.7 summarises ethical and privacy considerations of the data collection
in this study.

Appendix

5.A Details of Data Collection Protocol

Participants were recruited through Amazon’s MTurk-service. We selected data
subjects who meet the following criteria:

• People who are 18 years or older

• People who are USA residents

When participants selected the study, they received a link to the web page
hosting the survey. During the survey, participants were asked to answer an
open-ended question (i.e., “Please describe, in a few lines, your sleep last night.”)
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Table 5.7: Ethical and privacy considerations for the data collection.
Vulnerable groups include military veterans, terminally ill, educationally or
socioeconomically disadvantaged, employees, students who could be unduly
influenced, individuals with lack of or loss of autonomy due to immaturity or
through mental disability that might suggest their consent is not of free will,
etc.

Question Answer

Are children under the age of 18 involved as test subjects in the
study?

No

Are test subjects over the age of 65 involved in the study? Yes
Do the test subjects belong to vulnerable groups? No
Does the study induce harm or discomfort to the test subjects? No
Is there any doubt on the test subjects’ freedom in deciding on
their participation?

No

Collection of any personal data No
Collection of data by means of audio recording No
Collection of data by means of video recording or photographs No
Collection of data by means of observation of test subjects and
logging in written format

No

Collection of data by means of filling-in questionnaires/surveys/in-
terviews

Yes

with the guidance of the following sentences: “While describing your answer,
please include the following information: sleep-related events (e.g., the time you
went to bed, the time you switched off to go to sleep, the time it took you to fall
asleep, the number of times you woke up and the time at those moments, the
time you woke up, the time you got out of bed) and the overall sleep evaluation
or how you refreshed after you woke up.”

At any moment, a participant was allowed to end her/his participation in the
study. In this case, the test participant was not replaced. Furthermore, every
participant was received informed consent, on the landing page that participants
enter when following the link from MTurk. Only answers from the participants
who gave their own consent to the study were used for experiments in this study.
Table 5.8 shows examples of the collected data used for experiments.
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Table 5.8: Examples of responses to the open-ended question regarding the
previous night’s sleep.

ID Answers
#1 I went to bed at 11 pm. I switched off the lights and lay down around

15 minutes before falling asleep. It was a deep sleep and i wake only 1
time to witch off ceiling fan. I had couple of dreams that I remember
partially not scary. I wake up at 6 am. lay on bed for 15 minutes more
and got up.

#2 I turned off the lights around 9:45 PM. I closed my eyes and went to
sleep around 10 PM. I did not wake up at all during the night. I slept
straight through. I woke up at 6 AM. I lied in bed for a few minutes
before actually getting up around 6:05 AM. I felt fairly well rested.

#3 I went to bed at 10:00 and immediately turned off the light. I fell asleep
in just a few minutes. I slept without waking until 5:00. I immediately
got out of bed when I woke up and felt great.

5.B Example of Annotated Data

Figure 5.5 shows the exmample of an annotated data point.

5.C Examples of Synthetic Data
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{’text’:’I went to bed at 10’o clock and I switched
off the light at 11’o clock. After that I fall
asleep in 30 minutes as my guess. I woke up 3
times and I felt restless. I was awake up to 3
hours. I woke up at 7’o clock in the morning
and got out of the bed at 7:45 a.m. My overall
sleep is up to 5 hours and it was not a sound
sleep. If I awake during night then it causes
me heavy headache and drowsiness. But today I
din’t get any of the above symptoms even though
I woke up in the night. I felt fresh in the
morning.’,

’labels’: [
{ ’text’: ’10’o clock’,

’span’: (17, 27),
’entity’: ’bed_time’,
’type’: ’standalone’,
’norm_time’: 2200},

{ ’text’: ’11’o clock’,
’span’: (60, 69),
’entity’: ’lights_off’,
’type’: ’standalone’,
’norm_time’: 2300},

{ ’text’: ’in 30 minutes’,
’span’: (97, 110),
’entity’: ’sleep_latency’,
’type’: ’relative’,
’norm_time’: +0030},

{ ’text’: ’3 times’,
’span’: (134, 141),
’entity’: ’sleep_disturbance’,
’type’: ’count’,
’norm_time’: t0003},

{’text’: ’3 hours’,
’span’: (181, 188),
’entity’: ’sleep_disturbance’,
’type’: ’relative’,
’norm_time’: +0300},

{’text’: ’7’o clock’,
’span’: (203, 212),
’entity’: ’wake_up’,
’type’: ’standalone’,
’norm_time’: 0700},

{’text’: ’7:45 a.m’,
’span’: (254, 261),
’entity’: ’out_of_bed’,
’type’: ’standalone’,
’norm_time’: 0745},

{’text’: ’5 hours’,
’span’: (290, 297),
’entity’: ’sleep_duration’,
’type’: ’relative’,
’norm_time’: +0500}]}

Figure 5.5: Example of annotated data point containing free-text sleep diary
and labels of event entities.
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Table 5.10: Detailed implementation specification.

Item Specification
CPU Intel Xeon W-2123 CPU(3.60 GHz)
GPU NVIDIA GeForce GTX 1080 ti, 11 GB memory
Driver NVIDIA graphic driver ver. 416.34
CUDA Version 10.0
OS Windows 10, 64-bit
Python Version 3.6.6
Pytorch Version 1.5.1

Table 5.11: Hyperparameters for fine-tuning.

Hyperparameter Assignment
α 0.25
β 1.
γ 0.25
max training epoch 9
batch size 32
learning rate 4e− 5
dropout rate 0.1
optimizer AdamW

A synthetic data set was generated by the following steps: 1) Template
generation; 2) Random timestamps generation; and 3) Rule-based timestamps-to-
texts translation. Table 5.9 summarises a set of rules used for timestamp-to-text
translation and the examples of generated texts.

5.D Experimental Settings

The detailed specification of hardware and software is summarised in Table 5.10.
For model deployment, PyTorch version of BERT with the pre-trained weights
bert-base-uncased (Wolf et al., 2019) was used. Table 5.11 summarises
hyperparameter values used for the experiments. All hyperparameters are
obtained based on non-exhaustive experiments. During the inference phase, we
followed the settings from the original paper (Devlin et al., 2019) to compute
the scores of a candidate span.





Chapter 6

Medical Code Prediction:
Multi-Label Classification

This chapter was previously published as:

Shim, H., Lowet, D., Luca, S.,& Vanrumste, B. (2022, July). An exploratory
data analysis: the performance differences of a medical code prediction system
on different demographic groups. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, the 4th Clinical Natural Language Processing
Workshop, pp. 93–102.

From the previous chapters, we have observed how data-efficient methods, either
data augmentation with semi-supervised learning (Chapter 3) or active learning
(Chapter 4) and synthetic data generation with multi-task learning (Chapter 5),
can improve the performance of NLP models in low-resource settings. So
far we haven’t explored the option of using external resources, such as prior
knowledge about the data or existing knowledge bases. To further investigate
the opportunities of utilising external resources, we move into a clinical domain,
where domain-specific knowledge plays a critical role. For this, we conducted an
exploratory data analysis study to identify the gap in the clinical NLP (Ch 6.1)
and proposed methods to fill the identified gap (Ch 6.2).

In Section 6.1, we study a clinical benchmark dataset for medical code prediction
which is often formulated as a multi-label classification problem. This study
has inspired a series of papers studying fairness concerns of biased ML systems

101
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from various application domains. We were intrigued by this and investigated
whether a clinical benchmark dataset contains underlying bias, such as class
imbalance, and its effect on a model’s performance. Data analysis results
indicate that the benchmark dataset and showed that the benchmark dataset is
imbalanced in terms of label classes and demographics. Analysis results also
reveal the performance differences of the benchmark-trained model in different
demographic groups. Finally, we found a negative correlation between label
distribution distance and performance. This result implies that the trained
model performs poorly in the group that contains data whose label set is different
from the global label distribution of the entire data.

Section 6.2 presents a study that aims to address the performance differences in
different demographic groups. This work is motivated by the findings from the
previous study that the model tends to perform differently across demographic
groups. Specifically, we focus on age groups where the performance differences
are most pronounced. The goal is to build a model that performs equally well
across different groups. To this end, we propose two approaches. The first
method is to build an ensemble model, which consists of multiple group-specific
models. Further, we propose a novel weighted loss function that utilises the
prior knowledge of data distributions. The proposed loss function encourages
the model to use per-class weights decided based on the group-specific label
distribution known from the training dataset. The second method formulates
the medical code prediction task as a binary classification problem and proposes
a novel binary classification architecture. The proposed architecture takes a
document text and label information (e.g., a label name) as inputs. We also
propose a data augmentation method for the proposed binary classification
architecture. The proposed data augmentation method replaces the label name
in the input with its synonyms extracted from the knowledge database. Results
show that the ensemble approach with the proposed loss function improves global
performance scores and the binary classification approach performs equally well
across different age groups achieving high fairness scores. Experimental results
also indicate the limitation of the proposed data augmentation method that
degenerates performance.

This chapter studies the following research questions:

RQ1. How can we fine-tune a pre-trained language model when only a
small-sized training set for the target task is available?

RQ3. Can we exploit other resources (e.g., knowledge, databases, et cetera)
during fine-tuning to improve the performance of a pre-trained language
model?
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6.1 Data Analysis Study

6.1.1 Introduction

Medical coding is the process of assigning standard codes, such as The
International Classification of Diseases (ICD) codes, to each clinical document
for documenting records and medical billing purposes. Even though medical
coding is an important process in the healthcare system, it is expensive, time-
consuming, and error-prone (O’malley et al., 2005).

Researchers have investigated approaches for automated ICD coding systems
and there has been great progress with neural network architectures (Kalyan
and Sangeetha, 2020). However, current state-of-the-art models still suffer
from data imbalance issues: since the benchmark dataset is imbalanced in
terms of assigned ICD codes, the model performances differ across ICD codes
(Mullenbach et al., 2018; Li and Yu, 2020; Kim and Ganapathi, 2021; Vu et al.,
2021; Ji et al., 2021). Moreover, a recent study argues that the performances of
models tend to decrease when the ICD codes have fewer training instances (Ji
et al., 2021).

Based on this observation from the literature (i.e., imbalanced ICD code
distribution results in the performance imbalance between the ICD codes),
the goal of this paper is to investigate the effect of the imbalance of different
demographic groups in the training data set on the performances of the
demographic groups. More specifically, we study the following questions: 1)
Is a benchmark dataset for medical code prediction imbalance in terms of the
data subject’s demographic variables (i.e., age, gender, ethnicity, socioeconomic
status)?; 2) If so, would it result in performance differences between demographic
groups? To answer these questions, we analyse the benchmark dataset, reproduce
one of the state-of-the-art models (Li and Yu, 2020), and analyse the performance
of the model. To the best of our knowledge, this is the first attempt to study
the demographic imbalance of the medical code prediction benchmark dataset
and analyse the performance differences between demographic groups.

Our contribution is three-fold. Firstly, we analysed the medical code prediction
benchmark dataset to investigate the underlying imbalance in the dataset
(Section 6.1.4) and reproduced one of the state-of-the-art medical code prediction
models proposed by Li and Yu (2020). Secondly, we propose sample-based
evaluation metrics (Section. 6.1.3) to identify potential biases inside a model
and potential risk of the bias (Section. 6.1.4). Thirdly, we propose a simple label
distance metric to quantify the differences in the label distribution between each
group and the global data (Section. 6.1.3) and found that the label distance
metric is strongly correlated with the performance negatively (Section. 6.1.4).
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We expect that these analytic results could provide a valuable insight to the
natural language processing (NLP) research community working for clinical
applications.

6.1.2 Data

This section includes the information on the benchmark dataset used and the
details of pre-processing steps taken for preparing data for the experiments.
Note that we followed the previous approach to reproduce the result from the
literature. More details are explained in the following subsections.

MIMIC-III dataset

We used Medical Information Mart for Intensive Care (MIMIC-III v1.4.) dataset
(Johnson et al., 2016)1 for the experiments. MIMIC-III is the benchmark
dataset that has been widely used to build a system for automated medical
code prediction (Shi et al., 2017; Mullenbach et al., 2018; Li and Yu, 2020;
Kim and Ganapathi, 2021). For medical code prediction, discharge summary
texts2 are used as inputs and corresponding ICD-9 codes3 are used as output
of a system. In other words, the medical code prediction is formulated as a
multi-label classification where the ground truth of the given input includes one
or more ICD-9 codes.

For benchmarking purposes, Mullenbach et al. (2018) provides script codes
that pre-process the discharge summary text data and splits the dataset by
patient IDs into training, validation, and testing sets4. Also, Mullenbach et al.
(2018) creates two benchmark sets, with full ICD codes as well as with the
top 50 most frequent ICD codes, which are denoted as MIMIC-III full and
MIMIC-III 50, respectively. The MIMIC-III full dataset contains 52,728
discharge summaries with 8,921 unique ICD codes and the MIMIC-III 50
dataset contains 11,366 discharge summaries with 50 unique ICD codes.

In this paper, we only consider the MIMIC-III 50 dataset. Following the
previous works (Li and Yu, 2020; Kim and Ganapathi, 2021; Vu et al., 2021),
we used Mullenbach et al. (2018)’s scripts to split the data which results in
8,066 discharge summaries for training, 1,573 for validation, and 1,729 for
testing. Additionally, we extracted patients’ demographic information from the

1https://physionet.org/content/mimiciii/1.4/
2A discharge summary is a note that summarises information about a hospital stay
3MIMIC-III dataset includes both diagnoses and procedures which occurred during the

patient’s stay
4https://github.com/jamesmullenbach/caml-mimic
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MIMIC-III dataset, including gender, age, ethnicity, and insurance type as a
socioeconomic proxy.

Data pre-processing

Discharge Summary texts One of our objectives is to reproduce the results by
Li and Yu (2020) and analyse the performance. Therefore, we followed the Li and
Yu (2020)’s pre-processing steps which are the same as the work by Mullenbach
et al. (2018). Data cleaning and pre-processing include the following steps: the
discharge summary texts were tokenized, tokens that contain no alphabetic
characters were removed, and all tokens were lowercased. All documents are
truncated to a maximum length of 2500 tokens. More details can be found in
the original paper (Mullenbach et al., 2018).

Demographic data In the MIMIC-III dataset, each unique hospital visit for a
patient is assigned with a unique admission ID. Therefore we used admission ID
to extract the demographic information of patients. The following steps were
taken to pre-process the demographic data: firstly, age values are computed
based on the date of birth data and the admission time data5. Secondly, the four
most frequent values in ethnicity data, including ‘WHITE’, ‘BLACK’, ‘ASIAN’,
‘HISPANIC’, are being kept, whereas the remaining values are combined into
one group and labelled as ‘OTHER’. Thirdly, the three most frequent values in
insurance type data, including ‘Medicare’, ‘Private’, ‘Medicaid’, are being kept,
whereas the other values are combined into one group ‘Other’.

6.1.3 Methods

Data analysis

We analysed the size, as well absolute as relative, of each group and investigated
relationships between variables. Also, we analysed the length of discharge
summary notes and the number of assigned ICD codes per note to investigate
relationships between the length of notes and demographic variables and between
the number of ICD codes per note and demographic variables. We also calculate
the differences in the ICD code label distributions between the entire data and
each group.

5The date of birth data of patients older than 89 have been shifted and the original values
cannot be recovered. Therefore, we assigned the same age value of 90 to all patients who are
older than 89.
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Label distribution distance metric

To calculate the differences in the ICD code label distributions between the
entire data and each group, we used cosine distance6 between ICD code label
representations, each of which is a multi-hot vector R1×50. Specifically, we
compute the average distances between the globally averaged label vector and
the label vector of each data point in groups, which is defined as:

distanceg = 1
Ng

Ng∑
i=1

1− u · vi

||u||2||vi||2
(6.1)

where u is the globally averaged label vector of the entire data and vi is a label
vector of a single data point in the group Dg that contains Ng of data points.
A low distance score means the group contains patients whose label set is close
to the global label distribution of the entire data.

Medical code prediction model

In this study, we study one of the state-of-the-art medical code prediction models
proposed by Li and Yu (2020). There are three important architectural details
in Li and Yu (2020)’s model: firstly, it uses a convolutional layer with multiple
filters where each filter has a different kernel size (Kim, 2014). This multi-filter
convolutional layer allows a model to capture various text patterns with different
word lengths. Secondly, residual connections (He et al., 2016) are used on top
of each filter in the multi-filter convolutional layer. This residual convolutional
layer enlarges the receptive field of the model. Thirdly, the label attention
layer (Mullenbach et al., 2018) is deployed after the multi-filter convolutional
layer. More details on the model architecture can be found in the original
paper (Li and Yu, 2020). For implementation, we re-trained a model by using a
script7 and followed the same hyperparameter setting except the early-stopping
setting: we used a macro-averaged F1 score as an early-stopping criterion with
a patience value 10.

Evaluation metrics

Performance metrics To evaluate the model’s performance, micro-and macro-
averaged F1 scores are widely used in the literature (Shi et al., 2017; Mullenbach

6We used cosine distance because it is widely used to calculate the similarity between
high-dimensional vectors and the distance is always normalised between 0 and 1.

7https://github.com/foxlf823/Multi-Filter-Residual-Convolutional-Neural-Network
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et al., 2018; Li and Yu, 2020). Micro-averaged scores are calculated by treating
each <text input, code label> pair as a separate prediction. Macro-averaged
scores are calculated by averaging metrics computed per label. For recall, the
metrics are computed as follows:

Micro-R =
∑K

k=1 TPk∑K
k=1 TPk + FNk

(6.2)

Macro-R = 1
|K|

K∑
k=1

TPk

TPk + FNk
(6.3)

where TPk and FNk, denote true positive examples and false negative examples
for a specific ICD-9 code label k, respectively. Since we use MIMIC-III 50
dataset, |K| equals 50

Since we focus on performance differences in terms of data subject’s
demographics, we additionally use sample-averaged F1 scores. Sample-averaged
scores are calculated by computing scores at the instance level and averaging
over all instances in the data set. For sample-averaged recall, the metric is
computed as follows:

Sample-R = 1
|N |

N∑
i=1

|yi ∩ ŷi|
|yi|

(6.4)

where yi and ŷi denote the ground truth labels and the predicted labels for the
i-th test example, respectively and N denotes the total number of test samples.
Precision is computed in a similar manner.

For statistical analysis, we conducted the Kruskal-Wallis tests to investigate
differences between the average performance scores of each group. Also,
we computed the Pearson correlation coefficient and p-value for testing
the correlation between the training data size of the group and the model
performance on the group and between label distance of the group and the
model performance on the group. All statistical tests were done by using
sample-F1 scores.

Error metrics Following previous studies (Hardt et al., 2016; Chouldechova,
2017), we consider two metrics to quantify the error of a trained model: false
negative rate (FNR) and false positive rate (FPR) in the sample level. FNR
is the fraction of ICD codes that are failed to be predicted by a system but
included in a ground truth label set. FPR is the fraction of ICD codes that are
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Table 6.1: Error types for computing FNR and FPR.

Error type Target Prediction
FNi,k yi,k = 1 ŷi,k = 0
FPi,k yi,k = 0 ŷi,k = 1
TNi,k yi,k = 0 ŷi,k = 0
TPi,k yi,k = 1 ŷi,k = 1

erroneously predicted by a system but not included in a ground truth label set.
High FNR scores imply low recall scores and high FPR implies high probability
of false alarms. Two metrics are computed as follows:

FNR = 1
|N |

N∑
i=1

FNi

FNi + TPi
(6.5)

FPR = 1
|N |

N∑
i=1

FRi

FPi + TNi
(6.6)

where FNi =
∑K

k=1 FNi,k, FPi =
∑K

k=1 FPi,k, TNi =
∑K

k=1 TNi,k, and
TPi =

∑K
k=1 TPi,k. Table 6.1 summarises how FNi,k, FPi,k, TPi,k, and

TNi,k are computed for each data point xi and its ground truth label set
yi = {yi,1, ..., yi,K}.

To assess the risk of errors, we use the worst-case comparison method (Ghosh
et al., 2021). Also, we conducted Mann–Whitney U tests to investigate the
differences between the error scores of the best and the error scores of the worst
models.

6.1.4 Results

Data analysis results

Table 6.2 summarizes the sample sizes of the data set. It is shown that only
gender variables are well-balanced. For age groups, patients who are 50-89 take
up to 71.2% of the data. Also, the data set includes more White patients than
patients from other ethnic groups. Also, more than half of the entire patients
in the data set are patients with Medicare insurance and only 8.8% of patients
are with Medicaid insurance.

Figure 6.1 shows the relationship between insurance types, Medicare and
Medicaid, and ethnicity variables. It is observed that insurance type has
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Table 6.2: Sample size (absolute and relative) of the groups of gender, age,
ethnicity, and insurance type.

Count (n) Percentage (%)
Total 8066
Gender
F 3593 44.5
M 4473 55.5
Age
0-17 440 5.5
18-29 300 3.7
30-49 1148 14.2
50-69 2931 36.3
70-89 2817 34.9
90+ 430 5.3
Ethnicity
WHITE 5651 70.1
OTHER 1097 13.6
BLACK 799 9.9
HISPANIC 311 3.9
ASIAN 208 2.6
Insurance
Medicare 4440 55.0
Private 2636 32.7
Medicaid 709 8.8
Other 281 3.5

a certain relationship with the patient’s race: 57.7% of White patients are
paying with Medicare, whereas 38.9% of Hispanic patients are paying with
Medicare. On the other hand, 26.4% of Hispanic patients are paying with
Medicaid, whereas only 0.63% of White patients are paying with Medicaid.

Figure 6.2 illustrate the age distribution of each insurance type. Medicare and
Medicaid are two separate, government-run insurance in the United States.
Medicare is available for people age 65 or above and younger people with severe
illnesses and Medicaid is available to low-income individuals under the age of
65 and their families. Because of the eligibility criteria for Medicare, Medicare
includes more older patients compared to other insurance types, as we can see
from the Figure 6.2.

Figure 6.3a and Figure 6.3b show the distribution of the length of a discharge
summary note and the number of ICD codes assigned per note, respectively.
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(a) Percentage of Medicare within each
ethnic group

(b) Percentage of Medicaid within each
ethnic group

Figure 6.1: Relationship between insurance and demographic variables. 95%
confidence intervals are illustrated by lines.

Figure 6.2: Kernel density estimate plot for visualising the age distribution of
each insurance type

The average length is 1529.7 (std=754.9) and the average number of codes
per note is 5.7 (std=3.3). Figure 6.3c and Figure 6.3d illustrate relationship
between patients age and the length of note and the number of codes per note,
respectively. From Figure 6.3c, it is observed that the length of note tends
to increase until age group 50-69 and starts to decrease afterwards. From
Figure 6.3d, positive correlations between age and the number of ICD codes
per note are observed. Other noticeable patterns are not observed in other
demographic variables (i.e., gender, insurance, ethnicity) with the respect to
the length of a discharge summary note and the number of ICD codes assigned
per note.

Figure 6.4 illustrates ICD code distributions. Figure 6.4a shows the entire data
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(a) #. tokens/note (b) #. codes/note (c) #. tokens/note (d) #. codes/note

Figure 6.3: The distribution of the length of a discharge summary note (a) and the
number of ICD codes assigned per note (d). Relationship between the length of notes
and age groups (c) and between the number of ICD codes per note and age groups
(d). X-axes indicate the average number of tokens in a note (a, c) and the average
number of ICD codes per note (b,d ). 95% confidence intervals are illustrated by lines.

Table 6.3: Average label distribution distances between each group and the
global data. Standard deviations are added in parentheses.

Distance
Gender
F 0.613 (0.137)
M 0.615 (0.133)
Age
0-17 0.737 (0.097)
18-29 0.746 (0.111)
30-49 0.684 (0.133)
50-69 0.610 (0.129)
70-89 0.564 (0.116)
90+ 0.560 (0.118)
Ethnicity
WHITE 0.610 (0.135)
OTHER 0.607 (0.131)
BLACK 0.633 (0.135)
HISPANIC 0.646 (0.135)
ASIAN 0.626 (0.143)
Insurance
Medicare 0.579 (0.124)
Private 0.653 (0.135)
Medicaid 0.658 (0.136)
Other 0.691 (0.139)

set has long-tail distribution. Between female and male patient groups, no
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noticeable difference between the label distributions is not observed. In terms
of insurance type and ethnicity, each group shows slightly different ICD code
distributions. Clear differences are observed between age groups: patients whose
ages are younger than 30 (0-17, 18-29) show less spread ICD code distributions
with fewer ICD codes than other age groups. The label distribution distances
between each group and the global data are summarised in Table 6.3. Similar
to the observations from Figure 6.4, age groups 0-17 and 18-29 have the bigger
distance scores.

Performance & error analysis results

Table 6.4 summarises the prediction results on the test set. It is observed that
a re-trained model slight underperforms compared to the original model (Li and
Yu, 2020). The different early-stopping settings might cause this difference. Both
models achieve higher scores in micro-averaged metrics than macro-averaged
metrics, which means the model’s performance on rare labels is worse than on
frequent labels. The sample-averaged metrics are higher than macro-averaged
metrics but lower than micro-averaged metrics.

Noticeable performance differences are observed between age groups, especially
between patients younger than 30 years (18-29) and older than 90 (90+). The
percentages of both groups in the training set are low but patients younger than
30 years get distinctively worse predictions in terms of all F-1 scores. Between
different ethnic groups, it is observed that Hispanic and Asian patients get worse
predictions compared to other patients. Between insurance types, it is also
observed that patients with other types of insurance and Medicaid insurance get
worse predictions compared to patients with Medicare and Private insurance in
sample-averaged F-1 scores.

As the result of the Kruskal-Wallis test, we found statistically significant
differences in sample-averaged F1 scores according to age group (H(4)=46.57,
p<0.001) and insurance type (H(3)=18.58, p<0.001), separately. Close to being
statistically significant is found according to gender (H(1)=3.65, p=0.056) and
no statistically significant difference is found according to ethnicity (H(4)=2.657,
p=0.657).

Error metrics per group are summarised in Table 6.5. Error metrics between
groups show a similar trend as the performance metrics: differences between
age groups are the most pronounced. It is observed that FNR scores tend to
decrease as age increases. However, the largest difference between age groups
is not significant (p=0.06). FPR also tends to increase as the age increases in
the age groups under 90 and the largest difference between the younger group
(18-29) and the older group (70-89) is significant (p<0.001). Patients with
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(a) Entire data set

(b) Gender (c) Insurance type

(d) Age group

(e) Ethnicity

Figure 6.4: ICD code distribution. X-axis indicates the sorted ICD code class label
and Y-axis indicate the percentage of labels observed in the training set.
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Table 6.4: Performances on the MIMIC-III 50 test set. † indicates performances
reported in the paper by Li and Yu (2020). Other results are obtained from
a reproduced model. The percentage of training samples (%) is added in
parentheses after the group labels. Best performances are boldfaced and worst
performances are underlined.

F-1 (%)
Micro Macro Sample

Total
Li and Yu (2020) 67.3† 60.8† -
Reproduced 64.4 59.2 60.6
Gender
F (44.5) 63.2 58.1 59.7
M (55.5) 65.3 59.4 61.4
Age
18-29 (3.7) 53.9 36.1 48.2
30-49 (14.2) 58.9 58.2 52.4
50-69 (36.3) 64.2 57.7 60.9
70-89 (34.9) 65.6 59.2 63.6
90+ (5.3) 67.1 55.9 65.0
Ethnicity
WHITE (70.1) 64.3 59.2 60.8
OTHER (13.6) 64.3 60.9 60.7
BLACK (9.9) 66.2 60.2 61.7
HISPANIC (3.9) 62.0 54.6 56.0
ASIAN (2.6) 64.7 51.2 59.3
Insurance
Medicare (55.0) 65.3 58.4 62.5
Private (32.7) 63.4 58.8 59.0
Medicaid (8.8) 62.9 59.3 57.8
Other (3.5) 56.0 49.3 50.5

other types of insurance take significantly worse scores compared to Medicare
patients in terms of FNR scores. Interestingly, FPR shows different patterns.
For example, patients with Medicare get the worst FPR scores and patients
with Private insurance get the best FPR scores.

Correlation test result

As the result of correlation tests, we found a weak positive correlation (0.43,
p=0.09) between training set size and performance. This result shows that
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Table 6.5: Errors on the MIMIC-III 50 test set. The percentage of training
samples (%) is added in parentheses. Best performances are boldfaced and
worst performances are underlined. ∗ and ∗ ∗ ∗ indicate the error of the worst
model is greater than the error of the best with statistical significance of p=0.05
and p=0.001 (Mann–Whitney U test), respectively.

FNR (%) FPR (%)
Total 40.6 3.8
Gender
F (44.5) 39.7 4.3
M (55.5) 38.0 4.2
largest diff. (↓) 1.7 0.1
smallest ratio (%) (↑) 95.8 98.2
Age
18-29 (3.7) 46.2 2.9
30-49 (14.2) 45.9 3.3
50-69 (36.3) 39.5 3.9
70-89 (34.9) 35.7 5.0
90+ (5.3) 34.1 4.4
largest diff. (↓) 12.2 2.1∗ ∗ ∗

smallest ratio (%) (↑) 73.7 57.7
Ethnicity
WHITE (70.1) 38.7 4.2
OTHER (13.6) 39.3 4.5
BLACK (9.9) 37.0 4.2
HISPANIC (3.9) 42.5 4.2
ASIAN (2.6) 40.3 3.8
largest diff. (↓) 5.4 0.8
smallest ratio (%) (↑) 87.2 83.3
Insurance
Medicare (55.0) 37.0 4.7
Private (32.7) 40.7 3.4
Medicaid (3.5) 41.0 3.6
Other (8.8) 46.9 4.2
largest diff. (↓) 9.8∗ 1.3∗ ∗ ∗

smallest ratio (%) (↑) 79.0 71.5

even though the model performs well for groups with more training data in
general, the relationship is not statistically significant. Contrary to this result,
we found a very strong negative correlation (-0.95, p<0.001) between label
distance and performance. This result implies that the model performs poorly
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Figure 6.5: Label distance of each group and the model performance on each
group. Linear relationships are illustrated by lines determined through linear
regression.

in the groups containing many patients whose label set is different from the
global label distribution of the entire data. The group-specific correlations
between label distances and the performances are illustrated in Figure 6.5. It
is observed that the negative correlation is much more pronounced between
different age groups than in other groups.

6.1.5 Discussion

Impact of the study. The MIMIC-II dataset for medical code prediction
provides opportunities to develop and benchmark models and facilitates natural
language processing research in the clinical domain. Since it is one of the
most frequently used benchmark datasets for medical code prediction, it has
a huge impact on the quality of the developed models. For example, previous
studies (Mullenbach et al., 2018; Li and Yu, 2020; Kim and Ganapathi, 2021;
Vu et al., 2021; Ji et al., 2021) have shown that the ICD code distribution in
the MIMIC-III dataset is imbalanced and it results in performance differences
between ICD codes. In this study, we investigated the data imbalance of the
MIMIC-III 50 data, in terms of the data subject’s demographic factors, and its
effect on the model performance for ICD code prediction.

Evaluation metrics for fairness. In this paper, we proposed metrics that can
correctly evaluate the model’s performance in terms of individual patients’
benefits and potential harms. Especially, we formulated the medical code
prediction task as a multi-label classification task. From a machine learning
perspective, sample-based metrics and label-based metrics are used to evaluate
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the performance of a model in a multi-label classification task (Zhang and
Zhou, 2013). Sample-based and label-based metrics focus on different aspects of
model performance, one in sample-wise performance and the other in label-wise
performance. However, label-based metrics are more frequently used in the
literature (Xiao et al., 2018; Mullenbach et al., 2018; Li and Yu, 2020; Kim
and Ganapathi, 2021; Vu et al., 2021; Ji et al., 2021). Considering a healthcare
application setting where all patients are expected to receive an equal quality
of service, we argue that using sample-based metrics is required to evaluate the
model performance. Also, we propose to use disaggregated metrics (Barocas
et al., 2021), which are metrics evaluated on each group of data, to ensure
that a model is equally accurate for patients from different demographic groups
(Rajkomar et al., 2018; Gichoya et al., 2021).

Correlation between demographic variables We analysed the MIMIC-III
dataset to identify the underlying data imbalance of demographic variables. Our
data analysis results show that the MIMIC-III dataset is imbalanced in terms of
the data subject’s demographics. However, we also found a correlation between
demographic variables. For example, age is correlated with insurance type:
patients older than 65 are likely to be insured with Medicare. This confounding
factor across demographic variables makes it complicated to interpret the main
effects of the data subject’s demographics on the model performance.

Correlation between label distance and performance Based on the previous
study arguing the performances of models tend to decrease when the ICD
codes have fewer training samples (Ji et al., 2021), we hypothesised that the
performance of the model on a demographic group is correlated with the number
of data of that group in the training data set. However, the analysis results
do not support this hypothesis: even though the performance differences are
observed across some demographic groups (i.e., across age groups and insurance
types), the correlation between the number of training data of the group and
the performance of the group is weak. Instead, we found that the label distance
of the group is negatively correlated with the performance of the group. This
result suggests that when the group contains patients whose label set is different
from the global label distribution of the entire data, it is likely that the model
performs poorly in that group.

In terms of machine learning perspective, this issue can be seen as a label shift:
the train and test label distribution is different while the feature distribution
remains the same (Lipton et al., 2018; Guo et al., 2020). To address this issue,
one interesting area for future work may be in re-training the classifier with
adjusted training sample weights (Lipton et al., 2018) or adapting the predictions
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of a pre-trained classifier (Saerens et al., 2002; Du Plessis and Sugiyama, 2014;
Alexandari et al., 2020).

Limitations and future directions There are several limitations to this study.
Firstly, we used a subset of MIMIC-III data with the top 50 most frequent ICD
codes to simplify the analysis. Since the full MIMIC-III dataset contains more
than 47,000 ICD codes, further study is required. Secondly, we only studied the
model proposed by (Li and Yu, 2020). One potential direction is to investigate
the performance of models using pre-trained language models (Zhang et al.,
2020; Ji et al., 2021). Thirdly, we found an issue of confounding factors across
demographic variables, which makes it complicates the interpretation of the
main effects of the data subject’s demographic factors on the model performance.
To address this issue, further analysis of multiple intersectional groups or causal
analysis is required. In future work, we will also investigate how to build a
model that can perform equally well on across all demographic groups.

6.1.6 Conclusion

In this study, we performed an empirical analysis to investigate the data
imbalance of the MIMIC-III 50 dataset and its effect on the model performance
for ICD code prediction. We found that demographic imbalance exists in the
MIMIC-III 50 dataset and a medical code prediction model performs differently
across some demographic groups. Interestingly, the correlation between the
number of training data of the group and the performance of the group is
weak. Instead, we found a negative correlation between the label distance of
the group and the performance of the group. This result suggests that the
model tends to perform poorly in the group whose label distribution is different
from the global label distribution. Potential future research direction includes
further analysis of the main effects of the data subject’s demographic factors on
the model performance and investigation of building a robust and fair model
that can perform equally well across demographic groups with different label
distributions.
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6.2 Model Development Study

6.2.1 Introduction

Researchers have been working on applying NLP technologies for clinical use
cases, such as a medical code assignment task. For example, medical code
assignment is formulated as a multi-label text classification task. The goal
is to train a system that can assign standard medical codes, such as the
International Classification of Diseases (ICD) code (Organization et al., 1978),
to a given clinical document (i.e., discharge summary). This task is often called
medical code prediction which is not trivial because clinical texts contain a
lot of medical terms and abbreviations. Clinical texts are also generally very
long and text fragments that contain linked information are scattered over
documents (Vu et al., 2021). Further, medical knowledge is required to analyse
text (Prakash et al., 2017). Moreover, there is a large number of codes with
long-tail distribution: some codes are frequently observed in the dataset but
others are less frequent and may only have a few instances in the dataset (Shi
et al., 2017; Xie et al., 2019). This data imbalance results in the performance
differences across ICD code classes (Ji et al., 2021) which can also create a
biased model that performs differently across demographic groups (Shim et al.,
2022).

We aim to address the challenges in the development of an NLP system for
medical code assignment. Specifically, we focus on the performance differences
across demographic groups caused by imbalanced data (Shim et al., 2022) and
investigate how to mitigate this. To this end, we propose two approaches: the
first approach is to create group-specific models by further fine-tuning the model
on group-specific data with a novel weighted loss function. The second approach
is to formulate a multi-label classification task as a binary classification task
by providing label information (e.g., label name) as an input. Moreover, we
propose a data augmentation method that replaces the label name in the input
with its synonyms extracted from the knowledge database.

The first approach is motivated by two observations: firstly, the traditional
weighted binary cross entropy loss function applies a positive weight to the loss
from positive samples by trading off between precision and recall. Generally,
this weight is defined as the number of positive samples over the number of
negative samples in the data. Secondly, in our previous study (Chapter 6.1), we
show that each group has different label distribution. For example, some labels
are more frequent in a group than others. By combining these two observations,
we propose a loss function that defines class-specific weights based on the group-
specific label distributions which we refer to as distribution-aware weighted loss
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(DAWL) (Section 6.2.3). In experiments, we compare the proposed DAWL to
the binary cross-entropy, weighted binary cross-entropy, focal loss (Lin et al.,
2017), and asymmetric loss (Ridnik et al., 2021).

In the second approach, we formulate a multi-label classification task as a binary
classification task by utilising label information as an input (Section 6.2.3).
We refer to this approach "As Binary Classification (ABC)" approach. For
example, a model takes a clinical document and a specific ICD code as an input
and predicts whether the given ICD code has been assigned or not. Since this
approach utilises the label information, it can create better label-specific feature
representations. This approach has been proved to be effective, especially when
used with the attention-based model (i.e., BERT) because providing a label as
an input can be seen as providing a hint to the model where to focus (Sun et al.,
2019a; Halder et al., 2020; Shim et al., 2021). It also has the effect of increasing
the size of the training dataset by expanding a sentence into multiple sentence-
label pairs. This binary classification approach can also be used with other
model architectures, such as CNN-based Siamese networks (Koch et al., 2015).
Together with the ABC formulation, we propose a data augmentation method
that replaces a label name in a input with its synonyms. To this end, we utilise a
database, Universal Medical Language System (UMLS)(Bodenreider, 2004), that
contains information related to ICD label classes (e.g., ICD code names, disease
descriptions, synonyms, etc) for augmenting the training data. We compare the
proposed ABC approach to multi-label classification approaches and investigate
how ABC formulation and data augmentation affect performance.

Experimental results indicate that performance improves when using the
knowledge of the group-specific label distribution for weighting losses.
Further, results demonstrate that the ABC approach can achieve equally
good performances across demographic groups compared to the multi-label
classification model which performs unequally across demographic groups
creating a large demographic disparity. Error analysis reveals interesting model
behaviours: the model with the proposed weighted loss function and ABC
approach improve the missing rate (false negative rate) substantially while
marginally increasing the false alarm rate (false positive rate) compared to the
baseline models. Since there are extremely many medical codes and human
coders are prone to missing assigning codes, we expect that a system that
achieves a low missing rate could support human coders.
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6.2.2 Related Works

Loss functions

Weighted Binary Cross-Entropy Loss Binary cross entropy loss (LBCE) is
defined as Eq. 6.7. Since BCE loss treats positive samples and negative samples
equally, the losses from negative samples overwhelm the losses in positive
samples when the training dataset contains more negative samples than positive
samples. To mitigate this, typically weighted binary cross entropy loss (LW BCE)
is used to trade off recall and precision by adding a positive weight w:

LBCE = −
N∑

i=0
(yilog(ŷi) + (1− yi)log(1− ŷi)) (6.7)

LW BCE = −
N∑

i=0
(wyilog(ŷi) + (1− yi)log(1− ŷi)) (6.8)

where yi and ŷi are the ground truth label and the model output (i.e., sigmoid
output) for ith sample, respectively. N is the number of samples. For simplicity,
we only consider a binary loss from a label class lk in an entire label set
lk ∈ {l1, ..., lK} for multi-label classification. As it is shown in Eq. 6.8, weighted
binary cross entropy adds a positive weight w to change the importance of
misclassifying positive samples. If w > 1, the model more to increases the recall.
On the other hand, if w < 1, the model increases the precision.

For simplicity, we will use the following expressions:

LBCE = −L+ − L− (6.9)

LW BCE = −wL+ − L− (6.10)

Focal Loss Instead of scaling the losses from positive samples, focal loss (LF L)
is proposed to deal with the class imbalance issue by down-weighting the losses
assigned to well-classified examples (Lin et al., 2017). Focal loss is defined as:

LF L = −(1− ŷ)γL+ − ŷγL− (6.11)
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which includes a modulating factor ((1 − ŷ)γ for positive samples and ŷγ for
negative samples) with a focusing value γ ≥ 0. By setting a large focusing
value γ, the contribution of easy examples can be decreased in the loss function
resulting in focusing more on difficult samples during training. When using
γ = 0, the loss function equals the original binary cross-entropy loss.

However, the downside of focal loss is that it also down-weights the learning
signals from positive samples. In a multi-label classification setting, especially
with imbalanced data, it is important to keep the learning signals from positive
samples even though the signals are from easy samples.

Asymmetric Loss Motivated by focal loss, asymmetric loss (LASL) is proposed
for a multi-label classification setting where the number of negative samples
per category is much higher than the number of positive samples (Ridnik et al.,
2021). The main difference between focal loss and asymmetric loss is that
asymmetric loss introduces asymmetric focusing, which means that two different
focusing factors are used for positive and negative samples, respectively, as
defined as:

LASL = −(1− ŷ)γ+L+ − ŷγ−L− (6.12)

where γ− > γ+ to more focus on the contribution of positive samples than
negative samples.

Even though asymmetric loss addresses the imbalance between positive and
negative samples, the remaining gap is when the degree of imbalances changes
across labels in a multi-label setting. In other words, asymmetric loss equally
modulates losses from negative samples without differentiating frequent labels
and rare labels.

Binary Classification Formulation

Binary classification formulation is a way of translating a multi-label
classification problem into a binary classification problem. A traditional multi-
label classification system takes a document as an input and predicts one or more
labels. When building a multi-label classification system with neural networks,
the final classification layer is employed, which contains multiple neurons with
their sigmoid activation functions. Binary classification formulation approach
reframes a multi-label classification problem as a binary classification problem by
providing label information (i.e., label name) as a part of the input. The benefit
of this binary classification formulation is three-fold: firstly, this approach
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lessens the burden of a classifier by providing label information as an input.
Secondly, this approach narrows down multi-label classification search space
(i.e., multiple labels) into binary decision space (either True or False). Thirdly,
it increases the size of training data. For example, an input sentence si is
expanded into multiple sentence-label pairs (si, l1), (si, l2), .., (si, lK) with label
category lk is a label set lk ∈ {l1, ..., lK}.

Binary classification formulation can be applied to various tasks. For example,
Sun et al. (2019a); Shim et al. (2021) reframe aspect-based sentiment analysis
task as a binary classification problem by providing an aspect label as a part
of the input. Similarly, Koch et al. (2015); Halder et al. (2020) employ binary
classification formulation for few-shot learning. For a model that has an
attention mechanism (Bahdanau et al., 2015; Luong et al., 2015), such as
Transformer (Vaswani et al., 2017), binary classification formulation allows
the model to create better representation by providing the label information
as a hint for attention. One drawback of using an attention model is that it
requires multiple forward passes which is not practical for applications that
deal with a large number of labels, such as medical coding (Ziletti et al.,
2022). Another drawback of Transformer-based models is that computational
complexity increases quadratically as the input length increases. Because clinical
documents are typically long, complexity grows quadratically resulting in a
huge computational burden. Therefore, binary classification formulation with a
model that has separate architectures for text input and labels input, such as
a Siamese network (Koch et al., 2015) 8, is more efficient when dealing with
lengthy clinical documents.

6.2.3 Methods

In this study, we propose two approaches to address the performance difference
issue. As the first approach, we propose a novel weighted loss that uses prior
knowledge of class distribution. In the second approach, we reformulate a
multi-label classification task as a binary classification task and propose a novel
model architecture. Further, we propose a data augmentation method that uses
an external knowledge base for the binary classification model.

8A typical Siamese Neural Network contains two identical sub-networks that share
parameters and weights. A Siamese Neural Network produces two output vectors based on
two different inputs. And the final layer of the network compares the two output vectors.
Generally, one of the output vectors is precomputed, and forming a baseline against which
the other output vector is compared.
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Distribution-Aware Weighted Loss

We propose a distribution-aware weighted loss (DAWL), designed to address
the data imbalance of the multi-label datasets for group-specific training. For
this approach, we extend the traditional weighted binary loss function to a
multi-label setting. The proposed a distribution-aware weighted loss function:

Lg = −wk
g Lg+ − Lg− (6.13)

where k ∈ {1, .., K} is a label class, g ∈ {1, .., G} is a demographic group class,
and wk

g is the label-specific weight value that we calculate per group. In a
multi-label setting with a highly imbalanced dataset, defining the weight value
based on the number of minority samples over the number of majority samples
could result in overwhelmingly large losses from extremely rare samples. To
avoid this, we define a weight wk

g ∈ [1, 2] as follow:

wk
g = 1 + (1−N lk=pos

g /Ng) (6.14)

where Ng is the size of the group-specific data set Dg and N lk=pos
g is the number

of samples that contains positive label for lk within a group data set Dg, where
the entire dataset D consists of group-specific subsets D = {D1, ..., DG}.

As Binary Classification Approach

Motivated by the previous works (Koch et al., 2015; Sun et al., 2019a; Halder
et al., 2020; Shim et al., 2021), we reformulate the medical code prediction
task, which is multi-label classification, as binary classification, which we refer
it "As Binary Classification (ABC)" approach. The main idea of the ABC
approach is providing a label name (i.e., in our case, disease name) to a model
as an input. The proposed method is similar to the previous label attention
model (Vu et al., 2021) that consists of |K| different binary classification layers,
which is a one-vs-all approach (Rifkin and Klautau, 2004). However, the main
difference is that the proposed method uses a unified classification layer and
leverages the label information which is given as an input.

Figure 6.6 illustrates the proposed ABC model. There are four main parts to
the proposed ABC model: a document encoder, a label encoder, an attention
module, and a classification layer. The document and label encoders produce
document and label representations based on the given document embeddings
and label embeddings, respectively. Then the attention module takes both
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Figure 6.6: Illustration of "as binary classification (ABC)" approach.

representations to create the final label-specific document representations that
are used for final classification. The final classification result is binary, either
True (i.e., the given label has been assigned to the given document) or False
(i.e., the given label has not been assigned to the given document). In the
following parts, we describe each module in detail.

Embedding Layer The embedding layer takes a sequence of words from a
clinical document wd = [wd

1 , wd
2 , ..., wd

N ] and a sequence of words from a label
name wlk = [wlk

1 , wlk
2 , ..., wlk

n ], where N and n denote the length of the clinical
document and the label name of lk

9, respectively. A pre-trained embedding
layer, such as word2vec (Mikolov et al., 2013), maps each word into vector space
resulting in a sequence of vector representations Ed = [ed

1, ..., ed
N ] ∈ RN×de and

Elk = [elk
1 , ..., elk

n ] ∈ Rn×de where de is the dimension of each word embedding.
9We tested both labels name consists of a few words and label descriptions with 1-2

sentences and better results were observed at a model with label names. Therefore we use
label names for label representation in this study.
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Document Encoder The document encoder projects the document embeddings
Ed into a document representation x:

x = fθ(Ed) (6.15)

where fθ is a document encoder model. We use the MultiResCNN model
proposed by Li and Yu (2020) as the document encoder. MultiResCNN consists
of convolutional layers with m different filters. The document encoder outputs
x ∈ RN×(m×dp) where dp indicates the out-channel size of a convolutional filter.
More details of model architecture can be found in the appendix (Appendix 6.A)
or the original paper (Li and Yu, 2020).

Label Encoder The label encoder maps the label embeddings Elk into a label
representation qk:

qk = gθ(El) (6.16)

where gθ is a single-layer feed-forward neural network10. The label encoder
projects a series of input embeddings into a single vector representation qk ∈ Rde .

Attention layer We use the document and label representations to compute
label-specific document representation by using the attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015). We take the linear transformation
of the document representation x to create a latent vector. The projected latent
vector and the label representation qk are used to calculate attention scores
a ∈ RN . Formally:

a = softmax(qktanh(WhxT + bh)) (6.17)

v = ax (6.18)

where Wh ∈ Rde×(m×dp) and bh ∈ Rde×N are trainable parameters. The
computed vector v ∈ R(m×dp) is the final label-specific document representation.

10We also tested the same architecture of the document encoder but the result with a
one-layer network was better.
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Classification layer Finally, the label-specific document representation is fed
into a classification layer to produce a label-specific prediction:

z = WcvT + bc (6.19)

ŷk
d = σ(z) (6.20)

where Wc ∈ R(m×dp) and bc are trainable parameters and σ(·) is a sigmoid
function. The training objective is to minimise the binary cross entropy loss
between the prediction ŷk

d and the ground truth yk
d .

Data Augmentation

Motivated by the previous work (Shim et al., 2021), we propose a data
augmentation technique that replace a label name in a input with its synonyms
by using an external knowledge base. The proposed binary classification model
ABCθ takes document d ∈ Dg and label name as an input lk and makes a
prediction ŷk

d = ABCθ(d, lk). To augment the training data, we extract a set of
synonyms l̄k,s of each label lk, where s ∈ {1, ..., sk}. Then we replace the label
name lk in the document-label pair (d, lk) data with its synonyms l̄k,s to create
augmented dataset {(d, l̄k,1), ..., (d, l̄k,s)}.

6.2.4 Experiments

Data

Following the previous studies (Mullenbach et al., 2018; Li and Yu, 2020; Shim
et al., 2022), pre-processing steps are as follows: firstly, the discharge summary
texts were tokenised and lowercase. Then, tokens that contain no alphabetic
characters were removed. All documents are truncated to a maximum length of
2500 tokens. We extract demographic information: age values are computed
based on the date of birth data and the admission time data. We follow the
same data pre-processing steps of the previous study (Ch. 6.1) and more details
on data and pre-processing can be found in Ch. 6.1.2.

Table 6.6 summarises the size of data sets used in the experiments. Following
the previous study (Ch 6.1), we use the MIMIC-III 50 dataset (Johnson
et al., 2016) which contains 11,366 discharge summaries with 50 unique ICD
codes. Specifically, we focus on building a medical coding system that performs
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Table 6.6: Sample size of the train, validation, test set (top) and the size of
age group-specific training sets (bottom).

Train Valid Test Total
Entire 7626 1571 1729 10966
Subset
D18−29 300 46 54 400
D30−49 1148 209 228 1585
D50−69 2931 634 693 4258
D70−89 2817 593 642 4052
D90+ 430 89 112 631

equally well across different age groups. For this, we create subsets of data
by splitting the entire training data based on the age of data subjects, where
Dsubsets = {D18-29, D30-49, D50-69, D70-89, D90+}.

Settings

In the experiments, we compare a baseline model, ensemble models with different
loss functions, and a binary approach without and with data augmentation.
Following the previous study (Ch. 6.1), we use a state-of-the-art medical code
prediction model proposed by Li and Yu (2020) as a baseline architecture. For
a baseline model (Baseline), we train a single model with the entire training
dataset.

For ensemble models, we create group-specific models by continuing fine-tuning
the trained baseline model (Baseline) on subsets of group-specific training
data. A baseline ensemble model (Ensemble-Baseline) is trained by using
a standard binary classification loss. We compare the baseline ensemble model
and other ensemble model with different loss functions, including the proposed
distribution-aware weighted loss (Ensemble-DAWL), focal loss (Lin et al., 2017)
(Ensemble-FL), and asymmetric loss (Ridnik et al., 2021) (Ensemble-ASL).

Finally, we train a unified model by formulating a problem as binary classification
(ABC). Additionally, we train ABC model with augmented data (ABC-aug) by
utilising an external medical knowledge database (UMLS (Bodenreider, 2004)).
For data augmentation, we extract synonyms of each ICD code label (i.e.,
disease name) from the database and create augmented training samples by
pairing an input text with the extracted synonyms. We create two different
augmented data sets: firstly, we augment all data from the original dataset.
Secondly, we only augment data with infrequent label classes. Infrequent label
classes are defined as the label classes that are observed less than the median
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Table 6.7: Hyperparameter settings.

Hyperparameter Assignment
Kernel sizes {3, 5, 9, 15, 19, 25}
Focal loss γ 1
Asymmetric loss γ+ 0
Asymmetric loss γ− 2
max training epoch (baseline) 200
max training epoch
(ensemble, as binary classification) 20

patience p 10
batch size 150
learning rate 1e− 4
dropout rate 0.2
optimizer Adam (Kingma and Ba, 2015)

frequency of entire labels in the training set. Then we compare a model trained
with a training set containing original data and augmented data from all labels
(ABC-aug-all), and a model trained with a training set containing original
data and augmented data of infrequent labels (ACB-aug-inf).

Table 6.7 summarises hyperparameter settings for the experiments. During the
training epoch, the validation sets are used to compute loss at every epoch for
monitoring the training progress. When there is no improvement for p = 10
times, training is early-stopped. The hyperparameters are decided based on the
previous studies (Li and Yu, 2020; Lin et al., 2017; Ridnik et al., 2021) and
non-exhaustive experiments.

Evaluation metrics

As global performance metrics, we use the F1 scores, including micro-, macro-,
and sample-averaged F1 scores following the previous works (Shi et al., 2017;
Mullenbach et al., 2018; Li and Yu, 2020; Shim et al., 2022). Micro-averaged
scores are calculated by treating each <text input, code label> pair as a separate
prediction. Macro-averaged scores are calculated by averaging metrics computed
per label. Sample-averaged scores are calculated by computing scores at the
instance level and averaging over all instances in the data set. For recall, the
global metrics are computed as follows:
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Micro-R =
∑K

k=1 TPk∑K
k=1 TPk + FNk

(6.21)

Macro-R = 1
|K|

K∑
k=1

TPk

TPk + FNk
(6.22)

Sample-R = 1
|N |

N∑
i=1

|yi ∩ ŷi|
|yi|

(6.23)

where TPk and FNk, denote true positive examples and false negative examples
for a specific ICD-9 code label k, respectively. Since we use MIMIC-III 50
dataset, |K| equals 50. yi and ŷi denote the ground truth labels and the
predicted labels for the i-th test example, respectively and N denotes the total
number of test samples. Precision is computed similarly.

To evaluate group-specific performances, group-averaged sample F1 scores are
used:

Group-F1 = 1
|G|

G∑
g

Sample-F1g (6.24)

where Sample-F1g is computed by averaging F1 scores computed per sample in
a age group g ∈ G = {G18-29, G30-49, G50-69, G70-89, G90+}.

We also consider fairness metrics, such as false negative rate (FNR) and false
positive rate (FPR) in the sample level (Hardt et al., 2016; Chouldechova, 2017;
Shim et al., 2022). FNR is the fraction of ICD codes that failed to be predicted
by a system but are included in a ground truth label set. FPR is the fraction
of ICD codes that are erroneously predicted by a system but not included in a
ground truth label set. High FNR scores imply low recall scores and high FPR
implies a high probability of false alarms. Two metrics are computed as follows:

FNR = 1
|N |

N∑
i=1

FNi

FNi + TPi
(6.25)

FPR = 1
|N |

N∑
i=1

FPi

FPi + TNi
(6.26)
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Table 6.8: Experimental results on the entire test set.

Model Micro-F1 Macro-F1 Sample-F1
Baseline 64.4 59.2 60.7
Ensemble-Baseline 64.4 58.5 60.6
Ensemble-DAWL 64.7 59.5 60.8
Ensemble-FL 64.1 58. 60.3
Ensemble-ASL 64.6 60.1 60.8
ABC 62.5 56.5 59.2
ABC-aug-all 55.3 49.5 51.3
ABC-aug-inf 57.9 52.7 54.1

More details on how to compute evaluation metrics and error metrics can be
found in Ch. 6.1.3.

6.2.5 Results

Global performances

Table 6.8 summarises the experiment results. It is observed that training
group-specific models (Ensemble-Baseline) does not improve the global
performance metrics. The ensemble model trained by using the proposed
loss (Ensemble-DAWL) slightly outperforms the baseline models (Baseline,
Ensemble-baseline) but the differences are not significant. The ABC
model (ABC) achieve slightly lower performances across all globally averaged
F1 scores than the baseline model (Baseline). The ABC model trained
with the augmented data of infrequent labels (ABC-aug-inf) achieves slightly
better performances than the ABC model with the entire augmented data
(ABC-aug-all). However, both models achieve lower performances than the
ABC model (ABC) trained without augmented data. These results imply that
the proposed data augmentation method harms performance.

Group-specific performances

Group-specific performances are summarised in Table 6.9. Contrary to
the previous results with the global performance metrics, it is observed
that Ensemble-baseline slightly outperforms the Baseline in terms of
group-averaged F1 scores and fairness scores. Ensemble-DAWL outperforms
Baseline and other ensemble models in terms of group-averaged F1 scores but
shows lower fairness metrics. It is worth mentioning that ABC models achieve
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Table 6.9: Performances per age group. Diff. and Ratio refer to largest
difference (the lower the better) and smallest ratio (the higher the better),
respectively. Sample-averaged F1 scores are used for group-averaged scores.

Ensemble ACB-aug
Age Base Base DAWL FL ASL ABC all inf
18-29 48.2 48.9 47.4 48.7 47.7 62.1 47.2 53.5
30-49 52.4 52.6 53.4 52.7 52.1 60.3 51.9 56.
50-69 60.9 60.8 62.0 60.4 61.3 59.2 51.9 54.2
70-89 63.6 63.4 63.7 63.4 63.4 59.2 51.6 53.6
90+ 65.0 65.1 65.4 65.2 65.0 56.4 46.1 52.6
Average 58.0 58.2 58.4 58.1 57.9 59.4 49.7 54.
Diff. (↓) 16.8 16.2 18. 16.5 17.3 5.7 5.8 3.4
Ratio (↑) 74.2 75.1 72.5 74.7 73.4 88.8 86.9 93.9

similar performances across all age groups resulting in better fairness metrics
compared to multi-label classification models. Similar to the previous results,
data augmentation harms the performance of the ABC model. The ABC model
trained with the augmented data of infrequent labels (ABC-aug-inf) achieve a
lower group-averaged F1 score than the ABC model without data augmentation
(ABC).

Error analysis

Table 6.10 summarises the error analysis results. In general, all models show
higher FNR than FPR which means that the probability that mentioned ICD
codes will be missed by the systems is high (low recall). One interesting
observation is that all ensemble models and ABC models achieve lower FNR
scores but higher FPR scores than the baseline model (Baseline). Especially
Ensemble-DAWL and ABC improve FNR scores considerably while degrading
FPR scores marginally. The ABC model trained with the augmented data of
infrequent labels achieves higher FNR scores than the ABC model without data
augmentation (ABC).

6.2.6 Discussion

Group-specific ensemble approach In this study, we propose two approaches
to build a fair model that performs equally well across different demographic
groups. In the first approach, we create an ensemble of group-specific models.
Even though the experimental results show that ensemble approaches improve
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Table 6.10: Errors analysis results. Because of space limitation, only a subset
of results is reported. More results can be found at Table 6.11 in Appendix 6.B.

Baseline Ens-Base Ens-DAWL ABC ABC-aug-inf
FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR

Total 40.6 3.8 39.4 4.0 34. 5.5 36.1 5.8 42.7 5.7
18-29 46.2 2.9 45.6 2.8 44.4 3.5 33.2 4.8 41.5 6.4
30-49 45.9 3.3 45.8 3.2 40.5 4.3 34.3 6.3 39.9 6.1
50-69 39.5 3.9 40.1 3.7 34. 5.3 37.1 5.8 43. 5.6
70-89 35.7 5.0 36.6 4.8 31.2 6.4 35.8 5.6 43.6 5.4
90+ 34.1 4.4 34.1 4.3 31.7 5. 37.2 6.4 43. 6.1

the performances in terms of global F1 scores, the improvements are marginal.
Similarly, ensemble models Ensemble-baseline and Ensemble-FL improve
fairness scores, which means the models achieve relatively equal performances
across all groups, except for the ensemble approach with a data distribution-
aware weighted loss and asymmetric loss. Especially, Ensemble-DAWL achieves
higher group-averaged F1 scores than the baseline approaches but shows worse
fairness scores by increasing performance differences between the groups. Overall,
ensemble approaches provide marginal performance improvement but they
require more resources, including more computation for fine-tuning and memory
for group-specific models. Therefore, building an ensemble model could be
beneficial when there is enough computational resource and high performances
(e.g., high recall) are desirable.

As binary classification approach From the experiment results, it is observed
that the ABC models slightly underperform compared to the multi-label
classification models in terms of globally averaged F1 scores. One interesting
observation is, however, that the ABC approach substantially improves the
fairness metrics by achieving relatively equal performances across age groups.
Similarly, error analysis results show that multi-label classification approaches
show low FNR scores and high FPR toward old patient groups (70-89, 90+)
which implies that the models predict many false positives for the old patient
groups (70-89, 90+). This is potentially caused by label co-occurrence (Zhang
and Zhou, 2013) because older patients groups contain more labels in the
training set (Figure 6.3 in Ch 6.1.4). Meanwhile, ABC approaches do not
show this behaviour because this label co-occurrence information is lost when
formulating a multi-label problem as binary classification. This information
loss results in lower performance in terms of global performance metrics. Some
researchers show that incorporating label co-occurrence information from the
training data can improve the performances (Huang and Zhou, 2012; Yu et al.,
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2014; Zhu et al., 2017). However, it is not a trivial question whether we should
train a model to learn label co-occurrence or not for a clinical application. On
one hand, label co-occurrence captures information about comorbidity that
can be useful for a medical coding task. On the other hand, it can result in a
biased model that fitted to the training data set but learned how to perform
a target task. Therefore we argue that more careful consideration is required
when building a clinical application and it is important that a user (human
coder) is aware of the behaviour of a system, such as when and where a system
fails.

Limitations and future directions In this study, we aim to address the
performance differences between demographic groups. In general, ensemble
approaches marginally improve global and group-averaged performances.
However, the ensemble model with the proposed distribution-aware weighted
loss results in lower fairness scores. On the other hand, binary classification
formulation degenerates performance scores but substantially improves group-
averaged scores and fairness scores.

Experimental results indicate that the proposed data augmentation method
harms performance. This result is counter-intuitive because similar data
augmentation techniques have proven to be useful with transformer-based
models (Halder et al., 2020; Shim et al., 2021). Potential reasons are that the
baseline architecture used in the experiments is CNN-based or the augmented
data, which are synonyms of disease names, are not diverse enough to help a
model generalise better. Further study is required, which we leave for future
works.

6.2.7 Conclusion

In this study, we investigate how to address the problem of performance
differences across demographic groups. For this, we propose two approaches
including an ensemble model utilising the prior knowledge of data distributions
for a novel weighted loss function and formulating the problem as binary
classification. Results demonstrates that the ensemble approach with the
proposed loss function can improve global performance. It is observed that the
binary classification approach can improve group-averaged scores and fairness
scores by performing equally well across different age groups. Potential future
research direction includes a further study on data augmentation for performance
improvement and an investigation of building a robust and fair model for a
clinical application.
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Appendix

6.A Multi-Filter Residual Convolutional Neural
Network

Multi-Filter Residual Convolutional Neural Network (MultiResCNN) (Li and
Yu, 2020) for a medical code prediction task. MultiResCNN is built based
on TextCNN (Kim, 2014), Residual Network (He et al., 2016) and CAML
(Mullenbach et al., 2018). The key idea of MultiResCNN is to use multiple
CNN filters with varying window lengths to capture various text patterns with
different lengths. The model also uses residual convolutional layers to enlarge
the receptive field.

Figure 6.7 illustrates the architecture of the MultiResCNN. Input of Mul-
tiResCNN is a sequence word embeddings E = [e1, ..., eN ], where N is the length
of input. MultiResCNN consists of m different convolutional filters f1, ..., fm

with different kernel sizes k1, ..., km to capture text patterns with different
lengths. Each convolutional filter sets padding and stride as floor(ki/2) and 1,
respectively, to make the same output dimension Hi ∈ RN×df

, i ∈ {1, ..., m}
when kernel sizes are odd numbers11. df indicates the out-channel size of a
convolutional filter.

On top of each convolutional layer, there are p residual blocks. Each residual
block consists of three convolutional filters with residual connections. The
first (r1

i,j) and the second (r2
i,j) convolutional filters in each residual block

(Ri,j , j ∈ {1, ..., p}) have same kernel size ki with the corresponding convolutional
filter fi in the multi-filter convolutional layer. The kernel size of the third
convolutional filter (r3

i,j) in each residual block is 1. Each p-th residual block
outputs Hi,p ∈ RN×dp . The final output H ∈ RN×(m×dp) is a concatenation of
the outputs of m residual blocks H = [H1,p; ...; Hm,p].

6.B Error analysis results

In Ch 6.2.5, we analyse errors to understand model behaviour. We use false
negative rate (FNR) and false positive rate (FPR) as error metrics. All error
analysis results can be found in Table 6.11.

11Since we employ 1-dimension convolutional filter, the output size of the filter wout is
computed as wout = (win − k + 2p)/s + 1 where k,p,s indicate kernel size, padding size, and
stride size, respectively.
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Figure 6.7: The architecture of the Multi-Filter Residual Convolutional Neural
Network (MultiResCNN) model was used in this study.
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Chapter 7

Conclusion

In this thesis, we investigated the hypothesis that deep neural networks with
data-efficient algorithms outperform their counterparts in data- and label-scarce
settings. To this end, we proposed multiple data-efficient methods for different
NLP tasks and validated their effectiveness. This chapter recapitulates how the
proposed methods addressed the research questions outlined at the beginning
and discuss their contributions and limitations (Ch 7.1), provides an outlook
for future research (Ch 7.2), and multidisciplinary challenges of applying NLP
technologies to healthcare (Ch 7.3). The final section introduces the valorisation
opportunities of the research discussed in this dissertation (Ch 7.4).

7.1 Revisiting the research questions

RQ1. How can we fine-tune a neural NLP model when only a
small-sized training set for the target task is available?

A large-scale annotated training dataset is required to fine-tune a pre-trained
language model for a downstream task. Since a large pre-trained language model
consists of hundreds of millions of parameters, it is challenging to fine-tune with
a small amount of training data. Therefore, we investigated how to fine-tune
a neural NLP model when only a small-sized training set is available for the
target task. Our contributions are summarised below:

139
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Increasing the Size of Dataset

To address this question, we mainly focused on maximising the utility of existing
training data and proposed methods to increase the size of a labelled dataset.
For example, we proposed data augmentation methods by augmenting an input
text (Ch 3) and label text (Ch 4). Experimental results show that the proposed
methods can significantly improve performance in data-scarce and label-scarce
settings (Ch 3, Ch 4).

Similarly, formulating multi-label classification problems as binary classification
with label information is helpful because it increases the size of the training
data1 (Ch 4). Also, we found that generating synthetic data can be seen as a
data augmentation technique. In Chapter 5, we proposed a rule-based synthetic
data generation algorithm for a temporal information extraction task. The
proposed method augments the training data by utilising human knowledge
of the structure of temporal expressions. Experimental results show that the
method can improve the model’s performance.

Throughout the thesis, we observed that the effects of data augmentation
techniques were especially pronounced when dealing with imbalanced datasets,
which contain minority classes with a small amount of data in a training
set (Ch 3.6.3). The proposed data augmentation methods over-sample data
points by perturbating them, which results in less specific decision regions for
minority classes. In other words, the proposed data augmentation methods allow
classification models to learn larger, more general regions. Since minority classes
tend to have small, specific decision regions, whereas majority classes tend to
have large, generalised decision regions, the effect of data augmentation is more
significant in minority classes, as illustrated in Figure 7.1. This observation is
also aligned with the previous literature on data augmentation by generating
synthetic data (Chawla et al., 2002) that is particularly effective for the minority
classes.

Providing Explicit Hints

Another approach we proposed to address the small-sized training set problem
is to provide explicit cues about a task. For example, in Chapter 4, we modified
an input and output configuration by appending label information (e.g., aspect
category name) to inputs and formulated an aspect-based sentiment classification

1When a multi-label classification problem is formulated as a binary classification, a
sentence si in the original dataset can be expanded into multiple sentence-label pairs (si, l1),
· · · , (si, lN ) with label categories ln where n ∈ {1, 2, .., N}.
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Figure 7.1: The effect of data augmentation. Circles and triangles with solid and
dashed lines represent labelled and augmented data, respectively. Grey-coloured
circles and triangles with solid lines represent unlabelled data. Solid ovals
indicate updated decision regions and dashed ovals indicate original decision
regions.

task as a sentence-pair classification problem (i.e., <input, aspect category> ->
sentiment class) and results showed substantial performance improvement.

There are a couple of possible interpretations of why this approach improves
performances: firstly, this input and output configuration changes a problem
space from multi-label classification to binary classification lessening a burden
for a classification layer. Secondly, the class name appended to an input guides
a model where to focus for a target task. Because of this reason, this approach
works well with a model that uses an attention mechanism (Bahdanau et al.,
2015), such as BERT (Devlin et al., 2019). Moreover, using a second part of
the input to perform a target task is similar to the sentence-pair classification,
which is one of the pre-training tasks of BERT.

Adding Auxiliary Tasks

Lastly, we proposed multi-task learning that allows a model to jointly learn a
target task and an auxiliary task related to the target task (Ch 5). Experimental
results indicate that multi-task learning can improve the model’s performance
by utilising additional training signals with the existing training data (Ch 5).
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There are a few plausible explanations for why the proposed multi-task learning
improves performance. Firstly, introducing auxiliary tasks increases the training
signals for training a model. Therefore, this can be seen as a type of data
augmentation (Ruder, 2017). Secondly, multi-task learning helps a model
generalise better by reducing the risk of overfitting (Tu et al., 2020). Since
the model learns multiple tasks simultaneously while sharing the hidden layers,
the model learns to find generalised representations, rather than be overfitted
to one task. Regarding this, Baxter (1997) already showed that an increase
in the simultaneous learning tasks decreases the risk of overfitting. In our
case, we introduced an auxiliary task related to the target task so that it not
only provides additional learning signals to a model but also helps the model
generalise better for a target task. Thirdly, multi-task learning helps a model
eliminate irrelevant features and learn discriminative features for individual
tasks (Bi et al., 2008). Especially when dealing with high-dimensional data, it
is easy for a model focuses on spurious features. Multi-task learning teaches a
model to differentiate between relevant and irrelevant features for each task by
providing additional training signals.

Limitations

Throughout this dissertation, we have demonstrated the effectiveness of the
proposed data-efficient methods to address the first research question (RQ1)
on the data scarcity problem. To improve on the proposed methods, several
aspects can be further studied.

Firstly, the effect of the proposed data augmentation methods is marginal when
training data are sufficiently large. For example, for the sleep issue classification
task in Chapter 3, the performance gain is less than 1% when the entire dataset
is used for training. Similarly, for the aspect-based sentiment analysis task in
Chapter 4, the proposed label augmentation method contributes to a negligible
performance improvement when a full dataset is used for training. This is
potentially caused by the proposed methods augmenting the data by slightly
perturbating labelled samples to get the neighbouring unlabelled samples. Even
though these approaches expand decision regions by synthesising similar samples
but the coverage is limited. Therefore, a model cannot handle well new samples
from unknown distribution.

Secondly, the label augmentation method might not be applicable to some use
cases or other model architectures. In Chapter 4, we showcased the effectiveness
of the label augmentation method by validating it on a custom dataset containing
user reviews of a sleep coaching programme and a benchmark dataset containing
user reviews of restaurants. Following the success of providing class names as



REVISITING THE RESEARCH QUESTIONS 143

inputs with a BERT-based model (Ch 4), we applied a similar approach to
a CNN-based model and observed that the proposed method is less effective
(Ch 6.2). It could be because of different model architectures (i.e., the proposed
CNN-based model consists of two separate pipelines combined in a later stage
by using an attention mechanism.2) or relevancy to pre-training task. For
example, the proposed label augmentation method is similar to the next sentence
prediction task, which is one of the pre-training tasks of BERT, in terms of
forcing a model to learn features based on two separate inputs. Another possible
explanation is because of different domain data (i.e., user-generated texts vs.
clinical texts).

Lastly, the multi-task learning approach and synthetic data generation method
proposed in Chapter 5 require additional human effort. For example, the
proposed multi-task learning that trains a model on a target task and an
auxiliary task related to the target task can be beneficial because it can utilise
additional training signals from the same amount of data. Even though this
approach can mitigate a data scarcity issue, it requires more annotations, which
are not available in a label-scarce setting. Furthermore, the proposed synthetic
data generation method is based on handcrafted regular expressions designed
by a human programmer who has knowledge (i.e., on the structure of temporal
expressions) related to a target problem (i.e., temporal information extraction).
Therefore, it requires human expertise that cannot be automatically transferred
when dealing with a new use case (e.g., temporal information extraction in
another language). Moreover, the proposed method uses only one auxiliary task
that is similar to a target task. Therefore, the auxiliary task could provide
limited complimentary information.

RQ2. How can we train a machine learning model when only a
small subset of the target dataset is labelled?

Training data should be labelled for supervised learning; however, manually
annotating textual data is costly and not scalable. Therefore, the second
research question asked how to solve the label-scarcity issue. This is a critical
issue when domain experts need to annotate data (e.g., in the clinical domain)
or build an application with a labelling scheme that might be changed during
the development process (e.g., a new label class needs to be added). Our
contributions are summarised below:

2Firstly, the label names are used to create label representations and documents are used
to create document representations, separately. Then the label representations and document
representations are used to compute label-specific document representations.
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(a) Original decision boundary. (b) Updated decision boundary after
retraining with augmented data.

Figure 7.2: Illustrations of retraining a model with augmented data. Circles
and triangles with solid and dashed lines represent labelled and augmented data,
respectively. Grey-coloured circles and triangles with solid lines represent unlabelled
data. Solid lines indicate decision boundaries. Areas with dashed lines indicate
misclassification.

Semi-Supervised Learning

In this dissertation, we mainly investigated how to reduce manual labelling efforts
required for supervised learning while minimally compromising performance.
Firstly, we studied how to leverage unlabelled data without additional manual
labelling. For this, we used the model’s predictions on unlabelled data (i.e.,
pseudo labels) as additional training signals via semi-supervised learning.
From experiments, we found that the semi-supervised learning approach is
particularly useful when combined with the data augmentation method to deal
with imbalanced data (Ch 3).

From the experiments, we observed essential requirements for the proposed
semi-supervised learning method. Firstly, the effect of semi-supervised learning
relies on the performance of an initial model. This is because the proposed
method depends on a pre-existing model’s predictions (referred to as pseudo-
labels) on an unlabelled dataset, and retrains a model with the pseudo-labels.
Secondly, the proposed semi-supervised learning method that uses pseudo-labels
works well with the data augmentation method. This is because the proposed
data augmentation method provides regularisation effects. For example, the
data augmentation method creates synthetic data by perturbating samples. As
illustrated in Figure 7.2, retraining a model on these synthetic data encourages
a model to have consistent predictions on neighbouring samples and provides
the effect of regularisation.
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Active Learning

We then focused on an active learning scenario to efficiently reduce manual
labelling in Chapter 4. For this, we proposed a label-efficient training scheme
to maximise the utility of unlabelled data and already labelled data. The
proposed method employs task-specific pre-training, which is self-supervised
learning, and label augmentation, which is data augmentation, in an active
learning framework. Experimental results show that the proposed method can
use only half of the labelled data to achieve comparable performance to a model
without active learning. Moreover, the proposed method outperforms other
active learning methods. Moreover, a model trained with the proposed method
generalises better than models without the proposed method by achieving higher
performance scores with the same amount of data at the beginning and the
end of active learning iterations due to task-specific pre-training and label
augmentation.

From the experiments, we found two critical points in the active learning
scenarios: the first is an initial model and the second is uncertainty thresholds.
Since the proposed method is uncertainty-based active learning, an initial model
selects samples near decision boundaries that are most likely moving the decision
boundaries. However, we observed that the initial model is over-confident about
its wrong predictions towards minority classes and rarely selects minority class
samples and it results in no performance improvements in terms of minority
classes. As we showed in Figure 4.5 in Chapter 4, this is because the initial
model is not fully trained to select minority class samples. Because of this
reason, we proposed separate uncertainty scores for minority classes to lower
uncertainty thresholds so that a model can select minority class samples. With
this strategy, we prioritised the chance of increasing recall for minority, which
is critical when dealing with an imbalanced dataset.

Limitations

Based on the research in this dissertation to address the second research question
(RQ2) on label scarcity, we identified a few points that can be further addressed.

The first limitation is unstable semi-supervised learning in a data-scarce setting.
For the study on semi-supervised learning with pseudo-labels for sleep issue
classification in Chapter 3, we found that the pseudo-labelling approach might
not work well with a small dataset. For example, experimental results show
that when only 10% of the training dataset is used, the model is not sufficiently
trained to select samples of minority classes with high confidence scores. In
other words, the model is overconfident about its wrong predictions (i.e., false
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negatives) and fails at detecting samples belonging to minority labels. Since
the pseudo-labelling approach utilises the trained model’s predictions to train
the next model, the error could propagate. Our study in Chapter 3 shows that
the initial model achieves low performance concerning the minority classes, and
the pseudo-labelling method fails at selecting data with minority labels. As a
result, no additional training data with minority label classes were added to the
training set, resulting in negligible performance improvement (2%) (Ch 3.6.3).

The second limitation concerns self-supervised learning with small-sized
unlabelled datasets. For task-specific pre-training in Chapter 4, we used self-
supervised learning on unlabelled data. Generally, self-supervised learning is
used to pre-train language models by using a massive corpus. The benefit
of self-supervised learning is that it can be deployed with unlabelled corpus
data. However, we found that the effect of self-supervised learning is limited
when the training corpus is relatively small. For example, the experimental
results (Ch 4.5.5) show that the impacts of task-specific pre-training and label
augmentation are similar. Considering that task-specific pre-training requires
additional pre-training steps before fine-tuning, the proposed task-specific pre-
training is not computationally efficient when the training corpus is small.

RQ3. Can we exploit other resources (e.g., structured
information, prior knowledge, etc) to improve the performance
of a model?

Deep neural networks require a large-scale training set. A model might not
be fully trained if there is a limited number of training data. Collecting more
training data could be the most intuitive solution; however, it is sometimes
difficult to collect this data, or the data may not be available. To this end, we
hypothesised that utilising other resources, such as knowledge or structured
information, could be an alternative to collecting more data.

Utilising Knowledge of Data Structure and Dataset

Firstly, we studied how to utilise human knowledge about the data structure
to generate synthetic data for supervised learning. In Chapter 5, we proposed
a synthetic data generation algorithm to address the lack of text data for
temporal information extraction. The proposed algorithm uses handcrafted
regular expressions which are built based on human knowledge, such as common
structures of temporal expressions (e.g., HH:MM) to augment training data by
generating synthetic data. Experimental results show that using synthetic data
for training can improve the performance of a temporal expression normalisation
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task, which requires both natural language understanding skills and numeracy
skills to translate a temporal expression (e.g., "ten to eleven in the evening")
into a normalised format (e.g., 22:50), when there is no large corpus containing
temporal expressions.

The proposed method injects a numeracy skill into a pre-trained language
model. Pre-trained language models typically lack numeracy because they are
trained on a large corpus extracted from books or scrapped from web texts
with language modelling objectives. It is not enough for tasks that require
numerical reasoning. Moreover, the proposed method improves performance
by generating synthetic data. Recent literature showed that language models
can obtain numeracy but they also showed that the model’s generalisability is
limited to the coverage of the given training set (Wallace et al., 2019). Since
collecting a dataset that covers all potential numbers is practically impossible,
applying data augmentation is a straightforward solution. For example, one
recent literature also applied data augmentation techniques to generate synthetic
data and showed the effectiveness of data augmentation for numerical tasks
(Geva et al., 2020). Therefore, the main contribution of the proposed method is
that it leverages human knowledge of the structure of data to generate synthetic
data to improve the coverage of a training dataset.

Secondly, we investigated how to exploit knowledge about data or label
information, especially for a knowledge-intensive domain. Chapter 6 introduced
a clinical use case, such as medical code prediction, and we studied how to
utilise domain knowledge. We proposed a novel weighted loss function that uses
information about the label distribution of a training dataset. The proposed
loss function utilises label distribution to dynamical weight loss. Experimental
results show that a model trained using the proposed weighted loss achieves
higher performance scores compared to a model trained without the proposed
weighted loss.

The proposed weighted loss can improve performances by using different label
distributions among demographic groups. From the data analysis study (Ch 6.1),
we demonstrated that each demographic group has a different label distribution
and found that a model performs poorly in the demographic groups that contain
data whose label set is different from the global label distribution. To address
this, we proposed ensemble approaches with group-specific weighted losses by
using group-specific label distribution. From experiments, we observed that
the proposed group-specific weight loss approach can improve group-averaged
scores. However, we also observed that the proposed method improves the
performances of large demographic groups but harms the performances of other
demographic groups. This is potential because the small groups contain too
small sample sizes to take an advantage of information from group-specific label
distributions.
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Thirdly, we proposed a binary classification approach to utilising label
information. In Chapter 6, we provided a label name (in our case, a disease
name) as input to guide a model to perform binary classification (to determine
whether the given disease is mentioned in the given clinical document or not).
Additionally, we explored how to utilise domain knowledge. For this, we used
the medical knowledge database that contains synonyms of disease names and
augmented training data by replacing label names with their synonyms. To do
this, we applied the data augmentation method that we proposed for other use
cases (Ch. 4). We found that the binary classification approach can achieve
better fairness scores and perform equally well across different demographic
groups.

The proposed binary classification approach is similar to the label augmentation
method that we proposed for the first research question (RQ1): it can be
seen as providing explicit hints to a model and simplifying a target task as
binary classification. However, the effect of using label information as inputs is
less pronounced in Chapter 6.2 compared to Chapter 4. This is because the
model proposed in Chapter 6.2 applies an attention mechanism after extracting
document features and label features separately, whereas the model proposed in
Chapter 4 uses multiple attention layers from the beginning to extract deeply
contextualised document and label features.

Limitations

We studied opportunities for exploiting other resources to improve supervised
learning in a data-scarce setting, and there were some limitations that should
be further addressed.

The proposed synthetic data generation algorithm based on human knowledge in
Chapter 5 is rule-based. Therefore, it requires human expertise and handcrafting,
which cannot be reapplied to another use case. Furthermore, since this approach
includes designing rules and training a model, combining rule-based and learning-
based methods, it is less efficient than either a purely rule-based approach or
a learning-based approach. In other words, to update the model, researchers
must change the rules for generating synthetic data and re-train the model by
using the newly generated data.

In Chapter 6, we proposed a method to utilise prior knowledge of data, such as
label distribution of a training dataset. Since the proposed method uses label
distribution for weighting a loss function for supervised learning, the trained
model cannot handle data from a different distribution. In other words, the
proposed method assumes that test data always comes from the same data
distribution of the training dataset. Therefore, the trained model cannot be
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used in a setting where data distribution might shift as time changes. Moreover,
since prior knowledge of label distribution is required, the proposed method
cannot be applied to a new domain where researchers have no prior knowledge
of data.

In the same chapter (Ch. 6), we explored using an external database containing
domain-specific knowledge. For example, we used a medical knowledge database
that contains synonyms of disease names to augment the training data. To this
end, we reformulated a problem as binary classification by providing a label
name as an input and replaced a label name with its synonyms while augmenting
data. The proposed data augmentation method is similar to what we proposed
and validated for other use cases in Chapter 4. However, experimental results
indicate the proposed data augmentation is not effective for the clinical use
case (Ch. 6.2). As we mentioned earlier, this could be because of the different
model architectures. In Chapter 6.2, we use a model consisting of separate
feature extraction pipelines with late, shallow attention, which is different from
the early, deep attention used in Chapter 4. Another possible reason is the
limited synonym diversity of the used external database. These results imply
that directly applying data augmentation methods that are validated for other
use cases does not always work.

7.2 Future Directions

7.2.1 Addressing Data Scarcity Problem

There are a few potential approaches to mitigating the limitations of the proposed
methods for data scarcity problem. Firstly, to address the limitation of the
proposed data augmentation methods, which augments texts at a token/word
level, researchers can increase the diversity of augmented texts by augmenting
texts at a sentence level. One potential way to do so is to utilise separate
machine translation models or pre-trained language models to generate synthetic
data. For example, back translation (Sennrich et al., 2016) is a method that
can introduce paraphrased sentences or different sentence structures while
keeping the original meaning3. Moreover, recent studies have proposed prompt
engineering (Liu et al., 2021b) that uses large generative models (e.g., GPT-3
(Brown et al., 2020) or BART (Lewis et al., 2020)) for data augmentation (Wang
et al., 2022; Chintagunta et al., 2021). The key idea is to make use of trained

3Back translation consists of two steps: the first step is to translate a source sentence into
another language by using a machine translation model. The second step is to translate the
translated sentence back into the original language. These steps generate a slightly different
version of the original sentence while preserving the original meaning.
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generative models to generate texts conditionally. These model-based data
augmentation methods are powerful because they can generate synthetic data,
resulting in more diverse augmented data compared to the proposed methods
(Ch 3, Ch 4), which are based on text-editing augmentation. Nonetheless, the
drawback of these model-based data augmentation methods is that they require
separate models, and the performances depend on the separate models.

Another potential approach is to reduce the model complexity rather than
increasing the size of the data. For example, model pruning is an ongoing
research topic that focuses on reducing the size of a deep learning model while
not compromising on test performance (Michel et al., 2019; Hoefler et al., 2021).
The key idea is to eliminate unimportant weights in a trained model to create a
smaller and sparser model4. Even though previous studies have mainly focused
on fast inference with a pruned model, recent works have produced promising
results showing that pruning can also improve performance when fine-tuning
with a small dataset (Liu et al., 2021a; Chen et al., 2021). Similarly, lottery
ticket hypothesis is an emerging approach to training a smaller version of the
model without sacrificing performance. The main idea is to identify sparse,
small subnetworks (winning tickets) from an original model that can reach
higher test accuracy (Frankle and Carbin, 2018; Chen et al., 2020a). The
benefit of reducing model complexity is that it requires less computational
power during inference. Therefore, we expect that pruning has the potential to
build data-efficient and resource-efficient models.

7.2.2 Addressing Label Scarcity Problem

There are several promising solutions for overcoming the limitations of the
methods proposed in this thesis. One potential approach to address the issue
of unstable semi-supervised learning because of the model’s overconfidence is
to calibrate a trained model. As other researchers have pointed out, neural
networks are generally overconfident about their predictions (Guo et al., 2017),
and it is not reliable to interpret the model’s predictions (e.g., softmax outputs or
sigmoid outputs) as confidence scores (Gal and Ghahramani, 2016). To mitigate
this, Guo et al. (2017) propose several methods to calibrate overconfident
predictions. For example, temperature scaling is a simple yet effective calibration
method that divides the logits (e(z/T )/

∑
i e(zi/T )) by a scalar parameter T > 0.

Further, using soft pseudo-labels could be a potential solution to mitigating
the overconfidence issue. Unlike hard pseudo-labels that use the predicted
output class (i.e., one-hot vectors), soft pseudo-labels use the predicted output

4Contrary to dropout that randomly deactivate nodes during training (Srivastava et al.,
2014), pruning remove nodes that are unimportant. Therefore, pruning works as a type of
model compression.
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distribution (i.e., softmax outputs or sigmoid outputs). In general, soft pseudo-
label approaches outperform hard pseudo-label approaches by addressing the
noisy nature of pseudo-labels (Tanaka et al., 2018; Arazo et al., 2020; Zou et al.,
2020). Therefore, we expect that incorporating the soft pseudo-label method
could improve the proposed semi-supervised learning method.

Another potential approach is to combine data augmentation and semi-
supervised learning. Data augmentation methods are mainly applied to labelled
data in supervised learning settings, as shown for the RQ1. However, data
augmentation methods can also be applied to unlabelled data in semi-supervised
learning settings. For example, consistency regularisation approaches, also
known as consistency training, are famous methods that use data augmentation
for semi-supervised learning (Sajjadi et al., 2016; Tarvainen and Valpola,
2017). The consistency training assumes that small perturbations of data
points should not modify model predictions given the same input. Thus,
data augmentation is applied to unlabelled data to create perturbations,
and a consistency regularisation term, defined as the mean squared error or
Kullback–Leibler divergence metrics, is added to a loss function to encourage a
model to produce robust predictions for noisy inputs. In other words, consistency
training methods train a model to minimise the prediction difference between the
original unlabelled sample and its corresponding perturbed version. Therefore,
we expect that combining the proposed data augmentation methods and semi-
supervised learning has the potential to further improve model performance
with a smaller quantity of labelled data.

Similarly, another interesting future research direction is to combine the data
augmentation and self-supervised learning. One potential approach is to use
contrastive learning, which is a technique that aims to teach a model to learn
discriminative features between different class samples and similar features
for the same class samples. A recent study showed that a model trained
on contrastive learning objectives with data augmentation learns better visual
representations, which results in performance improvements (Chen et al., 2020b).
Therefore, we expect that combining the proposed data augmentation methods
in a pre-training phase with contrastive learning is a promising research direction
for data-efficient training.

7.2.3 Utilising Knowledge and External Resources

There are a few potential areas of research for addressing the limitations of the
proposed methods of using knowledge and external resources. First of all, a
promising area that has been less explored is the methods for automatically
generating appropriate synthetic data. As we discussed earlier for the first



152 CONCLUSION

research question (RQ1), using generative models or pre-trained language
models could be an approach to automatically generating synthetic data for
supervised learning. For example, we can use pre-trained language models to
randomly substitute words in an original sentence based on the prediction of
pre-trained models within a masked language prediction setting (Wu et al., 2019;
Kumar et al., 2020; Chen and Yang, 2021) or to generate synthetic data through
prompting (Liu et al., 2021b). However, as mentioned earlier, these approaches
require additional resources for large models. Therefore, these approaches are
useful for application domains that have enough computational resources but
lack data.

Another potential area for future research is knowledge-enhancing approaches.
In this dissertation, we proposed methods that utilise knowledge, such as human
knowledge and knowledge database, to augment data and improve supervised
learning. However, there are other approaches that focus on enhancing the
knowledge of neural models for knowledge-intensive applications, such as medical
code prediction use cases (Agarwal et al., 2019; Teng et al., 2020; Chang et al.,
2020). These approaches utilise knowledge graphs to extract relevant knowledge
and represent them into vectors, often called graph embeddings (Perozzi et al.,
2014; Grover and Leskovec, 2016; Wang et al., 2016a), demonstrating that
incorporating graph embeddings can improve performance and explainability.
Therefore, we expect that combining graph embeddings and word embeddings is
a promising approach to utilising knowledge, especially for application domains
requiring domain-specific knowledge.

Finally, one interesting direction is to combine neural networks and symbolic,
logic-based approaches. Neural networks are powerful at extracting and learning
meaningful features from data but lack other capabilities, such as capturing
relations and compositional structure or reasoning (Johnson et al., 2017).
Instead, logic-based methods can capture these abilities due to their nature.
Therefore, the neural-symbolic approach aims to combine the strength of two
complementary approaches. Moreover, one of the major advantages of the
neural-symbolic approach is its data efficiency because it utilises symbolic
knowledge (d’Avila Garcez et al., 2019; De Raedt et al., 2020). Therefore,
the integration of neural and symbolic approaches could be a key to building
advanced and data-efficient NLP systems.

7.3 NLP in Healthcare: Multidisciplinary Challenges

Finally, we want to discuss the remaining legal, international, and ethical
challenges in utilising NLP systems in healthcare. Even though these
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multidisciplinary challenges are not extensively studied in this thesis, we believe
that more multidisciplinary collaborations are required and hope our experiences
from the HEART project can provide some insights.

The first multidisciplinary challenge is how to collect a large dataset, which
is difficult not only practically but also legally. Especially in light of the
General Data Protection Regulation (GDPR), each step of data acquisition and
model development should follow data protection laws and privacy regulations.
Moreover, healthcare companies like Philips typically apply higher legal
standards to safeguard their customers. As a result, exploiting personal data
from real customers is highly restricted. For example, Philips has an Internal
Committee for Biomedical Experiments (ICBE) that reviews potential privacy,
legal, and ethical issues of using data for all studies and controls data processing
activities within the company. This constrains access to large, personal data for
building machine learning models. This is the main reason why we used crowd-
sourced data to train machine learning models in this thesis. The drawback
is that crowd-sourced data are different from real-world data and the trained
model requires iterative updates based on real-world data. This is partially
addressed in Chapter 4 where we propose active learning to reduce the required
number of labelled data. However, the proposed approach is still a long way
from being applied in a real-world situation. Therefore, we expect more future
work to mitigate legal and privacy issues of collecting data for machine learning
model development, especially for healthcare applications to safeguard potential
users.

The second challenge is how to scale internationally, which is critical when
building NLP systems for different languages. When building multilingual
NLP systems, rule-based approaches are limited because they require language
experts who know the target language to program rules. Therefore, rule-based
approaches are not scalable, require a lot of resources, and increase time to
market when expanding to a new language. In this thesis, we partially address
this multilingual challenge by proposing learnable systems. Learnable systems
can scale better because they learn from data. Moreover, the proposed data-
efficient algorithms reduce the amount of required data so that they can support
fast development when building a model for a new language. However, our
works focused on NLP systems for English-language text only and roughly
80% of the world population does not speak English (Crystal, 2008). This
implies that the usability of proposed NLP systems is significantly limited and
developing NLP systems for non-English languages or multilingual NLP systems
is crucial. Leveraging multilingual language models or multilingual data for
under-resourced languages would be an interesting research direction to address
the multilingual, scalability challenge (Xue et al., 2021).

The third challenge is how to build a fair machine learning model. Fairness
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is one of the top priorities in developing machine learning applications in
healthcare to ensure that models perform ethically. This is also applicable to
datasets used for training machine learning models. For example, if the datasets
used to train machine learning models are imbalanced, they could result in
building biased models and reinforcing systemic health disparities for minority
populations (Röösli et al., 2022). In Chapter 6, we show how imbalanced data
affect the performance of machine learning models and propose a method to
address this challenge. However, the proposed method is a case study on a
public benchmark dataset and our analysis is limited to the machine learning
perspectives. Therefore, we advocate a close collaboration between machine
learning societies and medical practitioners to monitor data collection protocols
and assess the fairness of models when building healthcare applications.

7.4 Valorisation Plan

This section introduces the valorisation opportunities of the research discussed
in this dissertation. Valorisation refers to the utilisation of scientific knowledge
in practice creating economic and societal value. Examples include not only the
commercialisation of scientific knowledge but also the dissemination of research
results making scientific knowledge accessible to broader audiences. Throughout
this dissertation, we propose novel data-efficient methods to address the data
and label scarcity issues. The proposed methods include neural NLP models,
data augmentation techniques, and learning strategies and we experimentally
prove the effectiveness of the proposed methods.

In the following subsections, we will introduce potential domains that can benefit
from the research results, including application domains and general audiences.
Firstly, we explain how the developed NLP technologies can be applied to
the personal healthcare domain (Ch. 7.4.1) and clinical domain (Ch. 7.4.2).
For each potential application, we describe what additional steps are needed
for real-world implementation. Lastly, we describe the borader impact of the
developed NLP technologies (Ch. 7.4.3).

7.4.1 Personal Healthcare Applications

In this dissertation, we considered the business context of Philips Research and
introduced potential applications for personal healthcare services. Specifically,
we focused on a sleep coaching programme and potential applications in the
three stages of the programme, including assessment, coaching, and monitoring.
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Dialogue-based Sleep Triage System

The first step of a sleep coaching programme is a triage step to determine
whether the patient is applicable for the coaching programme. Typically, this
triage can be done by using long questionnaires, which is tedious and not
engaging. To overcome this, one potential solution is to design a dialogue
system that guides the user toward identifying their major sleep problems and
the related causes. The dialogue system leverages NLP technologies to identify
sleep problems from the users’ complaints about their sleep. The benefit of
using NLP technology is that users have more freedom to describe sleep-related
issues in their own words. The developed sleep issue classifier proposed in
Chapter 3 is a proof-of-concept version of a key NLP module in this application.

To deploy the developed sleep issue classifier for a real-world triage application,
several steps are required. The first requirement is to integrate a classifier
with clinical knowledge. At a high level, this can be done while defining the
output label classes of a classifier. For example, we consulted with sleep experts
to identify major sleep issue categories. At a low level, it is still needed to
make a classifier grounded in clinical knowledge. Utilising a medical knowledge
graph could be a potential approach to building a knowledge-grounded triage
system (Li et al., 2020). Regarding the required infrastructure for this system,
a possible solution is to deploy it on an edge device (e.g., a mobile) on a user
side or a cloud server on a service provider side. When deploying the system
on an edge device, privacy is protected by nature because data stay at the
user side. The additional requirement, however, is that a classification model
should be lightweight to be deployed and run on an edge device. On the other
hand, the benefit of using the cloud is that it has more computation power for a
large model. But the drawback is that it requires additional privacy-preserving
functions. Additionally, when implementing the proposed classifier for a real-
world application, a short response time should be considered to ensure that
dialogue can flow without latency.

Motivational Interviewing Analysis

Another potential application of the developed system in Chapter 3 is analysing
user feedback on healthcare devices to support usage. In this use case, people
use not only a hardware device but also a mobile app. For example, Philips offers
a continuous positive airway pressure (CPAP) machine to treat sleep apnea
disorders, such as obstructive sleep apnea (OSA). Along with the hardware
devices, including the CPAP machine and CPAP mask, Philips also offer a
software app (DreamMapper) to help users stay motivated for the treatment by
allowing them to check their progress, as illustrated in Figure 7.3. The desired
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Figure 7.3: CPAP devices (left) and a mobile app (right).

app feature is to make people to be motivated for using the devices because
CPAP compliance is important to treat OSA (Weaver and Grunstein, 2008).
One potential solution is to use the motivational interviewing method, which
encourages people to change their behaviour by focusing on their motivation
(Aloia et al., 2013).

For this, a mobile app could allow users to describe why they are motivated to use
CPAP or what blocks them from using it. Therefore, a potential valorisation
option is to apply the developed NLP technology to analyse motivational
interviewing data5. As a proof-of-concept, we built a classifier to analyse
the motivational interviewing data by applying the data augmentation and
semi-supervised learning methods proposed in Chapter 3. Since the developed
methods are generic and reusable, we could apply them to a different application
and achieve similar results6.

There are several requirements to implement this application in the real
world. Firstly, it is needed to identify root causes. For example, if user
responses describe why users are not motivated because of specific issues,
a system is required to differentiate issues between ones related to devices
(e.g., a noisy machine, an uncomfortable mask) and ones related to personal
circumstances (e.g., travelling, being sick). This can be satisfied by hierarchical
classification, where the output labels are organized into a class hierarchy, such
as a tree structure (Silla and Freitas, 2011). Furthermore, one of the important
requirements is to allow the classifier to detect new emerging classes. For
example, when a new issue could be reported by users, it is required to detect
new labels. To fine-tune a model with new labels, an easy model update process

5A data collection protocol consists of three steps: firstly, mobile app users are asked to
rank their motivation for using a device, on a scale of 1 to 10. Secondly, follow-up questions
ask users to explain why they gave specific values, rather than a lower or a higher value, in
their own words. Lastly, the collected responses are annotated with pre-defined labels. Then
the annotated data are used for building a multi-label classification system.

6Because of the business circumstance, we do not report the details of data and experimental
results in this dissertation.
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is required. Lastly, it is required to integrate device data (i.e., usage data,
sensor signals) with user inputs for monitoring compliance status. Regarding
infrastructure, the classifier can be deployed in an edge device or a cloud server,
similar to the sleep issue classifier.

Behaviour Change Challenge App

In Chapter 4, we introduced a potential mobile sleep coaching app that aims
to support people to keep a healthier lifestyle for better sleep health. One
of the desired features is the “Challenge” feature which helps people change
their behaviour to improve their sleep quality. For example, the “caffeine
challenge” asks people to stop drinking coffee in the late afternoon because it
can negatively affect sleep quality. To achieve this, we developed an NLP system
that can extract meaningful information from user inputs that they provide
at the end of the challenge. Also, we developed an active learning framework
to reduce manual labelling efforts and validated it with the semi-realistic user
data obtained from a crowdsourcing platform.

For this application, there are a few requirements. The first required step is to
validate the developed active learning framework on real-world datasets that
are collected from real app users. It is also needed to validate the developed
NLP system for other behaviour challenges7 to verify the performance of the
developed system. Moreover, it requires an additional feature that can detect the
strength of expressed sentimental values to fully understand the user experience.
For example, when a user expresses emotion towards a specific aspect (e.g., "I
cannot survive without coffee. I’m dying!"), it is required to detect not only the
sentimental value (i.e., negative) but also the strength of the sentiment (i.e.,
very strong). Similar to other applications, it is also required to deploy the
developed system either on an edge device or a cloud server.

Free-Text Sleep Diary Tool

A sleep diary is a tool for monitoring sleep activity and assessing the quality
of sleep. A typical sleep diary includes a series of questions to record the
time of sleep-related events, such as bedtime and wake-up time (Carney et al.,
2012). The main drawback of a current sleep diary tool is that it uses a
structured questionnaire and does not allow people to report their feelings
towards their sleep or provide additional information. Because of this limitation,
the structured sleep diary misses an opportunity to get other possible important
information, such as what happened throughout the night and how people

7Examples of other behaviour challenges include diet challenge and meditation challenge.
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feel/perceive their sleep experience. To address these limitations, we introduced
a free-text sleep diary use case that allows people to describe their sleep in
their words and developed a temporal information extraction model (Ch. 5).
Additionally, we have submitted an invention disclosure8 about a free text NLP
system that extracts both objective and subjective information and performs
analytics on the extracted results. Figure 7.4 illustrated the examples of the
proposed NLP system for free text sleep diary analysis.

Several requirements are needed to implement the proposed free text sleep
diary for sleep monitoring. The first requirement is temporal reasoning ability
to calculate sleep metrics, such as the total sleep time and sleep efficiency9.
The second requirement is the additional functionality of extracting subjective
information from free text sleep diary because we focused on extracting only
temporal information in this dissertation. Regarding the required infrastructure
for this system, a possible solution is to integrate with another internet of
things (IoT) for health monitoring, such as smart watches, to add additional
health-related temporal information automatically (e.g., exercise time).

7.4.2 Clinical Applications

In Chapter 6, we discussed the opportunity of utilising NLP technology for
a clinical application. We proposed two NLP models that formulate medical
coding as multi-label classification and binary classification, respectively. A
potential valorisation option is to apply the proposed methods to the medical
coding process for supporting human experts by predicting mentioned ICD codes
from the given clinical documents as illustrated in Figure 7.5. The benefit of this
potential application is to lessen the burden of human experts by automating
partial steps in the manual coding process. For example, the developed NLP
system can provide a candidate list of ICD codes and human experts can verify
whether each prediction is correctly mentioned in the clinical document. We
expect that this work could be of interest to a wide audience from the clinical
and healthcare community.

However, there are special requirements to use the developed NLP technologies
for clinical application. Firstly, it is required that the system achieves high recall
scores because output label space could be extremely large. For example, the
full MIMIC-III benchmark dataset (Johnson et al., 2016) contains almost 9,000
unique ICD codes. Secondly, the system needs to be validated on other datasets,
including a large dataset (MIMIC-III full) and other datasets obtained

8Intellectual property rights belong to Philips Research and patent filling is in progress.
9Sleep efficiency is calculated by dividing the time a person is asleep by the total time in

bed (Sleep Efficiency (%) = Total Sleep Time/Total Time in Bed) × 100.
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I went to bed around 12’o clock.
Used the phone for around
15 minutes and after that
switched the light off. It took
around 30 or 45 minutes to fall
asleep. My sleep was disturbed
at 5:45 am. and I spend in the
bed for other 45 minutes to get
sleep. I got off the bed around
6:30 am. Overall the sleep was
normal. I think stress caused
trouble in sleep. I felt refreshed.

(a) An example of free text sleep diary

Item Value
Bedtime 00:00
Switch off 00:15
SOL 30-45 min
Sleep disturbed 5:45
Duration of disturbance 45 min
Out of bed time 6:30
Habit Screen

time
Quality Normal
Issue Stress
Feeling Refreshed

(b) An example of extracted information

(c) Example of timeline.

Figure 7.4: Examples of free text sleep diary (a), the extracted information (b), and
the visualised timeline (c). Underlined texts indicate and blue-coloured texts indicate
temporal expression and additional information, respectively. SOL refers to sleep
onset latency which is the time it takes a person to fall asleep after turning the lights
out.

from different settings. Thirdly, it is required that domain experts evaluate
the system and verify whether it is safe to use in a real-world application.
Specifically, it is critical to include domain experts in development process to
assess the quality of a system and identify when and how the system makes
errors. Lastly, it is required to improve the explainability and causality of the
system. Since the proposed systems are based on the neural networks model,
which is a black box model10, explainability is needed to understand why the
system makes certain predictions. Also, enhancing the causality of the system
is required for the target use case. For example, if a system predicts ICD codes
based on other spurious correlations (e.g., frequently co-occurred ICD codes, a

10Block box model refers to a system that produces output without revealing any details
about how it works internally.
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Figure 7.5: Illustration of a medical coding system.

correlation between demographics and certain ICD codes), it might create fatal
issues. In our study (Ch. 6.2), we have discussed this problem and potential
future directions.

7.4.3 Broader Impact

Additionally, we expect that our research can create societal values, including
supporting healthcare professionals and empowering healthcare recipients. In
this dissertation, we have investigated the possibilities of developing NLP
applications for a sleep coaching programme. These NLP applications aim to
provide a user-friendly interface for healthcare recipients and to support health
professionals by focusing on two things: 1) applying NLP technologies to allow
people to provide free-text inputs for a natural conversation; and 2) adding an
analytic feature that automates processing free-text inputs to support decision
making. As a result, this project could also contribute to the healthcare field
by supporting health professionals to lessen the burden and allowing healthcare
recipients to actively engage in the process of healthcare service. Especially in
a post-pandemic era, when the possibility of telehealth service became more
important than before, applying machine learning technologies for data analysis
can play a key role in a healthcare domain (Lepore et al., 2022). Therefore, the
developed NLP technologies for healthcare applications within out-of-hospital
settings can provide useful insights to a healthcare community creating potential
societal impact.

To exploit the proposed data-efficient methods and NLP models, it is required
to validate them with other datasets. Further, the effectiveness of the proposed
data-efficient methods is needed to be validated when using different neural
models other than BERT. Moreover, when the proposed methods are applied to
clinical use cases, further consideration is required to avoid undesirable model
behaviour, such as learning from spurious cues in a training dataset (McCoy
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et al., 2019) or performing differently between majority and minor labels (Shim
et al., 2022). Therefore, an additional tool is required to test when a model
makes errors or understand model behaviour.
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