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Abstract— Gestational weight gain prediction in expecting
women is associated with multiple risks. Manageable interven-
tions can be devised if the weight gain can be predicted as early
as possible. However, training the model to predict such weight
gain requires access to centrally stored privacy sensitive weight
data. Federated learning can help mitigate this problem by
sending local copies of trained models instead of raw data and
aggregate them at the central server. In this paper, we present
a privacy preserving federated learning approach where the
participating users collaboratively learn and update the global
model. Furthermore, we show that this model updation can
be done incrementally without having the need to store the
local updates eternally. Our proposed model achieves a mean
absolute error of 4.455 kgs whilst preserving privacy against
2.572 kgs achieved in a centralised approach.

Clinical relevance— Privacy preserving training of machine
learning algorithm for early gestational weight gain prediction
with minor tradeoff to performance.

I. INTRODUCTION

In pregnancy, inadequate or excessive weight gain remains
a key health issue. Global estimates suggest that only around
30% of pregnant women end up being adequately weighed
recommended by the Institute of medicine [5], [11]. There
are several risks associated with such excessive or inadequate
gestational weight gain, for example, excessive weight gain
can lead to fetal macrosomia or post-partum maternal obesity
putting the mothers at incresased risk of gestational diabetes
[4]. Similarly, inadequate weight gain can lead to small-for-
gestational-age infants [5].

Early prediction of gestational weight gain can help mit-
igate this problem by helping neonatal healthcare providers
or expecting women in devising better management and
interventions. Traditional approaches exist in which raw data
from all the subjects is collected and sent to a central
location. At this central location, the data is saved, processed
and models to estimate gestational weight gain are trained.
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Even though, one can achieve high predictive performance
in such a centralised approach, there are several privacy
concerns associated with such a model building approach,
especially in the light of the General Data Protection Reg-
ulation (GDPR) imposed by the European Union (EU) and
increased awareness about privacy preservation among end-
users. The centralized storage creates a large surface area for
security and privacy attacks. It leaves the user lacking control
of his/her own personal data. Finally, in applications where
the data collected is large in size, especially larger than the
model, handling sensitive data on the server side becomes
cumbersome as well.

Google proposed federated learning [7] where many local
devices collaboratively train a model in association with a
central server, while keeping raw sensitive data distributed in
the users’ own devices. This is made possible by the ubiquity
and the improved computational capabilities of the edge
devices such as smart-phones. In federated learning, user
devices only share model updates with the centralized server
after training models iteratively on the local data available
on-device. Federated learning is particularly applicable to
use-cases where the data is collected from user devices and
the data is sensitive in nature. In order to achieve this, we
have designed and implemented a privacy-preserving feder-
ated approach for the prediction of gestational weight gain.
The key contributions of this paper are (a) implementation
of federated learning approach for prediction of gestational
weight gain, (b) studying the effect of varying number of
participants in collaborative learning, and (c) updating the
global model incrementally such that the local updates are
deleted once they are incorporated into a global model.

II. RELATED WORKS

Parametric methods such as maximum likelihood estima-
tion or ARIMA [2] approaches have been used traditionally
for time series prediction that utilise individual training data.
Authors in [10] propose an improvement over these state-of-
the-art techniques to predict an individual’s end-of-pregnancy
weight gain as early as day 140 with an average mean
absolute error of around 2.572 kgs. The model is trained
by learning an a-priori model based on data from other
users stored at a data center and using this information in
association with limited data from test individual to predict
reliably. Such a centralised data storage implementation
needs access to centrally stored data from a variety of users,
in this case, pregnant women. This high performance is
achieved at the expense of privacy sensitive information of



users. Authors in [9] prove that such decentralised learning
approach can help predict the gestational weight gain reliably
with privacy preserved. However, the model aggregation in
which local models are combined to form a single global
model required storage of the local models eternally on the
central server. This can lead to various forms of attacks on
the models stored on the server or intercepted model updates
including model inversion [3] and privacy leakage [8], [1]. In
this work, we built upon our previous works and propose that
such distributed learning can also be achieved by learning the
global model incrementally without storing the local updates
for infinite amount of time.

III. DATA

We consider data from 80 women that were in their
gestational week 5 or later recruited in Eindhoven, The
Netherlands. The weight data was collected using a WiFi-
connected weight scale, Withings WS301. The participants
were asked to log their weights weekly and the recorded
weight data was sent to the cloud via a mobile application.
Additional meta-data such as age, height and pre-pregnancy
weight were also collected. The participants provided an
informed consent pre-data collection and the study was
approved by the Internal Ethics Committee for Biomedical
Experiments of the involved organizations (ICBE Reference
number 2015-0079). This sample dataset’s distribution is

TABLE I: Dataset description

Dataset
Attribute Mean ± std

Age (years) 31± 3.5
Height (meters) 1.69± 0.07

Pre-pregnancy weight (kgs) 69± 15
Pre-pregnancy BMI (kgs/m2) 24± 4

Delivery (days) 277± 10
Weight Gained (kgs) 13.7± 4.7
Number of recorded
weight gain samples 59.83± 41.02

close to that in [5], which is obtained from a large population
of more than a million women, with almost half of the
women gaining above the recommended guidelines [10].

IV. METHODS

Given a population of N subjects that acquired N time
series of gestational weight gain measurements as X =
{(x1,y1), · · · , (xN ,yN )}, where xi = {ti1, ti2, ti3, · · · , timi

}
represents the input gestational days upto delivery day timi

and yi = {yi1, yi2, yi3, · · · , yimi
)} represents the output weight

gain for ith subject, where yik = y(tik). It is important
to note here that tik does not necessarily equal tjk, i, j ∈
{1, 2, · · · , N}. This is because the data is self-reported such
that each subject acquires measurements at different times
according to their personal preferences and adherence to data
collection.

Furthermore, we are given individual weight measure-
ments from test subject’s initial t+d days of pregnancy data,
D = {(t+1 , y

+
1 ), (t+2 , y

+
2 ), · · · , (t+d , y

+
d )}.

1https://www.withings.com/

We try to learn function(s) f from X and D, such that,

y+ = f(t+) + ε (1)

where ε ∼ N (0, σ2) is independent and identically dis-
tributed (i.i.d) according to a Gaussian.

A. Centralised parametric approach

Traditionally used methods include parametric approach
like fitting a pth-order polynomial with f = w0 + w1t +
w2t

2 + · · ·+ wpt
p in eq. (1) and estimating the coefficients

w = [w0, w1, · · · , wp]T by maximizing the likelihood (L)
over an individual’s personal-training data D, L(w) =
P (D|w),

ŵMLE = argmax
w

P (D|w) =

d∏
i=1

p(y+i |t
+
i ;w) (2)

This can be done on a local device using only the estimates
of a single user following eq. (2) that refers to the model
learnt from the individual’s sparse limited observations upto
given td days. Often, such a prediction is far from reliable
as it uses only few points from personal data. Authors
in [10] show that such a prediction can be improved by
considering the public-training data. The public-training data
(X ) can be exploited and the maximum likelihood point
estimates (MLE) of ŵi for each individual time series in the
public-training data following eq. (2) can be derived. If we
assume gaussianity over the distribution of w such that w ∼
N (µŵ,Σŵ), we can find a closed-form solution of wMAP

analytically. Here, µN
ŵ = mean([ŵ1, ŵ2, · · · , ŵN ]T ),

ΣN
ŵ = cov([ŵ1, ŵ2, · · · , ŵN ]T ) are mean and covariances

of the polynomial coefficients ŵ1, ŵ2, · · · , ŵN that are
each obtained using the individual gestational weight gain
data from each of the N subjects in the public-training data.
This distribution over the MLE estimates of the coefficients,
p(w) is acquired from the N subjects in the public-training
data as an a-priori estimate. The likelihood learnt from the
individual’s personal-training data (D) and the a-priori dis-
tribution learnt from the population data are then combined
using bayes theorem to calculate the maximum-a-posteriori
(MAP) estimate of the coefficients p(w|D).

ŵMAP = argmax
w

p(w|D) = argmax
w

P (D|w)p(w)

P (D)
(3)

The forecast at time t+m is given by
ŵMAP [t+m t+m

2 · · · t+m
p
]T . This approach is called parametric

because the choice of order of the polynomial p depends
on the application of interest.

B. Federated approach with eternal updates (F∞)

Federated learning is the process of storing only the model
weights from individual subjects that are pushed to a central
server. This preserves the privacy of a subject by only
sending the model coefficients instead of complete raw data
information as followed in the centralised approach. These
small updates of local model coefficients (ŵi) are sent to
the central server where these updates are stored eternally, so
that whenever a new model update arrives or a global update



is needed all parties can participate and a global model
can be aggregated as µŵ = mean([ŵ1, ŵ2, · · · , ŵN ]T ),
Σŵ = cov([ŵ1, ŵ2, · · · , ŵN ]T ). The federated learning
process (Fig. 1) that we utilised is as follows:-

(1) the centralized server sends the meta-data, (for exam-
ple, order p of the polynomial, current global model
estimate) to the participating subjects, once all subjects
agree upon it,

(2) the local subjects estimate model coefficients ŵMLE

based on maximising the likelihood of the local data,
(3) these local model updates are then shared to the server
(4) the server aggregates the individual models and create

an updated global model,
(5) the global model is shared with the participating sub-

jects.
This process is repeated as new subjects participate or
the already participating subjects gather more data to push
updated local models to the server.

Local
data

Local
data

Local
data

Local
data

Local
data

Centralised
server

Global
Model

Update
aggregation

Updated
Model

(1)

(1)

(1)

(1)

(2)

(2) (2)

(2)(3) (3)

(3)(3)
(4)

(5)

Fig. 1: Federated learning ensures local data remains on-
device and only model weights are shared at the central
server.

The local updates from participating subjects are stored
eternally at the central server for secure aggregation to
accurately estimate the global update. Hence, this method
is also denoted as F∞ as the updates are stored for infinite
time.

C. Federated approach with ephemeral updates (F∞)

Although federated learning with eternal updates gives
better privacy guarantees than sharing user data and learning
on a central server, it still leaves the system vulnerable to
attacks from older model updates or models themselves. The
reason why stored model updates over time can still reveal
sensitive information is because they are derived from the

sensitive data of the user and is a representation of high
level statistical distribution of the data [6]. We propose a
scenario where only incremental updates from participating
users are shared and are deleted from the central server once
the global model is updated. Assuming a multivariate normal
distribution, the global model µN , ΣN

ŵ can be updated using
the past global model µN−1, ΣN−1

ŵ and the new shared local
model (ŵN ) as follows:-

µN
ŵ =

(N − 1)µN−1
ŵ + ŵN

N

= µN−1
ŵ +

ŵN − µN−1
ŵ

N

(4)

Similarly, covariance for N th update can be estimated as 2,

ΣN
ŵ = ΣN−1

ŵ +
ŵN ŵN>

N − 1
−N · µ

N
ŵµ

N>

ŵ

N − 1
+µN−1

ŵ µN−1>
ŵ (5)

V. EXPERIMENTS

We perform leave-one-out cross validation to evaluate
and compare performance of our approaches, where training
dataset in each iteration consists of weight gain data from
n ≤ N public-training subjects and self-training data from
the test subject. Here, n denotes the number of participants
that had already participated in the federated learning preg-
nancy and an updated global model exists based on these n
number of participants. We experiment with different values
of n to show the effect of number of initiating users on
the regression performance. We subtract the pre-pregnancy
weight from the absolute data to get weight-gain data to
ensure further local model security. The performance of
regression was computed using Mean Absolute Error (MAE),
MAE = 1

N

∑
N |y(tim) − yref (tim)|. We experiment with

first, second, third, fourth and fifth order polynomial based
approach to fit our weight-gain data. The weight-gain data
is normalised to pass through origin, so intercept term can
be omitted. We chose third-order polynomial as it obtains
minimum prediction error.

VI. RESULTS

Initially, we assume that n = 10 random users have
already participated in the model building process and we
perform leave-one-out cross validation on the rest of 70
subjects by sending a global model learnt based on n = 10
subjects as an initial estimate. Fig. 2(a) and 2(b) show the
worst and best performing subjects respectively in terms of
estimating end-of-pregnancy weight gain based on such a
federated learning scheme. Note that personal weight gain
data until day 120 is used which is shown in black in Fig.
2 and the further values to be predicted are plotted in green.
Fig. 2(c) shows that when a global model initiated by n = 70
users is distributed, the regression performance improves.
The end-of-pregnancy weight prediction also improves with
only n = 10 participating users if the personal-data avail-
ability increases (Fig. 2(d)).

2See Appendix for proof.
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Fig. 2: Federated learning generates (a) worst (subject id #14)
and (b) best result (subject id #47) with limited personal data
upto 120 days when only 10 users have participated initially.
Performance for the subject id #14 can be seen improving
when (c) 70 users participated in federated learning or when
(d) the availability of personal-data increased (upto 180
days).

Next, we present the prediction results averaged over N−
n subjects where n is varied as 10, 40, and 70 and N = 80.
Fig. 3 shows that performance improves (MAE decreases)
as self-training data availability increases or when the initial
number of users participating in federated learning increase.
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Fig. 3: Average mean absolute error decreases as personal
training data increases or number of initial users increase.

The centralised approach with 80 subjects produces the
minimum absolute error in prediction with around 2.57
kgs error in predicting end-of-pregnancy weight gain. The
federated approach with ephemeral updates (F∞) performs
worse by about 1.89 kgs than centralised MAP approach with
around 4.46 kgs mean absolute error. Fig. 4 shows that the

federated learning out-performs the rest of the state-of-the-
arts in predicting gestational weight gain in the presence of
limited personal data (upto 200 days).
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Fig. 4: Performance of federated learning as compared to
state-of-the-art approaches.

VII. DISCUSSION

In this paper, we propose the implementation of federated
learning in time series related to healthcare. Apart from
centralised learning where the raw data is shared and stored
at the server for model building, we discuss two different
federated scenarios that differ in how long the updates are
stored at the central server.

Fig. 3 shows that the performance of the federated learn-
ing approach is different when the initial number of users
participating in the training process varies. As the number
of users that are involved in initial model building increases,
the performance improves. This can be attributed to the fact
that the global model becomes more generalised when the
number of users have increased. Similarly, a decreasing trend
is observed in mean absolute error from Fig. 3 and Fig.
4 with respect to the number of training days available. It
is intuitive that as more and more training data becomes
available, the individual model starts estimating the end-of-
the-pregnancy weight more accurately. But, it is desirable to
predict the weight gain as early as possible for necessary
intervention.

Fig. 4 shows that the performance of the two federated
learning approaches with different local model storage strate-
gies have identical performance as the availability of the
training data increases. It can be observed that the federated
approaches (F∞ (green) and F∞(blue)) performance in early
prediction of the weight gain is much better than the state-of-
the-arts and is very close to the centralised approach, thus
guaranteeing a good trade-off in performance and privacy
preservation. As more and more training data for an indi-
vidual pregnancy is available the performance of centralised
approach, MLE and the federated learning approaches is
close to each other as the global a model a-priori has less
influence on local model.



VIII. CONCLUSION

In this paper, we try and propose a federated learning
strategy that enables the preservation of privacy of a user
while attaining state-of-the-art performance. We try and
predict the gestational weight gain at the end of pregnancy
as early as possible. The proposed approach achieves around
4.455 kgs of mean absolute error as early as 140 days into
the pregnancy. In the future, we would like to improve upon
the privacy of the shared model updates by making them
differentially private (adding a noise to local weights) and
establishing formal privacy guarantees.

APPENDIX

Proof of Federated Covariance estimation with ephemeral
updates:

ΣN
ŵ =

1

N − 1

N∑
i=1

(
ŵi − µN

ŵ

) (
ŵi − µN

ŵ

)>
=

1

N − 1

N∑
i=1

[
ŵiŵi> − ŵiµN>

ŵ − µN
ŵŵi> + µN

ŵµ
N>

ŵ

]
=

1

N − 1

N∑
i=1

ŵiŵi> − 2

(
N∑
i=1

ŵi

)
µN>

ŵ +

N∑
i=1

µN
ŵµ

N>

ŵ

=
1

N − 1

N∑
i=1

ŵiŵi> − 2NµN
ŵµ

N>

ŵ +NµN
ŵµ

N>

ŵ

=
1

N − 1

N∑
i=1

ŵiŵi> −NµN
ŵµ

N>

ŵ

(6)

In order to calculate the update, we use the ∆Σ = ΣN
ŵ −

ΣN−1
ŵ . Substituting eq. 6 to calculate ∆Σ, we get

∆Σ = ΣN
ŵ − ΣN−1

ŵ

=
ŵN ŵNT

N − 1
− N · µN

ŵµ
NT

ŵ

N − 1
+ µN−1

ŵ µN−1T
ŵ

(7)
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